
E0 249: Approximation Algorithms Spring 2015

Lecture 16: Apr 25, 2015
Lecturer: Arnab Bhattacharyya Scribe: Abhijat Sharma & Suprovat Ghoshal

16.1 Introduction

Recall the Label Cover problem introduced in the previous lecture, as a useful tool in proving hardness of
approximation results:

Input:An undirected, unweighted bipartite graph G = (V1, V2, E) (where V1, V2 denote the two partitions
of vertices in G), an alphabet set Σ, and a set of relations {πe ⊆ Σ× Σ : e ∈ E}.
Output:An assignment (labeling) L : V1 ∪ V2 7→ Σ such that maximum edges are satisfied. An edge
e = (u, v) ∈ E (u ∈ V1, v ∈ V2), is said to be satisfied if (L(u), L(v)) ∈ πe.

The Unique Games problem is only a special case of the Label Cover, where each relation πe is a permu-
tation relation, therefore from here on now, we will assume πe : Σ 7→ Σ to be a bijection function. Therefore,
in a Unique Games instance, an edge e = (u, v) is said to be satisfied by a labeling L if πe(L(u)) = L(v).
Let I be any Unique Games instance, we denote by OPTUG ∈ [0, 1] the maximum fraction of edges that can
be satisfied in I by any labeling. We can also define the Gap Version of the Unique Games Problem as we
have defined for other problems earlier:

Definition 16.1 ([a,b]-GAP-UG problem (0 ≤ a < b ≤ 1)): Given an instance of the Unique Games
Problem, the graph G = (V1, V2, E), an alphabet set Σ and the set of relations {πe ⊆ Σ × Σ : e ∈ E}, with
the promise that either OPTG < a, or OPTG ≥ b, the goal is to distinguish between these two cases:

• YES instance : OPTUG ≥ b

• NO instance : OPTUG < a

Note that from the definition of the Unique Games instance, we can easily observe that [s, 1]-GAP-UG
problem is easy to solve, for any s ∈ [0, 1]. If we are told that OPTUG = 1 for a YES instance, it means
there exists some labeling that satisfies every edge, and such a labeling can be easily found in polynomial
time. This is because, we can assume that we have the correct label for one vertex v ∈ V1(by trying out
all possible labels to it), and then whenever we know a label for the vertex v1, it uniquely fixes labels to its
neighbors and so on. Thus a labeling can be found for each connected component of the constraint graph.

Hence, from the viewpoint of the Unique Games Conjecture, the interesting case is when OPTUG = 1− ε
for some small positive constant ε > 0. In this case, the above mentioned algorithm to find a good labeling
does not seem to work and one may conjecture that finding even a labeling that satisfies a δ fraction of edges
is an NP-hard problem, even when the graph is left-regular.

Conjecture 16.2 (Bipartite Unique Games Conjecture[1]) For every ε, δ > 0, there exists a set Σ
such that [δ, 1 − ε]-GAP-UG is NP-hard, on instances I = (G(V1, V2, E),Σ, {πe : Σ 7→ Σ}e∈E), where G is
left-regular and πe are arbitrary bijections.

16-1

16-2 Lecture 16: Apr 25, 2015

16.1.1 Applications of Conjecture 16.2

The unique games conjecture (UGC), often used in its various alternate equivalent formulations, has found
many applications and connections between computational complexity, algorithms, analysis, and geometry[2].

• The main motivation for the conjecture is to prove inapproximability results for NP-complete problems
that researchers have been unable to prove otherwise. The UGC states that a particular gap version of
Unique Games is NP-hard, which, as we have seen earlier implies inapproximability of the Unique games
problem. A gap-preserving reduction from the Unique Game problem then implies inapproximability
results for other NP-complete problems. This is illustrated in section 16.2.

• It allows us to prove several lower bounds for special classes of constraint satisfaction problems, 2-
CSPs (Eg: MaxCut and Max-2-SAT), which we were not able to approach using standard Label Cover
reductions. This is because when the constraints involve two variables, it can be more easily related
to the bipartite Unique Games problem.

• The inapproximability reductions from the Unique Game problem often use gadgets constructed from
a boolean hypercube. The reductions can be alternately viewed as constructions of Probabilistically
Checkable Proofs (PCPs) and the gadgets can be viewed as probabilistic checking procedures to check
whether a given codeword is a Long Code. These type of reductions have been illustrated in section
16.3.

• For many problems, the UGC rules out every polynomial time algorithm to compute a good ap-
proximate solution. One might also be interested in exploring the limits of techniques such as linear
programming and semi-definite programming (SDP), in approximating a particular problem. In fact,
there have been several results which show that reduction from the Unique Game problem to a target
problem can in fact be used to construct an (unconditional, explicit) integrality gap instance for the
target problem.

Maximize
x

1

|E|
∑

e=(u,v)∈E

∑
σ∈Σ

〈xu,σ, xv,πe(σ)〉

subject to
∑
σ∈Σ

‖xv,σ‖2 = 1, ∀v ∈ V1 ∪ V2, σ 6= σ′ ∈ Σ

. < xv,σ, xv,σ′ > = 0, ∀v ∈ V1 ∪ V2, σ 6= σ′ ∈ Σ.

< xu,σ, xv,σ′ > ≥ 0, ∀u, v ∈ V1 ∪ V2, σ 6= σ′ ∈ Σ.

where xu,σ are vectors for all u ∈ V1 ∪ V2, σ ∈ Σ, and 〈a, b〉 denotes the dot-product of vectors a and b. The
above SDP can be solved in polynomial time, and no natural distribution of variables is known for which it
would be hard to solve the SDP.

Reductions from unique games are broadly of two kinds : low-tech reductions which follow naturally from
the definitions of the problems and high-tech reductions which involve the use of high tech gadgets such
as Dictator Tests. In the following section, we see a example of a low-tech reduction : the hardness of
approximation for Multicut problem.

Lecture 16: Apr 25, 2015 16-3

16.2 Inapproximability of Multicut

For proving the inapproximability of the Multicut problem, we first describe an alternate equivalent formu-
lation of UGC1, in terms of the Max-2Lin-K problem, which is defined as follows:

Input: A system of m linear equations, in n variables x1, x2, ..., xn, each equation of the form xi − xj =
aij(mod k).
Output: An assignment of x1, x2, ..., xn to values from {0, 1, ..., k − 1}, that satisfies maximum number of
equations.

Conjecture 16.3 (Linear Unique Games Conjecture) For every ε, δ > 0, there exists an integer k
such that [δ, 1− ε]-GAP-Max-2Lin-k is NP-Hard.

We use this alternate version of UGC to prove an inapproximability result for the Multicut problem. Recall
the definition of the Multicut problem:

Input: Given an undirected graph G = (V,E) and a set of pairs of vertices {(s1, t1), (s2, t2), ..., (sk, tk)}.
Output: A subset of edges S ⊆ E of minimum size such that after removing all the S edges, there is no
path from si to ti for all 1 ≤ i ≤ k, in the new graph (V,E \ S).

Theorem 16.4 For any constant α > 0, α-approximation of Multicut does not exist, assuming the Unique
Games Conjecture.

Proof: We prove this by describing a reduction from [δ, 1 − ε]-GAP-Max-2Lin-k to the [ε, 1−δ
2]-GAP-

Multicut problem. Given an instance I of Max-2Lin-k, let OPTMax2LinK(I) denote the maximum fraction
of the m equations that can be satisfied in instance I. We would like to have a reduction of instance I to I ′,
an instance of the Multicut problem (and OPTMulticut(I ′) would denote the fraction of edges in the optimal
cut), such that the following holds:

• Completeness: If OPTMax2LinK(I) ≥ 1− ε then OPTMulticut(I
′) ≤ ε.

• Soundness: If OPTMax2LinK(I) < δ then OPTMulticut(I
′) > (1− δ)/2.

Therefore, we describe the required reduction, and then in-turn prove the above two properties.

Reduction: Given the Max-2Lin-k instance I having m equations in n variables x1, x2, ..., xn, we define
the Multicut instance I ′, the graph G = (V,E) having |V | = nk vertices and |E| = mk edges. For each
variable xi (1 ≤ i ≤ n), we have k corresponding vertices in |V |, labelled (xi, a) where a ∈ {0, 1, ..., k − 1}.
For the edges in |E|, consider each equation xi − xj = cij , and form an edge between vertices (xi, a) and
(xj , b) if and only if a−b = cij (mod k). Finally, after the graph is defined, to complete the Multicut instance
I ′, we define the folowing s− t pairs:

{((xi, a), (xi, b)) : a 6= b, 1 ≤ i ≤ n} (16.1)

1The equivalence of this version to the bipartite unique games conjecture is non-trivial

16-4 Lecture 16: Apr 25, 2015

Completeness: Let I be a YES-instance of the [δ, 1 − ε]-GAP-Max-2Lin-k problem, and therefore there
exists an assignment L, assigning values from {0, 1, ..., k− 1} to the set of variables X = {x1, x2, ..., xn} such
that at-least (1 − ε) ·m equations are satisfied. For some c ∈ {0, 1, ..., k − 1}, we define a set of vertices in
the Multicut instance I ′,

Vc = {(xi, a) : xi ∈ X, a = L(xi) + c}

We can observe that each of these vertex-sets (which we will refer to as clusters), contain exactly n vertices,
and there are k such clusters by definition. Hence, all the edges of the graph can be classifed as intra-cluster
(having both end-points in the same cluster), and inter-cluster (edges going accross different clusters). Also,
for every xi ∈ X, each cluster contains exactly one vertex labelled (xi, a) where a ∈ {0, 1, ..., k − 1} and all
other vertices in that particular cluster correspond to other variables. This means that if we select all the
inter-cluster edges to form a cut, it will definitely disconnect all the s − t pairs required as in instance I ′
(Equation 16.1), and thus the number of such edges form an upper bound on the value OPTMulticut(I ′).

Claim 16.5 If OPTMax2LinK(I) ≥ (1 − ε)·m·k, then there are at-most ε·m·k inter-cluster edges in the
reduced instance I ′.

Proof: Let (xi, a) ∈ Vc1 and (xj , b) ∈ Vc2 be the end-points of one such inter-cluster edge accross clusters
Vc1 , Vc2 . So, we know that a = L(xi) + c1 and b = L(xj) + c2. Also, because there is an edge between them,
a − b = cij (mod k, where the corresponding equation in instance I was xi − xj = cij . Substituting values
of a and b in the above equation gives us:

L(xi)− L(xj) = cij − (c1 − c2)(mod k) (16.2)

From equation 16.2, L(xi) − L(xj) 6= Cij whenever c1 6= c2, which corresponds to the unsatisfied equation
xi−xj = cij (mod k). And it is easy to observe that each unsatisfied equation will correspond to k equations
of the form as Equation 16.2. As we know, the assignment L satisfies at-least (1 − ε)m equations, i.e.,
at-most εm equations are not satisfied. which implies there are at-most ε·m·k inter-cluster edges, and hence
the claim is proved, which eventually also proves the completeness result.

Soundness: Now, for soundness we need to prove that if OPTMax2LinK(I) < δ then OPTMulticut(I ′) >
(1−δ)/2. Instead we prove the counter positive, that is we assume there is a cut of size less than (1−δ)|E|/2
in the reduced instance I ′, then we show that there exists an assignment L : X 7→ {0, 1, ..., k − 1} to I that
satisfies more than δm equations. Let C be the cut of size less than (1− δ)|E|/2, we remove all the C edges
from the input graph, to get the graph G = (V,E \ C). It will not be a connected graph, and therefore
let V1, V2, .., Vl be its connected components (clusters). As each cluster can contain at-most one vertex
representing an input variable xi ∈ X, size of each Vj is at-most n (1 ≤ j ≤ l), which means l ≥ k as there
are total nk vertices in the instance I ′.

We randomly permute the l connected components, and then for each variable xi, find the first component
VCi that contains a representative vertex (xi, a). Then, we assign L(xi) = a. We do this for all variables in
the input instance I, x1, x2, ..., xn.

Consider an equation in I, xi − xj = cij (mod k). We try to upper-bound the probability that L(xi) −
L(xj) 6= cij after the above assignment algorithm. Note that if there is an edge between vertices (xi, L(xi))
and (xj , L(xj)), then L(xi) − L(xj) = cij . We know that size of the cut |C| < (1 − δ)/2, then let us
partition the cut edges as follows: Let (1− δij)/2 be the fraction of edges of the form (xi, a), (xj , b) for some
a, b ∈ {0, 1, ..., k−1} that go accrosss clusters (and therefore are part of the cut C). Thus,

∑
i,j∈[n](1−δij)/2 =

(1− δ)/2.

Lecture 16: Apr 25, 2015 16-5

We call a cluster good if it contains representatives of two variables xi, xj connected by an edge. If an edge
(xi, a), (xj , b) is not going accross clusters, it will belong to a good cluster, thus fraction of good clusters,
ng = 1−(1−δij)/2 = (1+δij)/2, and similarly, fraction of bad clusters, nb ≤ (1−δij)/2+(1−δij)/2 = 1−δij ,
with respect to the variables xi, xj . To bound the probability that L(xi)−L(xj) 6= cij , we first estimate the
following:

P[first cluster containing representatives of xi, xj is bad]

= 1− ng
(ng + nb)

≤ 1− (1 + δij)/2

(1 + δij)/2 + (1− δij)

=
2

3− δij
.(1− δij)

≤ (1− δij)

Thus, P[L(xi) − L(xj) = cij] = P[first cluster containing representatives of xi, xj is good] ≥ δij . Summing
over all i, j ∈ [n], we derive that the fraction of equations satisfied by our labelling L, OPTMax2LinK(I) ≥∑
i,j∈[n] δij = δ, and hence the soundness property holds for this reduction.

The second type of reductions are more technically involved : the goal in such reductions is to come up
with a PCP verifier that performs special type of tests. In the following sections, we present the hardness of
approximation of MAX-CUT as an illustration of the use of such techniques.

16.3 Inapproximability of MAX-CUT

Now we shall look at the hardness of approximation for the MAX-CUT problem. We begin by recalling the
problem definition of MAX-CUT :

• Input : Undirected Graph G(V,E)

• Goal : To compute the set S ⊆ V which maximizes cardinality of the set

{(u, v)|(u, v) ∈ E, u ∈ S, v /∈ S}

We recall that MAX-CUT has an polynomial time algorithm with an approximation factor of αGW where

αGW = min
ρ∈[−1,1]

2 arccos ρ

(1− ρ)π
' 0.878

which was obtained by solving a semidefinite program followed by Goemans-Williamson rounding. In this
section we shall prove that assuming the Unique Games Conjecture, it is NP-Hard to solve MAX-CUT with
an approximation factor of αGW +ε, for any ε > 0. We start by introducing the gap version of the MAX-CUT
problem [s, c]-GAP-MAX-CUT (where s ≤ c) which is as follows : it outputs YES if the optimal solution
results in a cut of size ≥ c|E| and outputs on NO if the optimal (and therefore all) solutions result in cuts
of size < s|E|. The main theorem stating the hardness of approximation is as follows :

Theorem 16.6 Assuming the bipartite unique games conjecture, for any −1 < ρ < 0 and ε > 0,

[arccos ρ+ε
π , (1− ε) 1−ρ

2

]
-GAP-MAX-CUT is NP-HARD .

16-6 Lecture 16: Apr 25, 2015

From the above theorem, the hardness of approximation result follows immediately :

Corollary 16.7 Assuming the bipartite unique games conjecture, there is no (αGW + ε)-approximation al-
gorithm for MAX-CUT for any ε > 0 unless P 6= NP

This follows directly from theorem 16.6. In the following section, we introduce some concepts and notations
from Boolean functional analysis which would be essential for the proof of the hardness result.

16.3.1 Preliminaries

Let x ∈ {±1}k be a k-bit binary string. Fix a ρ ∈ (−1, 0). We say that y is ρ correlated to x if y is generated
from x as follows : for each i ∈ [k],

yi =

{
xi w.p. 1+ρ

2 ,

−xi w.p. 1−ρ
2

(16.3)

that is for a fixed x ∈ {±1}k, y is generated by flipping each bit with probability 1−ρ
2 . We denote the

distribution of y’s generated from x using (16.3) as y ∼ρ x. Given a boolean function f : {±1}k −→ {±1},
we define its Noise Sensitivity NSρ to be as follows :

NSρ(f) = P
x∈{±1}k
y∼ρx

(
f(x) 6= f(y)

)
Furthermore, we define the influence of the ith variable on function f as

Infi(f) = Px∈{±1}k
(
f(x) 6= f(xi)

)
where xi is the same as x except the ith bit which is flipped. Now we state the following result from boolean
functional analysis which was conjectured in connection to both hardness of approximation and social choice
theory and later proven by E.Mossel et. al. :

Theorem 16.8 Majority Is Stablest : For any −1 < ρ < 0 and r > 0 , there exists β > 0 such that if
f : {±1}k −→ {±1} has Infi(f) ≤ β for all i ∈ [k], then

NSρ(f) ≤ arccos ρ

π
+ r

In other words, among all the functions that have low influence on all the bit positions, the majority function
has the largest noise sensitivity which is arccos ρ

π + r. However, we would be using the contrapositive version
of the statement directly: it states that if a function has high noise sensitivity, then it is bound to have
atleast one high influential variable (i.e., Infi(f) > β for some i ∈ [k]). The phrasing of the above theorem
might seem contradictory in the sense that the theorem states that among all functions with low influence,
the majority function is the most sensitive to noise (and hence, the least stable). However, this happens
when ρ < 0; for ρ ≥ 0 the theorem is reversed i.e., the majority function would then be the most stable. For
completeness, we prove the theorem for a sub-class of functions (the class of halfspace-cut functions).

Lecture 16: Apr 25, 2015 16-7

Proof Sketch: Let f(x) = sgn(a ◦ x) = sgn(
∑
i∈[k] aixi) where ai ∈ {±1} ∀ i ∈ [k]. Also, without loss

of generality, let ‖a‖22 = 1. For large enough k, the ai’s would be small. Indeed, if Infi(f) ≤ β ∀i ∈ [k],
then it can be shown that |ai| = O(β) for all i ∈ [k]. Now, we construct bi’s from ai’s as in (16.3) so that
b ∼ρ a. Now we observe that

NSρ(f) = Px∈{±1}k
y∼ρx

(f(x) 6= f(y))

= Px∈{±1}k
b∼ρa

(sgn(a ◦ x) 6= sgn(b ◦ x))

(1)
= Pg∼N(0,1)n

b∼ρa
(sgn(a ◦ g) 6= sgn(b ◦ g))

(2)
=

arccos ρ

π

where (1) is due to the fact that a sum of i.i.d. random variables converges in limit to a gaussian distribution
(central limit theorem) and (2) follows from the analysis of Goemans-Williamson algorithm (Lecture 11)
along with the fact that the ai s are small in magnitude.

Now we are ready to prove Theorem 16.6. The proof is via a reduction from the GAP-UG to MAX-CUT.
We construct a 2 bit PCP verifier with O(log n) randomness for the bipartite unique games. The verifier
function would then essentially be a boolean function which takes as input two locations (chosen using the
random bits) and accept iff the bits at the two locations are unequal. From the instance of the unique games,
we construct a GAP-MAX-CUT instance where the vertices are all possible locations of the proof that could
be queried using the O(log n) random bits, and we put a edge between between two vertices whenever they
are queried together. The PCP verifier is constructed in a manner such that if the proof is correct, then
there are lots of pairs of locations for which the verifier when evaluated at those locations would return true,
and hence the GAP-MAX-CUT instance would have a large number of edges between locations equalling +1
and the locations equalling −1, which in turn would imply that the GAP-MAX-CUT instance has a large
cut.

16.4 Proof of Theorem 16.6

The proof is via the following reduction

[
δ, 1− δ

]
-GAP-UG −→

[arccos ρ+ ε

π
, (1− ε)1− ρ

2

]
GAP-MAX-CUT

where −1 < ρ < 0. The proof is broken into four parts. First, we look at the construction of the PCP
verifier for GAP-UG following which we look at the construction of the GAP-MAX-CUT instance and prove
the completeness direction of the reduction. Finally, we give a high level proof for the soundness direction
of the reduction.

16-8 Lecture 16: Apr 25, 2015

Figure 16.1: Long Code

16.4.1 Long Code Encoding

The satisfying proof consists of encodings of the correct labels of each vertex in the GAP-UG instance into
bit strings. For soundness, the PCP verifier needs to check the following aspects :

• Correctness of Encoding : The proof consists of valid encodings of the labels.

• Correctness of Labels : The labels themselves are such that a large fraction of the constraints in the
GAP-UG instance are satisfied

For the first part, we need an encoding scheme such that it is possible to decide (with high probability)
whether the codes for the labels are valid codewords by querying only a few (constant number of) locations.
In other words, we need the code to be locally testable and are highly redundant.

Let Σ = {1, 2, . . . k}. Suppose we wanted to construct a such a code for Σ such that it is maximally redundant
i.e., the length of codewords (say l0) is as large as possible. Let C ∈ {±1}k×l0 be the long code for Σ i.e.,
the ith row Ci is the encoding for label i. How large can l0 be ? Since the maximum no. of distinct columns
of length k is atmost 2k, it is easy to see that if l0 > 2k, then by pigeon hole principle, C would have two
columns Cp and Cq which are identical to each other (see figure for illustration), and the information from
the duplicate column would be useless to the verifier. Therefore, the length of the maximally redundant
code can be at most l0 = 2k. One example of such codes is the Long Code which is defined by the set of
Dictator functions {fi}i∈[k]. The ith function fi : {±1}k −→ {±1} evaluated at x returns the ith bit of x.

Formally, the ith dictator function is defined as

fi(x) = xi

where xi is the ith bit of x. In the following section, we see how the long code is used for the construction
of the PCP verifier.

Lecture 16: Apr 25, 2015 16-9

16.4.2 Construction of the PCP verifier

The long code encoding of label i ∈ Σ is given by

Ci = (fi(x), x ∈ {±1}k)

where elements of {±1}k are ordered in some fixed way. For a YES instance of [δ, 1 − δ]-GAP-UG, where
there is a labelling L : V1∪V2 −→ [k], such that atleast 1−δ fraction of the edges are satisfied, the satisfying
proof consists of CL(u) ∀u ∈ V1 ∪ V2. We observe the following properties of the dictator functions which
follow from their definitions :

• P.1 : NSρ(fi) = 1−ρ
2

• P.2 : Infi(fi) = 1

Note that NSρ(fi) is large (since ρ ∈ (0,−1)) and the influence of the ith position on fi is maximum, which
agrees with the contrapositive version of the MIS theorem : a function with high noise sensitivity must have
atleast one influential variable. Furthermore, let x ∈ {±1}k. Given a permutation π : {±1}k −→ {±1}k, we
define xπ as

xπ = (xπ−1(1), xπ−1(2), . . . xπ−1(k))

We observe that

fi(x) = xi = xπ(π−1(i)) = fπ(i)(xπ)

This, along with the noise sensitivity property P.1 immediately suggests the following test for the verifier :

• Pick u ∈ V1, v ∈ V2 uniformly at random such that (u, v) ∈ E

• Fix an x and draw y ∼ρ x as in (16.3). If fu(x) 6= fv(yπuv) accept, otherwise reject.

where fu is the dictator function corresponding to the label L(u). For the completeness criteria, we assume
that the proof input to the verifier is correct and the variables are assigned labels such that atleast 1 − δ
fraction of the edge constraints are satisfied. Then the probability that L satisfies (u, v) is ≥ 1− δ and hence

P u,v
y∼ρx

(
fu(x) 6= fv(yπuv)

)
≥ P u,v

y∼ρx

(
fu(x) 6= fv(yπuv)|(L(u), L(v)) ∈ πuv

)
Pu,v

(
(L(u), L(v)) ∈ πuv

)
≥ 1− ρ

2
(1− δ) ≥ 1− ρ

2
(1− ε)

So the verifier satisfies the completeness condition. However, the test fails miserably for the soundness
criteria : take the following instance of a bad proof where u’s are labelled as 1, 1, . . . 1 (all the positions are
1’s) and v’s are labelled as −1,−1, . . . ,−1 (all the positions are −1’s). Clearly these are not long code
encodings but

P u,v
y∼ρx

(
fu(x) 6= fv(yπuv)

)
= 1

that is , the bad encoding always passes the proposed test. The test fails because it does not really check
the validity of the encoding. Hence we use a more subtle approach which is as follows :

16-10 Lecture 16: Apr 25, 2015

• Select u ∈ V1 and two of its neighbors v1, v2 ∈ V uniformly at random

• Fix an x and sample y ∼ρ x as in (16.3). If fv1(xπuv1) 6= fv2(yπuv2) accept, otherwise reject.

In the following sections, we look at the construction of the GAP-MAX-CUT instance and then we analyze
the completeness and the soundness properties of the reduction.

16.4.3 Construction of the GAP-MAX-CUT instance

Given a GAP-UG instance G(V1, V2, E),Σ, {πe}e∈E , we construct the GAP-MAX-CUT instance G̃(Ṽ , Ẽ) as
follows :

• For each location pi of the GAP-UG proof that can be queried by the PCP verifier, we include a vertex
ṽi ∈ Ṽ

• For each pair of locations pi, pj queried together, we include edge (ṽi, ṽj) ∈ Ẽ

Consider the cut consisting of edges between proof locations equalling +1 and the proof locations equalling
−1. By construction, it is easy to see that the fraction of edges crossing the cut is the same as the probability
that the PCP verifier accepts the proof. In the following sections, we prove the completeness and soundness
properties of the reduction.

16.4.4 Completeness

Let the GAP-UG instance have a labelling L such that ≥ 1− δ fraction of the constraints are satisfied. Then

Pu,v1,v2
y∼ρx

(
fv1(xπuv1) 6= fv2(yπuv2)

)
≥ Py∼ρx

(
fv1(xπuv1) 6= fv2(yπuv2)|(L(u), L(v1)) ∈ πuv1 , (L(u), L(v2)) ∈ πuv2

)
×Pu,v1,v2

(
(L(u), L(v1)) ∈ πuv1 , (L(u), L(v2)) ∈ πuv2

)
(1)

≥ 1− ρ
2

(1− 2δ) ≥ 1− ρ
2

(1− ε)

for a small enough δ, where (1) is due to the fact that the GAP-UG instance is left regular, and the neighbors
of u are chosen uniformly at random. Hence, in the GAP-MAX-CUT instance the induced graph has atleast
1−ρ

2 (1− ε) fraction of the edges crossing the cut. This completes the first direction.

16.4.5 Soundness

For the soundness direction, we assume the contra-positive version of the statement i.e., there exists a cut of
size atleast arccos ρ

π + ε. From this cut, we construct a labelling for the GAP-UG instance such that atleast
δ fraction of the edge constraints are satisfied. We observe that

P(verifier accepts) = fraction of edges crossing the cut ≥ arccos ρ

π
+ ε (16.4)

Lecture 16: Apr 25, 2015 16-11

Futhermore, the probability of acceptance can be rewritten as

P(verifier accepts) = Eu,v1,v2Ey∼ρx[
1

2
− 1

2
fπuv1 (xπuv1)fπuv2 (yπuv2)]

= EuEy∼ρx[
1

2
− 1

2
Ev1∼u[fπuv1 (xπuv1)]Ev2∼u[fπuv2 (yπuv2)]]

= EuEy∼ρx[
1

2
− 1

2
gu(x)gu(y)] where gu(x) = Ev1∼u[fπuv1 (xπuv1)]

= EuEy∼ρx[1(gu(x) 6= gu(y))]

= Eu[Py∼ρx(gu(x) 6= gu(y))]

= Eu[NSρ(gu)]

Now, using a Markov type argument on equation (16.4), we can argue that for atleast ε
2 fraction of the u’s,

NSρ(gu) ≥ arccos ρ

π
+
ε

2

Let U = {u1, u2, . . . ul} be the set of such u’s. Recall that the contrapositive version of MIS states that if the
noise sensitivity of a boolean function is high, then it must have atleast one influential variable. Therefore,
for each u ∈ U , there exists an influential variable for gu. We call that influential variable iu. We label each
u as L(u) = iu. Labelling vertices for v ∈ V2 is more technical, and we present only the high level view of it.
It involves making the following observations :

• For a fixed u ∈ U , atleast β
2 fraction of its neighbors v ∈ V2 have πuv(iu) as their influential variable

in fv, where β is the parameter from MIS theorem.

• Furthermore, for each of the fv’s, there are not too many influential variables.

Hence for a v ∈ V2, if we make a list of significant variables of fv and assign one of the variables as
the label to v uniformly at random, then there is a significant probability of v being assigned the label
L(v) = πuv(iu), which in turn would imply that the atleast δ fraction of the edge constraints in the GAP-UG
instance would be satisfied, for a small enough δ. This completes the reduction from [δ, 1 − δ]-GAP-UG to[

arccos ρ
π + ε, (1− ε)(1−ρ

2)
]
-GAP-MAX-CUT.

16.5 References

[1] S. Khot, On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symposium on
Theory of Computing, 2002.

[2] S. Khot, On Unique Games Conjecture, In Proc. 25th IEEE Conference on Computational
Complexity, Cambridge, 2010.

