
Lecture 8: Cuts and Distances

In this lecture, we will look at three cut problems and the algorithmic techniques that have been
developed to tackle them. In all the examples below, we are given an undirected graph G = (V,E).
Each edge e ∈ E has cost c(e).

• Minimum s, t-cut Problem. We are input a pair of nodes s and t. The goal is to find the
minimum cost set of edges F such that in the graph (V,E \ F), s and t are disconnected.
That is, F is an s, t-cut.

• Multiway cut Problem. We are input a collection of nodes {s1, . . . , sk}, and the goal is to
find a minimum cost set of edges F such that in the graph (V,E \F) each si lies in a different
connected component.

• Multicut Problem. We are input a collection of pairs {(s1, t1), . . . , (sk, tk)} and the goal is
to find a minimum cost set of edges F such that in the graph (V,E\F), each si is disconnected
from its pair ti. Note that si and sj might lie in the same component.

Note that the problems are in increasing order of generality. In the next lecture we’ll encounter
another cut problem, the sparsest cut problem.

Cut induced distances.

Given the cut edges F , we can define a distance function d among all pairs of vertices as follows.
Set d(e) = 1 for all e ∈ F and d(e) = 0 for all e /∈ F . For any pair (u, v), d(u, v) is the shortest
path with these edge lengths.

All of the cut problems above can be cast as finding a suitable “distance” function among the
pairs of vertices in V . For instance, the multicut problem can be restated as follows.

min
∑
e∈E

c(e)d(e) d(e) ∈ {0, 1}

such that distance induced by d between si and ti ≥ 1 ∀i = 1, ..., k

One can move to a linear programming formulation by relaxing d(e) ∈ [0, 1], and having a
constraint for each si, ti path p. Or one can write the following compact LP using the fact that
d forms a distance and hence satisfies triangle inequality. For completeness, let us add all edges
(u, v) not in E with c(u, v) set to 0 for these edges. Then the LP is as follows

1

min
∑
e∈E

c(e)d(e) d(e) ∈ [0, 1] (1)

such that d(si, ti) ≥ 1 ∀i = 1...k (2)
d(u, v) ≤ d(u,w) + d(w, v) ∀u, v, w ∈ V (3)

The discussion above says that

Claim 1. For the multicut problem, opt ≥ lp for the LP (1).

Let us see how the above can be used to give algorithms for the three problems above. We start
with the s, t-min cut problem.

Minimum s, t Cut.
Minimum s, t-cut Algorithm.

1. Solve LP (1) with just one constraint of the form (2).

2. Pick r uniformly between [0, 1).

3. Let S := {v : d(s, v) ≤ r}. Return the cut F = δ(S).

Note that the solution returned is a valid s, t-cut of cost alg, say.

Theorem 1. The expected cost of the mincut algorithm is at most lp.

Proof. Fix any edge e = (u, v), let us calculate the probability e ∈ F . Without loss of generality,
let d(s, u) ≤ d(s, v). Then e ∈ F iff d(s, u) ≤ r < d(s, v). That is,

Pr[e ∈ F] = Pr[r ∈ [d(s, u), d(s, v))] = d(s, v)− d(s, u) ≤ d(u, v)

where the second equality follows from the fact that r is chosen uniformly at random between [0, 1),
and the second inequality follows from triangle inequality. Thus, E[alg] ≤

∑
(u,v) c(u, v)d(u, v) = lp.

Of course, the expected value of the algorithm cannot be strictly less than lp. In fact, this shows
that any cut returned by the algorithm has value equal to lp.

Multiway Cut.
The algorithm for multiway cut is slightly different. Instead of randomly sampling from [0, 1),

we will sample from [0, 1/2).

Minimum Multiway cut Algorithm.

1. Solve LP (1) with just constraints of the form (2) for every (si, sj) pair.

2. Pick r uniformly between [0, 1/2).

3. Let Si := {v : d(si, v) ≤ r}. Return the cut F =
⋃k
i δ(Si).

2

It should be clear the algorithm returns a valid multiway cut. This is because no Si will contain an
sj since the distance d(si, sj) ≥ 1. Once again, fix an edge (u, v) and let us calculate the probability
it is in the cut F . Here is an observation which will be useful.

Claim 2. For any vertex u, there is at most one su such that d(su, u) < 1/2.

Proof. All of this follow from triangle inequality. If there are two su and su′ with d(su, u) < 1/2
and d(su′ , u) < 1/2, then d(su, su′) < 1 which is a contradiction.

Lemma 1. In the above multiway cut algorithm, for any edge (u, v), Pr[(u, v) ∈ F] ≤ 2d(u, v).

Proof. (u, v) is cut when 1) u ∈ Su and v /∈ Su for some Su, or 2) v ∈ Sv and u /∈ Sv for some
Sv. However, since r < 1/2, Claim 2 implies there is an unique Su, if any, for which 1) is true
and there is an unique Sv, if any, for which 2) is true. Furthermore, for 1) to occur, we must have
r ∈ [d(su, u), 1/2) and for 2) to occur we must have r ∈ [d(sv, v), 1/2). Thus, the probability that
at least one of them occur is at most

Pr[(u, v) ∈ F] ≤ 2 · (1/2− d(su, u)) + 2 · (1/2− d(sv, v)) = 2 (1− d(su, u)− d(sv, v)) (4)

Now, triangle inequality gives us 1 ≤ d(su, sv) ≤ d(su, u) + d(u, v) + d(v, sv). Putting this in (4),
we get the lemma.

The above lemma implies a 2-approximation. In fact, we can get a 2(1 − 1/k) approximation by
taking the union of the cheapest (k − 1) cuts rather than k of them.

Multicut. We will look at two algorithms for the multicut problem. The first will be in the
spirit as we saw above using a random radius. The other will be a deterministic “region growing”
algorithm. Let us start with the randomized idea. What should our algorithm be? Inspired by the
mincut algorithm, let’s say we run k rounds of it. That is, pick a radius r ∈ [0, 1/2) and go over
the pairs in some order. Each time let Si = {u : d(si, u) ≤ ri} and add δ(Si) to F . We remove the
edges (u, v) when u and v both lie in some Sj for j < i. We can do this because both si and ti
cannot lie in a set Sj since r < 1/2. F be the final subset of edges

Fix an edge e = (u, v); what is the probability it is in F? When we go in the order defining Si,
three things can happen to this edge. Either u, v both lie in Si, exactly one of these lie in Si, or
none of these two lie in Si. We say (u, v) is taken care of by i if one of the first two occur. If the
second occurs, we say (u, v) is cut by i. Note that if (u, v) is taken care of by any i, (u, v) /∈ F :
this will be crucial. So, (u, v) is cut by our algorithm, if there exists i such that i cuts (u, v), and
none of the j < i take care of (u, v).

To be precise, define Ei(u, v) to be the event that d(si, u) ≤ r and d(si, v) > r, and let E ′i(u, v) be
the event that r < min(d(si, u), d(si, v)). From our discussion in the previous paragraph, we get

Pr[(u, v) ∈ F] = Pr
[
∃i : Ei(u, v) ∧ E ′i−1(u, v) ∧ · · · E ′1(u, v)

]
(5)

For a fixed i, we have

Pr
[
Ei(u, v) ∧ E ′i−1(u, v) ∧ · · · E ′1(u, v)

]
= Pr [r ∈ [d(si, u), d(si, v)] ∧ r < d(sj , u), r < d(sj , v), ∀j < i]

3

Consider the following pathological case: d(si, u) = 1− (i/k) and d(si, v) = 1− ((i− 1)/k). In this
case, the latter probability in the above expression simply becomes Pr[r ∈ [d(si, u), d(si, v)] for all
i. Union bound then gives the Pr[(u, v) ∈ F] ≤ k · d(u, v) – which would imply a k-approximation
and nothing better. (In fact, the probability in (5) becomes 1, that is the edge (u, v) is cut with
certainty).

The above example is pathological because of the order: if we had chosen a different order, say
the order {k, k − 1, . . . , 1}, then with probability 1, k takes care of (u, v) and with probability 1/k
it cuts it. This motivates the following algorithm which we call the CKR algorithm after Calinescu,
Karloff, and Rabani (the inventors).

Minimum multicut algorithm (CKR)

1. Solve LP (1).

2. Pick r uniformly between [0, 1/2). Let σ be a random permutation of {1, 2, . . . , k}. Initialize
F → ∅

3. Let Si := {u : d(si, u) ≤ r}. Let E[Si] := {(u, v) : u, v ∈ Si}.

4. In the order of σ, add δ
(
Sσ(i)

)
\
⋃
j<iE[Sσ(j)] to F .

Claim 3. F separates all si, ti pairs.

Proof. Note that when δ
(
Sσ(i)

)
\
⋃
j<iE[Sσ(j)] is added to F , sσ(i) disconnects from all vertices

outside Sσ(i), except maybe those in Sσ(j) : j < i which contain sσ(i). (Those which don’t contain
sσ(i) are disconnected by induction.) However, in that case, they don’t contain tσ(i). In any case,
sσ(i) is disconnected from tσ(i).

Theorem 2. The expected cost of the multicut returned by the above algorithm is at most O(log k)lp.

Proof. Fix an edge (u, v). The proof of the theorem follows if we prove Pr[(u, v) ∈ F] = O(log k)d(u, v).
Note that the probability is now both over our choice of r and the random permutation of the ter-
minals. Recall, Ei(u, v) is the event that d(si, u) ≤ r and d(si, v) > r, and E ′i(u, v) is event that
r < min(d(si, u), d(si, v)). As in the discussion above, we have

Pr[(u, v) ∈ F] = Prσ,r

∃i : Eσ(i)(u, v)
∧
j<i

E ′σ(j)(u, v)

 (6)

Fix an i between 1 and k. Note that
∧
j<i E ′σ(j)(u, v) occurs only if r < d(sσ(j), u) for all j < i.

But Eσ(i)(u, v) occurs only if r ≥ d(sσ(i), u). So, we can upper bound the probability in the RHS
above as

Prσ,r

Eσ(i)(u, v)
∧
j:<i

E ′σ(j)(u, v)

 ≤ Prσ,r

r ∈ [d(sσ(i), u), d(sσ(i), v))
∧
j<i

{d(sσ(i), u) < d(sσ(j), u)}



4

Note that the two events in the second expression are independent: the first depends only on
r, the second only on σ, they were chosen independently. So, we get

Pr[(u, v) ∈ F] ≤
k∑
i=1

Prr
[
d(sσ(i), u) ≤ r < d(sσ(i), v)

]
·Prσ

∧
j<i

{d(sσ(i), u) < d(sσ(j), u)}


We know Prr

[
d(sσ(i), u) ≤ r < d(sσ(i), v)

]
≤ 2d(u, v). Let Ni(u) := {j : d(sj , u) < d(si, u)} de-

note the terminals whose distance to u is smaller than that of si’s. Let ni = |Ni|. Note that the ni’s
are a permutation of 0, 1, . . . , (k − 1). The probability Prσ

[∧
j:σ(j)<σ(i){d(sσ(i), u) < d(sσ(j), u)}

]
is then 1/(nσ(i) + 1); it happens only if σ(i) lies first among the terminals Nσ(i)(u) ∪ {σ(i)} in the
ordering σ. So, we get,

Pr[(u, v) ∈ F] ≤
k∑
i=1

2d(u, v)/(nσ(i) + 1) = 2Hk · d(u, v)

We now describe another algorithm for the multicut problem. This algorithm, which we’ll call the
GVY algorithm, is the first algorithm for the problem due to Garg, Vazirani and Yannakakis. This
uses a technique called region growing which is a useful technique and has applications in other
partitioning problems.

We start with a couple of definition. Given a solution to (1), and a parameter r ∈ [0, 1/2), let
Si(r) := {u : d(si, u) ≤ r}. Recall δSi(r) := {(u, v) : u ∈ Si(r), v /∈ Si(r)} and E[Si(r)] = {(u, v) :
u, v ∈ Si(r)}. Define

Voli(r) :=
lp

k
+

∑
(u,v)∈E[Si(r)]

c(u, v)d(u, v) +
∑

(u,v)∈δSi(r)

c(u, v) · (r − d(si, u)) (7)

This denotes the total “lp-mass” in a ball of radius r around si.

Lemma 2. (Region growing lemma) For every i, there exists a ri ∈ [0, 1/2) such that∑
(u,v)∈δSi(r),v /∈Si(r)

c(u, v) ≤ 2 ln(2k) · Voli(ri)

The GVY algorithm returns the set F :=
⋃k
i=1 δSi(ri). The following shows another O(log k)-

approximation for multicut.

Lemma 3. c(F) ≤ 4 ln(2k) · lp

Proof. c(F) ≤
∑k

i=1 c(δSi(ri)) ≤ (2 ln(2k))
∑k

i=1 Voli(ri). Substituting the definition of Voli(ri),
we get

c(F) ≤ 2 ln(2k)

lp +
∑

(u,v)∈∪k
i=1E[Si(ri)]

c(u, v)d(u, v) +
k∑
i=1

∑
(u,v)∈δSi(ri)

c(u, v)(ri − d(si, u))


5

Let F1 be the edges belonging to exactly one δSi(ri). F2 be the edges belonging to two of these. For
the first type of edges, we have the coefficient of c(u, v) to be (ri − d(si, u)) ≤ d(si, v)− d(si, u) ≤
d(u, v). For the second type of edges, we have the coefficient of c(u, v) to be (ri − d(si, u)) + (rj −
d(sj , v)) ≤ 1−d(si, u)−d(sj , v) ≤ d(u, v). In all, we get c(F) ≤ 2 ln(2k)·(lp+lp) = 4 ln(2k)·lp.

Proof of Region growing lemma: The crucial observation is that

dVoli(r)
dr

= c(δSi(r))

If the claim is false, then we would get dVoli(r)/dr > 2 ln(2k) · Voli(r). So,∫ Vol(1/2)

Vol(0)

dVol(r)
Vol(r)

> 2 ln(2k)
∫ 1/2

0
dr

Integrating, we get ln
(
Vol(1/2)
Vol(0)

)
> ln(2k) implying Vol(1/2) > lp

k · e
ln(2k) = 2lp. This is a contra-

diction since the total lp value cannot exceed 2lp. �

6

