
Lecture 9: Sparsest Cut and Metric Embeddings

In the sparsest cut problem the input is an undirected graph G = (V,E). Each edge has
a quantity c(e) which we now think of as the capacity of the cut. There also exists demand
pairs {(s1, t1), . . . , (sk, tk)}, and pair i has a demand Di. Given a subset of vertices S ⊆ V , let
sep(S) := {i : |(si, ti) ∩ S| = 1}, and let D(S) :=

∑
i∈S Di, and the sparsity of S is defined as

Φ(S) :=
c(δ(S))

D(sep(S))

The sparsest cut problem is to find the cut of minimum sparsity, and

Φ∗ := min
S⊆V

c(δ(S))
D(sep(S))

Given a set S ⊆ V , we associate the distance dS(u, v) := 1 if exactly one of u and v are in S, and
0 otherwise. Such a distance function is called an elementary cut metric on V . It is straightforward
to see that

Φ∗ = min
d:elementary cut metric

∑
(u,v)∈E c(u, v)d(u, v)∑k

i=1Did(si, ti)
(1)

To get a lower bound on the sparsity, we minimize over general metrics instead of elementary
cut metrics. This, as we saw last time, can be done in polynomial time via the following LP.

min
∑
(u,v)

c(u, v)d(u, v) d(u, v) ∈ [0, 1] (2)

d(u, v) ≤ d(u,w) + d(w, v) ∀(u, v, w) ∈ V × V × V (3)
k∑
i=1

Did(si, ti) ≥ 1 (4)

We first show how to use the multicut algorithm done last time to obtain an approximation for
the sparsest cut problem. Subsequently, we will see how the theory of metric embeddings will help
give a better approximation.

Sparsest Cut from Multicut

Let D :=
∑k

i=1Di. Solve (2) to get distances d(·, ·).
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Claim 1. We can find a set of demand pairs S ⊆ [k] such that

d(si, ti) ≥
1

H(D)
∑

i∈S Di

for all i ∈ S, where H(`) is the harmonic number 1 + 1/2 + · · ·+ 1/`.

Proof. Rename the demand pairs such that d(s1, t1) ≥ · · · ≥ d(sk, tk). Let Si be the set {1, 2, . . . , i}.
We show that one of these Si’s will satisfy the conditions of the claim. Suppose not. That is,
d(si, ti) < 1

H(D)D(Si)
. Note that Di := D(Si)−D(Si−1) (with D(∅) := 0). So, we get

k∑
i=1

Did(si, ti) <
1

H(D)

k∑
i=1

D(Si)−D(Si−1)
D(Si)

≤ 1
H(D)

(
1 +

1
2

+ · · ·+ 1
D

)
= 1

which contradicts (4).

Let S be the set with d(si, ti) ≥ 1
H(D)D(S) . We now define d′(u, v) := D(S)H(D) · d(u, v) for

all u, v. Note that d′ remains a distance (satisfies triangle inequality) and d′(si, ti) ≥ 1 for all
i ∈ S; that is, d′ is a feasible solution to the multicut LP when the terminals are the set S. This
gives us the existence of a set of edges F ⊆ E such that each pair si is separated from ti and
c(F ) = O(ln |S|) ·

∑
u,v c(u, v)d′(u, v).

Suppose F separates the graph into pieces X1, X2, . . . , Xr. We claim that one of the Xi’s will
have low sparsity. Note that F =

⋃
i δXi, and each edge of F is in at most two δXi’s. So,

r∑
i=1

c(δXi) ≤ 2c(F )

Furthermore,
⋃
i sep(Xi) contains all demand pairs in S, and each demand pair (si, ti) lies in exactly

two sep(Xj)’s. So,
r∑
i=1

D(sep(Xi)) = 2D(S)

Therefore,

r
min
i=1

c(δ(Xi))
D(sep(Xi))

≤
∑r

i=1 c(δ(Xi))∑r
i=1D(sep(Xi))

≤ 2c(F )
2D(S)

=
O(ln k)D(S)H(D)lp

D(S)
= O(log k logD)lp

giving us a O(log k logD)-approximation.

Sparsest Cut from Metric Embeddings

Let’s recall the definition of sparsity

Φ∗ = min
d:elementary cut metric

∑
(u,v)∈E c(u, v)d(u, v)∑k

i=1Did(si, ti)
(5)
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A metric d on V is called a cut metric if it is a linear combination of elementary cut metrics.
The set of all such metrics is the cone of all elementary cut metrics on V .

CUT := {d : ∃λS : d =
∑
S⊆V

λSdS}

The following claim shows that in the sparsity definition we could minimize over all cut metrics
instead of elementary cut metrics.

Claim 2.

Φ∗ = min
d∈CUT

∑
(u,v)∈E c(u, v)d(u, v)∑k

i=1Did(si, ti)
(6)

Proof. Since we are minimizing over a larger space, we have Φ∗ ≥ RHS. Let d be the minimizer
of the RHS. Since, d =

∑
S λSdS , we get

RHS =

∑
(u,v)∈E c(u, v)

∑
S⊆V λSdS(u, v)∑k

i=1Di
∑

S⊆V λSdS(si, ti)

=

∑
S⊆V λS

∑
(u,v)∈E c(u, v)dS(u, v)∑

S⊆V λS
∑k

i=1DidS(si, ti)

=

∑
S⊆V λSc(δ(S))∑
S⊆V λSD(S)

≥ min
S⊆V :λS>0

c(δ(S))
D(S)

≥ Φ∗

where the last but one inequality used the elementary fact that for positive reals a1, . . . , at, b1, . . . , bt,
we have (

∑t
i=1 ai)/(

∑t
i=1 bi) ≥ minti=1(ai/bi).

A metric d on V is called an L1 metric if there is a mapping φ : V → Rh for some h such that
d(u, v) is the `1 distance between φ(u) and φ(v), that is,

d(u, v) = ||φ(u)− φ(v)||1 =
h∑
i=1

|φ(u)(i)− φ(v)(i)|

Lemma 1. For any (V, d) with d ∈ CUT , there is a mapping φ : V → Rh such that ||φ(u)−φ(v)||1 =
d(u, v) for all pairs for some h > 0. Conversely, given a mapping φ : V → Rh, there exists d ∈ CUT
such that d(u, v) = ||φ(u)−φ(v)||1 for all pairs u and v. The second mapping is polytime computable
and has λS > 0 for at most nh sets.

Proof. If d =
∑

S λSdS , define a mapping on h coordinates where h = |{S : λS > 0}|, as follows.
φ(u)(S) := λS · 1u∈S . Note that ||φ(u)− φ(v)||1 = d(u, v) for any pair u and v.

For the converse, we have h sets for each coordinate. Fix a coordinate i and order the vertices
as φ(u1)(i) ≤ φ(u2)(i) ≤ · · · . The sets with positive S are precisely {u1, . . . , ut} for t = 1..h.
λS = φ(ut)(i) − φ(ut−1)(i) for S = {u1, . . . , ut} with φ(u0)(i) defined as 0. Check that d(u, v) =
||φ(u)− φ(v)||1.
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Thus, we get

Φ∗ := min
d∈L1

∑
(u,v)∈E c(u, v)d(u, v)∑k

i=1Did(si, ti)

To go ahead, we define the notion of metric embedding. Given two metric spaces (V, d) and (V ′, d′),
we call a mapping φ : V → V ′ an embedding if it is one-to-one. The mapping has dilation at most
α ≥ 1 and contraction at most β > 1 if for any pair of vertices u, v in V , we have

d(u, v)
α

≤ d′(φ(u), φ(v)) ≤ β · d(u, v)

The distortion of the mapping is the quantity ρ = αβ.

The following strong theorem of Bourgain shows that metric can be embedded into L1 with O(log n)
distortion. We will prove this in the next class.

Theorem 1. Given any metric space (V, d), there is a mapping φ : V → RO(log2 n) such that with
high probability, we have that for any pair of vertices u and v, d(u,v)

O(logn) ≤ ||φ(u)− φ(v)||1 ≤ d(u, v).

Now we are ready to get a O(log n) approximation for the sparsest cut problem. First solve (2)
cut to get a “general” metric d on the vertices with

∑k
i=1Did(si, ti) ≥ 1 and

∑
(u,v) c(u, v)d(u, v) ≤

lp. Use Bourgain’s theorem to get the mapping φ : V → RO(log2 n) with the property in the
theorem. Then, use Lemma 1 to get cut-metric d′ with d′(u, v) = ||φ(u)− φ(v)||1; also obtain the
decomposition into elementary cut-metrics. So, we have for any pair u, v, d(u, v) ≤ O(log n)d′(u, v)
and d′(u, v) ≤ d(u, v). Choose the set S with λS > 0 of minimum Φ(S).

Φ(S) ≤
∑

(u,v) c(u, v)d′(u, v)∑
iDid′(si, ti)

≤ O(log n)

∑
(u,v) c(u, v)d(u, v)∑

iDid′(si, ti)
≤ O(log n)lp

where the numerator used d′(u, v) ≤ d(u, v), and the denominator used d(u, v) ≤ O(log n)d′(u, v).
In fact, Bourgain’s proof can be modified to show the following

Theorem 2. Given any metric space (V, d) and a set S ⊆ V of size at most k, there is a mapping
φ : V → RO(log2 k) such that with high probability, we have that for any pair of vertices u and v,
||φ(u)− φ(v)||1 ≤ d(u, v) and for any pair u, v ∈ S, d(u, v) ≤ O(log k)||φ(u)− φ(v)||1.
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