
Lecture 4: Linear Programming Relaxations and Deterministic

Rounding, Facility Location, GAP

30th January, 2015

1 Integer Programming Formulations

Most optimization problems can be easily cast as integer linear programming (ILP) problems.
These are problems where one has to maximize or minimize a linear function of variables which
have to satisfy certain linear inequalities and (some of them) have to be integral. Let us illustrate
with an example. Take the set cover problem done in class. Here is an integer program for it.

min
m∑
j=1

c(Sj)xj (ILP-Set cover)

subject to
∑

j:i∈Sj

xj ≥ 1 ∀i ∈ U

xj ∈ {0, 1} ∀j = 1...m

xj indicates whether we pick set Sj in the cover or not, depending on whether it is set to 1 or 0.
The constraint captures the fact that each element needs to be present in at least one of the sets
that is picked.

Now, ILPs are also NP-hard to solve (in fact this should be clear from the discussion above).
So it seems we haven’t gained anything. But here is an extremely powerful and non-trivial fact
(which some of you may hear in your optimization class): linear programs can be solved in
polynomial time. That is, if one removes the integrality constraints (or replace it with ‘boundary
conditions’), then the residual program is indeed polytime solvable. This residual program is often
called the LP relaxation of the problem. So the LP relaxation for the set cover problem is the
following.

min

m∑
j=1

c(Sj)xj (LP-Set cover)

subject to
∑

j:i∈Sj

xj ≥ 1 ∀i ∈ U (1)

1 ≥ xj ≥ 0 ∀j = 1...m (2)

We now see that the LP relaxation serves two purposes: (LP-Set cover) can be found in
polynomial time and (LP-Set cover) is a lower bound on the optimum set cover. Why?

1

Therefore, we have obtained a ‘nice’ lower bound in a very systematic way. Recall the nice lower
bound L is something which we have a handle on (can be computed in polytime, for instance), and
L ≤ OPT ; one now wishes to design algorithms and bound their costs w.r.t. L since we understand
in better, rather thanOPT . This has tremendous success in the design of approximation algorithms.

An f-factor approximation for set cover. Straight off the bat, let us see how it helps for set
cover by showing a different factor. Given a set system, let fj be the frequency of an element j,
that is, the number of different sets j appears in. Let f = max fj over all elements. We now show
an f -factor approximation which follows almost trivially. By the way, for the vertex cover problem,
f = 2.

Solve (LP-Set cover). Let x∗ be the optimal solution. Pick Si in the set cover iff
x∗i ≥ 1/f .

It is clear that the cost of the solution picked is at most f times the LP value. We need to show
that what the algorithm picks is indeed a set cover. To see this, consider an element j and focus
on (1). Note that one of the Si’s must have xi ≥ 1/f since there are at most f terms in the sum.
Done.

How good if the LP lower bound? Integrality gap Given a particular LP relaxation for an
optimization problem, there is a limit on the best approximation factor obtainable by the process
described above. Take an instance I of the problem (set cover, say), and let lp(I) be the value of
the LP relaxation, and opt(I) be the value of the optimum. Since our solution can’t cost less than

opt(I), the best approximation factor we can hope for in this instance is opt(I)
lp(I) . Thus, the best

approximation factor one can get for the minimization problem via this LP relaxation is at most

sup
instances I

opt(I)

lp(I)

This quantity is called the integrality gap of the LP relaxation and is very useful in judging the
efficacy of a linear program. What is the integrality gap of the LP relaxation of (LP-Set cover)
in terms of f?

2 Facility Location

We introduce a new problem now which will sound like a generalization of set cover. Indeed it is,
but we will see how to make it ‘easier’. The input is two sets: F , a set of facilities, and C a set of
clients. The goal is to open a bunch of facilities F ′ and connect all clients to one open facility. The
cost of opening facility i is fi and the cost of connecting client j to a facility i is ci,j . We need to
find a scheme of minimum cost.

A moment’s reflection will show you that this problem is at least as hard as set cover. In
fact, can you design an O(log n)-approximation algorithm for this problem? What would a greedy
algorithm be for the problem?

Today, we are going to see an O(1)-approximation; however, we assume that the connection
costs form a metric. In particular, given any two facilities a and b and any two clients p and q, we
have c(a, p) ≤ c(b, p) + c(b, q) + c(a, q). We start with an LP relaxation.

2

LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C
c(i, j)xij (xij , yi ≥ 0) (3)

subject to
∑
i∈F

xij ≥ 1 ∀j ∈ C (4)

yi ≥ xij ∀i ∈ F, ∀j ∈ C (5)

Let (x, y) be a fractional solution to the above LP. We define some notation. Let FLP :=∑
i∈F fiyi. Let Cj :=

∑
i∈F c(i, j)xij . Let CLP =

∑
j∈C Cj . We now show an algorithm which

returns a solution of cost at most 2FLP + 6CLP ≤ 6opt. The algorithm proceeds in two stages.

Filtering. Given a client j, order the facilities in increasing order of c(i, j). That is, c(1, j) ≤
c(2, j) ≤ · · · ≤ c(n, j). The fractional cost of connecting j to the facilities is Cj ; our goal is to pay
not much more than this cost. So, we look at the set of facilities Nj := {i : c(i, j) ≤ 2Cj}. Now it is
possible that xij > 0 for some i /∈ Nj . However, we can change the solution so that j is fractionally
connected only to facilities in Nj . This is called filtering the fractional solution.

Define xij as follows. xij = 2xij for i ∈ Nj , xij = 0 for i /∈ Nj .

Claim 1. x satisfies (4), that is,
∑

i xij ≥ 1.

Proof. Let us consider the sum Cj =
∑

i c(i, j)xij =
∑

i∈Nj
c(i, j)xij +

∑
i/∈Nj

c(i, j)xij . Since

c(i, j) > 2Cj for all i /∈ Nj , we get
∑

i/∈Nj
xij <

1
2 , for otherwise the second term in the RHS above

exceeds Cj . This implies
∑

i∈Nj
xij ≥ 1/2 implying

∑
i∈F xij ≥ 1.

We say that a facility i is a good facility for client j if xij > 0; note that if all clients were eventually
connected to some good facility, the total connection cost would be ≤ 2CLP . We will not be able
to do this for all clients. But for clients j we are not able to do so, using the metric property we
will show that the connection cost is at most 6Cj . However, we have to argue about the facility
opening costs as well. This is done using a clustering idea.

Clustering. Suppose we could find sets of disjoint facilities F1, F2, . . . such that in each Fk, we
have

∑
i∈Fk

yi ≥ 1/α for some α ≥ 1 , and we only open the minimum cost facility i∗k in each Fk.
Then, our total facility opening cost would be

∑
k fi∗k ≤ α

∑
k

∑
i∈Fk

fiyi ≤ αFLP . We now show
how to obtain such a clustering.

The clustering algorithm proceeds as follows.

• Let X be the set of unconnected clients, initially X = C.

• We maintain a set H ⊆ C of hubs, initially empty. For each hub j ∈ H, we will maintain a
subset Fj ⊆ F of facilities, and a subset Sj ⊆ C of clients. We will maintain: Fj and Sj ’s will
be disjoint, and every client will either be a hub or will be in some Sj .

• Repeat until X = ∅:

– Pick client j ∈ X with minimum Cj . Add j to H.

3

– Define Fj := {i : xij > 0} be the set of facilities which x says j can go to.

– Let Sj = {j ∈ X : xij > 0 for some i ∈ Fj}. That is, Sj is the set of unconnected clients
which have a good facility in Fj .

– Remove j ∪ Sj from X.

• For each hub j ∈ H, open the cheapest facility in Fj . Connect all clients in j ∪ Sj to Fj .

It is clear that the above solution is feasible since every client is either a hub j or in the spoke
set Sj for some hub j. The following claim shows that each cluster of facilities has large LP mass.

Claim 2. For any two hubs j and j′, Fj ∩ Fj′ = ∅.

Proof. Say j was added to H before j′. Note that if there is a facility i ∈ Fj ∩ Fj′ , then since
xij′ > 0 we would add j′ to Sj and j′ can’t be a hub. Therefore, Fj ∩ Fj′ = ∅.

Claim 3. For every hub j ∈ H,
∑

i∈Fj
yi ≥ 1/2.

Proof. For every i ∈ Fj where j is the hub, we have from the LP yi ≥ xi,j = 1
2xij . Therefore,∑

i∈Fj
yi ≥ 1

2

∑
i∈Fj

xij ≥ 1/2 from Claim 1.

Claim 4. The total cost of facilities opened by the algorithm is at most ≤ 2FLP .

Proof. Since
∑

i∈Fj
yi ≥ 1/2 for all j ∈ H, and we only open the minimum cost facility i∗j in each

Fj , our total facility opening cost would be
∑

j∈H fi∗j ≤ 2
∑

j∈H
∑

i∈Fj
fiyi ≤ 2FLP .

Now let us argue about connection costs. Consider a client j. If it is a hub, it is connected
to a good facility, and so the connection cost ≤ 2Cj . Suppose the client j ∈ Sh for some hub h.
Since it is in Sh, there is a facility f ∈ Fh with xfj > 0. This facility however may not have been
opened. Say i ∈ Sh was opened and j was connected to i. We need to upper bound c(i, j) with
respect to Cj . Now, by the metric property, c(i, j) ≤ c(f, j) + c(f, h) + c(i, h) where h, recall, is
the hub. Now c(f, j) ≤ 2Cj since xfj > 0. Similarly, c(f, h) ≤ 2Ch and c(i, h) ≤ 2Ch. So we get
c(i, j) ≤ 2Cj + 4Ch. But since h was the hub and not j, we know that Ch ≤ Cj . QED.

3 Generalized Assignment Problem

In GAP, we are given m items J , and n bins I. Each bin i can take a maximum load of Bi. Each
item j weighs wij in bin i, and gives profit pij when put in it. The goal is to find a max-profit
feasible allocation.

LP Relaxation

max
∑

i∈I,j∈J
pijxij (xij ≥ 0) (6)

subject to
∑
j∈J

wijxij ≤ Bi ∀i ∈ I (7)

∑
i∈I

xij ≤ 1 ∀j ∈ J (8)

4

Solve the LP to get a fractional solution x. Suppose all the weights wij were Bi, say. Then the
first constraint is equivalent to

∑
j∈J xij ≤ 1. Consider the bipartite graph (I, J, E) where we have

an edge (i, j) if xij > 0. Then, the solution x above is a maximum weight fractional matching in
this bipartite graph. This implies that there is an integral matching of the same weight, and thus
there is an allocation equalling the LP value (and hence the optimum value). This is a non-trivial
combinatorial optimization fact and is key to the approximation algorithm below. Let’s come to
this fact later.

Of course wij is not equal to Bi, although we can assume wij ≤ Bi since if not we know xij
has to be 0 for such a pair. (Note this must be put into the above LP explicitly, that is, we must
set xij = 0 for such pairs as constraints.) Thus, in general,

∑
j∈J xij ≥ 1. Let ni := d

∑
j∈J xije.

The algorithm proceeds as follows: it uses x to define a fractional matching on a different bipar-
tite graph, use it to get an integral matching of equal weight in it, and then do a final step of pruning.

New Bipartite Graph. One side of the bipartition is J . The other side is I ′ which consists
of ni copies of each bin i in I. For each bin i ∈ I, consider the items in J in increasing weight
order. That is, suppose, wi1 ≤ wi2 ≤ · · · ≤ wim. Consider the fractions xi1, xi2, . . . , xim in this
order. Let j1, j2, . . . , jni−1 be the “boundary” items defined as follows. xi1 + · · · + xj1 ≥ 1, and
xi1 + · · ·+ xj1−1 < 1; xi1 + · · ·+ xj2 ≥ 2, and xi1 + · · ·+ xj1−2 < 2; and so on. Formally, for each
1 ≤ ` ≤ ni − 1,

j∑̀
j=1

xij ≥ `;
j`−1∑
j=1

xij < `

Recall there are ni copies of the bin i in I ′. The `th copy, call it i`, has an edge to items j`−1 to j`
(j0 is the item 1). The nith copy has an edge to items jni−1−1 to m.

New Fractional Matching. x′ is so defined such that for every copy i`, the total fractional
weight incident on it is at most 1 (in fact, it’ll be exactly 1 for all copies but the nith copy). The
total fractional weight incident on item j is the same as that induced by x. It’s clear how to do it
given the way edges are defined above; formally it’s the mess given below.

x′i`,j = xij , for j`−1 < j < j`

x′i`,j`−1
= xi,j`−1

− x′i`−1,j`−1
(if ` = 1, then the second term is 0).

x′i`,j` = 1−
j`−1∑

j=j`−1

x′i`,j

Integral Matching and Pruning. Note that x′ defines a fractional matching in (I ′, J, E′). Thus,
there is an allocation of items to I ′ whose profit is at least the LP profit (and thus at least opt).
The assignment to I ′ implies an assignment to I in the natural way: bin i gets all items allocated
to the ni copies in I ′. Is this feasible? Not necessarily. But, the total weight allocated to bin i is
not too much larger than Bi.

Claim 5. The total weight of items allocated by the integral matching above is at most Bi + ∆i,
where ∆i := maxj∈J wij.

5

Proof. We use the fact that the items (for bin i) were ordered in increasing order of weights. Let
J` be the set of items from j`−1 to j`, and let Jni be the items from j` to m. Since x is a feasible
solution to the LP, we get

Bi ≥
∑
j∈J

wijxij =

ni∑
`=1

∑
j∈J`

wijx
′
i`,j
≥

ni∑
`=1

wi,j`−1
·
∑
j∈J`

x′i`,j

 ≥ wi,j1 + · · ·+ wi,jni−1

The second inequality uses the increasing order of weights, the last uses the fact that x′ forms a
fractional matching.

Now, bin i gets at most one item from each J` (since each copy i` gets at most item from it’s
neighbors in J`.) Note that the heaviest item in J` weighs wi,j` , and ∆i = wi,ni . Thus, the load on
bin i is at most wi,j1 + · · ·+ wi,jni−1 + wi,jni

which is at most Bi + ∆i.

To summarize, we have found an allocation whose profit is at least opt and each bin i has load
at most Bi + ∆i. For each bin i now consider the heaviest item j allocated to it. We know that
wij ≤ Bi. We also know weight of all the other items allocated to it is ≤ Bi. To make the allocation
feasible, keep either j or the rest, whichever gives more profit. In this pruned allocation, each bin
thus gets profit at least half of what it got in the earlier infeasible allocation. Thus, the profit of
this new feasible allocation is at least opt/2. Thus, the above algorithm is a 1/2-approximation.

3.1 Fractional Matching to Integral Matching

Given a fractional matching x, construct the fractional bipartite graph G = (I, J, Ef) where there
is an edge between i ∈ I and j ∈ J with 0 < xij < 1. Since x is a fractional matching, we get∑

i∈I xij ≤ 1 for all j ∈ J and
∑

j∈J xij ≤ 1 for all i ∈ I. We now describe a procedure which takes
x and converts it to x′ such that two things occur: a) the number of edges in the corresponding
Ef is strictly less, and b)

∑
i,j wijx

′
ij ≥

∑
i,j wijxij . If we show this, then repeating this |Ef | times

will give an integral matching of weight no smaller than the fractional weight.

Procedure Rotate.

1. Pick a path or cycle in G = (I, J, Ef). Call the edges picked F . Decompose F into two
matchings M1 and M2 in the natural way.

2. Let

ε1 := min

(
min

(i,j)∈M1

xij , min
(i,j)∈M2

(1− xij)
)

ε2 := min

(
min

(i,j)∈M2

xij , min
(i,j)∈M1

(1− xij)
)

3. Define x(1) as follows. For each (i, j) ∈M1, x
(1)
ij = xij−ε1, for each (i, j) ∈M2, x

(1)
ij = xij+ε1,

for all other edges x
(1)
ij = xij . Define x(2) similarly.

4. Let x′ be the x(1) or x(2) with larger
∑

i,j wijx
′
ij .

6

It is clear that the number of edges in Ef decreases in this procedure. Also note that the sum∑
i,j wijx

′
ij is at least

∑
i,j wijxij . This is because the “increase” in weight in x(1) over x is precisely

ε1

(∑
(i,j)∈M2

wij −
∑

(i,j)∈M1
wij

)
, and that in x(2) is ε2

(∑
(i,j)∈M1

wij −
∑

(i,j)∈M2
wij

)
. One of

them is at least 0. The following claims ends the analysis of the procedure.

Claim 6. x′ is a feasible fractional matching.

Proof. If F forms a cycle, then it’s clear that the fractional “load” on any vertex remains unchanged.
If F forms a path, then we need to only concern about end vertices. Let i be such a vertex. Note
that there are no edges (i, j′) with xij′ = 1 incident on it, and exactly one edge (i, j) ∈ Ef incident
on it. In the end, x′ij ≤ 1.

7

	Integer Programming Formulations
	Facility Location
	Generalized Assignment Problem
	Fractional Matching to Integral Matching

