Problems in Approximation Algorithms
CIS800

Due: November 11th, 2010

Exercise 1. (a) Recall the LP relaxation for the set cover problem done in class. We showed
that the integrality gap of the LP is at most f, where f is the maximum frequency of an
element. For all f, construct an instance of set cover where the frequencies are bounded by

f and opt = f - 1p.

(b) Construct an example of a set cover with n elements such that opt = Q(logn) - 1p.
Hint: Consider a set system with k sets and (k%) elements with each element in k/2 sets.

Exercise 2. Consider the knapsack problem: we are given a knapsack of size B and n single copy
items with item j having profit p; and weight w;. Assume w; < B for all j. The goal is to pick
a subset of items which fits into the knapsack and gives maximum profit. The LP relaxation is as
follows:

n n
max{ij:L"j : ij:nj <B; 0<z;<1,Vjen]}
j=1 j=1

Let x be a basic feasible solution of the above LP.
(a) Let F':={j:0<x; <1}. What can you say about |F'|?
(b) Can you use the above to get a 1/2-approximation for the knapsack problem?

)
)

(c) What is the integrality gap of the above LP?
)

(d) Can you get a better approximation if we have the guarantee that p; < ¢ - opt for all items
j?7 Can you use this to get a (1 — &) approximation in time nOW/e)?
Hint: There cannot be more than 1/ items having profit p; > ¢ - opt in the final solution.

Exercise 3. Let’s investigate LP relaxations for the max-cut problem. We’ll think of a cut as a
{0,1} assignment on the vertices, and an edge is in the cut if its endpoints are assigned different
values.



(a) (Undirected Graphs.) Let’s have a variable x,,, for each edge (u,v) and a variable y,, for each
vertex u € V. Consider the following linear program

1py = max Z Wy Tuw 0<z,y<1 (1)
(u,v)EE
subject to Tuw < Yu + Yo V(u,v) € E
Tup <2 — (Yu + Yo) V(u,v) € E

— Prove that is a valid LP relaxation for the max-cut problem.
— Design an algorithm which returns a cut of weight at least 1p; /2.

— Show that the 2 above cannot be replaced by any smaller constant; that is the integrality
gap of the LP is arbitrarily close to 1/2.

(b) (Directed Graphs.) As before, we have a variable x,, for every directed edge (u,v) and y,
for every vertex. Consider the following linear program

lpp == max Z Wao Tuw 0<z,y<1 (2)
(u,v)EE
subject to Tuw < Yo V(u,v) € E
Tup <1 =Yy V(u,v) € E

— Prove that is a valid LP relaxation for the max-cut problem in directed graphs.

— What’s the best upper and lower bounds you can prove on the integrality gap of this
LP?

Hint: You might want to recall that we already have local search algorithms which return cuts of
weight w(E)/2 and w(E)/4 for the two cases respectively.

Exercise 4. Consider the following problem called maximum budgeted allocation (MBA). There
are m items and n agents. Each agent ¢ bids b;; on item j, and has a budget B;. On getting a

subset S of items, agent ¢ pays min (BZ', > jes bij). The problems is to find an allocation of items

to agents which generates the maximum revenue.

Cast this problem as that of maximizing a submodular function over a matroid constraint and
argue there exists a randomized (1 —1/e) approximation algorithm for the problem. Check whether
the two oracles can be simulated in polynomial time. 1. Value oracle: given set S, return f(S). 2.
Independence Oracle: given set S, return in S € 7 or not.

Hint: Think partition matroids to capture that an item can go to at most one agent.

Exercise 5. Recall the definition of a weakly supermodular function r. For any two subsets
A, B CV, at least one of the two holds

1. "(AUB)+r(ANB) >r(A)+r(B)
2. 7(A\ B) +r(B\ A) > r(A) +r(B).

Given an edge e, define the residual function 7/(S) as follows: r'(S) = r(95) if e ¢ §(S); otherwise
r'(S) = r(S) — 1. Prove that 7’ is also weakly supermodular.



