
Lecture 8: Using the Dual

20th Feb, 2015

1 The Dual LP

Consider the following LP.

lp := min c>x (1)
subject to Ax ≥ b

x ≥ 0

Consider the ‘Lagrangean’ function defined as

L(y) := min
x≥0

c>x+ y>(b−Ax)

Here y is a vector in <m, where m is the number of non-trivial constraints. Two things are to be
noted. First, for any y with yi ≥ 0 for all i, L(y) ≤ lp — this can be seen by plugging in x∗.
Therefore, maxy≥0 L(y) ≤ lp. Second, one can find a “closed form” for L(y) thus.

L(y) =

{
y>b if c> − y>A ≥ 0
−∞ otherwise.

Therefore, maxy≥0 L(y) can be expressed as another linear program. This is called the dual linear
program.

dual := max y>b (2)

subject to y>A ≤ c>

y ≥ 0

By the discussion above we get that dual ≤ lp. This is known as weak duality. The strong duality
theorem, which we will not cover in class, says that in fact dual = lp.

Complementary Slackness. Let (x, y) be optimum solutions to lp and dual respectively. Note
that x ∈ <n and y ∈ <m. Variables in the primal correspond to constraints in the dual, and vice
versa. Complementary slackness says that if a primal variable is strictly positive in the optimal
solution, then the corresponding dual constraint must be satisfied with equality.

1

For all 1 ≤ i ≤ n, (y>Ai − ci)xi = 0.

For all 1 ≤ j ≤ m, yi(a>j x− bj) = 0.

To see this, consider the expression (y>Ax − c>x). Since x is feasible, Ax ≥ b, and since y is
feasible, y ≥ 0. Together, we get y>Ax ≥ y>b = c>x, where the last equality follows from strong
duality. So y>Ax − c>x ≥ 0. However, y>A ≤ c>, and so y>Ax − c>x ≤ 0 as well. Together we
get y>Ax − c>x = 0, which implies the first complementary slackness conditions. The second is
obtained similarly. In fact, the above proof also gives the if x is feasible for the primal and y is
feasible for the dual, then (x, y) are a pair of optimal solution for the primal-dual pair. Why?

2 Dual fitting and Primal Dual on Set Cover

Recall the LP for set cover

min
m∑
i=1

c(Si)xi (3)

subject to
∑
i:j∈Si

xi ≥ 1 ∀ elements j

x ≥ 0

We can write it’s dual as follows. There is a variable yj for every element j.

max
n∑
j=1

yj (4)

subject to
∑
j∈Si

yj ≤ c(Si) ∀sets Si

y ≥ 0

We now illustrate two generic techniques which allow the dual to be used in design of ap-
proximation algorithms. The first is dual fitting. Here, we use the dual only to argue about the
approximation factor of an algorithm. The second is the primal-dual methodology where the dual
plays an important part in both the design and analysis of the algorithm.

Dual Fitting. I claim that we have already witnessed this method of analysing algorithms with-
out knowing the name. Recall the greedy algorithm for the set cover problem. When one picks a
set Si which minimizes c(S)/|S ∩ Xi| among all sets S where Xi is the current set of uncovered
elements, then set yj = c(Si)/|Si ∩Xi|. Clearly,

∑
j yj is the cost of the algorithm. We now claim

that
∑

j∈S yj ≤ H|S| · c(S) for all sets S. This implies that y/HK , where K is the largest size of a
set, is a feasible dual solution, and thus the cost of the algorithm is at most HK times the objective
function of a valid dual, and thus at most HK times the LP.

The claim is similar to what we proved in Lecture 2. Order the elements of a set S in the
order in which they get assigned yj , and let this be {1, 2, . . . , |S|}. By the greedy property, we have
y1 ≤ c(S)/|S ∩X| = c(S)/|S|, y2 ≤ c(S)/(|S| − 1), and so on. This implies what is needed.

2

Primal-Dual Algorithms. Here, we use the dual to design an algorithm. At this point, I’d like
to remark that the algorithm wouldn’t solve any LPs. Rather, it would come up with an integral
primal solution and a feasible dual solution such that the dual objective value is not too far from
the cost of the integral primal solution.

The PD algorithm for set cover is as follows.

1. Initially set yj = 0 for all elements j. Initialize A, the set of uncovered elements, to the whole
universe.

2. While all elements have been covered

(a) Raise yj of all elements in A at the ‘same rate’ till for some set S, the dual constraint∑
j∈S yj ≤ c(S) is satisfied with equality.

(b) Pick set S in the cover and delete all elements of S from A. That is, A = SA \ S.

As promised, the algorithm ends up with a set cover S and a dual solution y. By definition, y is
feasible. We now need to compare

∑
S∈S c(S) and

∑
j yj .

∑
S∈S

c(S) =
∑
S∈S

∑
j∈S

yj

=
n∑
j=1

yj
∑

S∈S:j∈S
1

≤ f
n∑
j=1

yj ≤ f · LP

3 Solving LPs with exponentially many variables and polynomi-
ally many constraints

Last class we assumed we could solve the configuration LP which had exponentially many variables
but only polynomially many constraints. I promised that we will see how this is (theoretically)
possible in this class using duality. However, to do so, I need to scratch a little bit more on how
the ellipsoid algorithm works to solve LPs.

Suppose we want to solve: max{c>x : Ax ≤ b}. First, we convert this optimization problem into
a feasibility problem. We first guess the value of the LP, call the guess M . Then we try to check the
feasibility of the following system: {Ax ≤ b, c>x ≥ M}. Suppose we did have a subroutine which
either said NO to the feasibility question or said YES and returned a feasible solution, then we can
perform a binary search on the value of M to in fact get the LP value and the optimal solution.

To give more details which we didn’t cover in class, assume c’s are integral. Let L,U be an upper
bound on the value of OPT. Binary search gives us two values M− and M+ such that the system
with c>x ≥ M+ is infeasible while the system with c>x ≥ M− is feasible. So, M− ≤ LP ≤ M+.
If δ = M+ −M−, then the binary search needs to be run for log2

(
U−L
δ

)
iterations. Note that

M− ≥ LP − δ. How small does δ need to be so that we can assert that indeed M− = LP? Well, if
the feasibility subroutine always returned a feasible solution (when feasible) x which was a rational
with both numerator and denominator binary length bounded by a known polynomial poly(n) in

3

the LP input size, then if we chose δ ≤ 1
22poly(n) , then in fact M− = LP . This is because for any

two x 6= x′ which are poly-bounded, c>(x− x′) would be at least 1
2poly(n) .

In sum, it suffices to solve the feasibility problem: {Ax ≤ b, c>x ≥M} for any M . The ellipsoid
algorithm needs the following subroutine called the separation oracle: given a candidate feasible
solution xt, either the oracle says feasible and we are done, or it returns a violated constraint. The
ellipsoid algorithm uses this violated constraint to deterministically return another candidate
solution xt+1, and this process continues. The remarkable fact is that in number of steps polynomial
in the input size, either we get a feasible solution guaranteed by the separation oracle, or the ellipsoid
algorithm asserts that there is no feasible solution. This is precisely what was needed for the binary
search algo, and we can use this in conjunction of the old idea to solve max{c>x : Ax ≤ b}.

Now comes the crucial part. Consider the run of ellipsoid algorithm as above, and let T be the
set of violated constraints returned by the separation oracle for all possible guesses. Consider the
LP: LP ′ = max{c>x : Âx ≤ b̂}, where we only consider the violated constraints. What can we
say about LP ′ and LP? Well, LP ′ ≥ LP surely. But we assert LP ′ = LP . This is because, the
run of the ellipsoid algorithm is the same with LP and LP ′! Why is this interesting? Well, say
A has exponentially many constraints, and yet there was a separation oracle. Then the ellipsoid
algorithm allows us to get a polynomial sized set of constraints which have the same LP value!

Let’s come to what I promised – solution to LPs with large number of variables. This is
what we do – we look at the dual. This has polynomially many variables but exponentially many
constraints. Suppose we had a separation oracle for the dual. Then, as argued above, we can find
polynomially many constraints in the dual such that the dual value doesn’t change if we throw
away the remaining constraints. Note constraints in dual correspond to variables in the primal. So,
we can throw away all the variables in the primal except the ones corresponding to the constraints
in the dual that the separation oracles asks us to keep, and the LP value doesn’t change. Now we
have a compact LP in the primal, which we can again solve to get the succinct primal solution.

4 Online Set Cover via Primal Dual + Randomized Rounding.

We now look at a different take on the set cover problem. We are given m sets, and for this lecture
just assume the cost of each set is 1. However, we do not know the elements they cover! Rather,
the elements arrive “online” in some adversarial order. When an element j arrives, we get to know
which all sets contain it. The algorithm must pick one of these sets (unless, some set picked in
the past already covers this element). After all the elements have arrived, we end up with a set
cover S. We would like to compare it with the optimum set cover of these elements, that is, we
are comparing ourselves with an omniscient and all-powerful algorithm. Remarkably, we can get a
decent approximation factor. For this lecture, we assume that we know n, the number of elements
that will arrive.

The algorithm actually maintains two solutions (x, y) for the primal and the dual LP. Note that
whenever an element arrives, it introduces a new constraint in the primal LP and a new variable
in the dual LP. (To be precise, we should say that the solutions are (xj , yj) after the jth element
arrives, but we delete the superscripts for brevity’s sake). When element j arrives, the algorithm
increases the x-value of the sets Si that contain j and also increases the value yj . This is done
in such a way that the increase in the primal solution is comparable to the increase in the dual
objective. Furthermore, we see in the end that the final dual (after all elements have arrived) is

4

not too bad – we will see that y/ logm is in fact dual feasible. This shows that the cost of the final
primal solution, that is a fractional set cover, is at most O(logm) times the optimum.

However, we want an integral set cover. This is achieved by randomization. For each set Si, we
sample in the beginning certain thresholds θi. Each θi is chosen from (0, 1

lnn) uniformly at random.
We pick a set Si whenever xi exceeds θi. Therefore, when an element j appears, we increase some
of the xi’s. If one of them has exceeded θi, then we pick that set and we are done. Otherwise, we
just pick an arbitrary set containing j.

The whole algorithm is described below.

1. Initially, set xi = 1/m for all sets S1 to Sm. For each set Si, select a threshold θi ∈ (0, 1
lnn]

uniformly at random.

2. When element j arrives and we get to know the sets Si with j ∈ Si do the following

(a) Initialize yj = 1.

(b) While
(∑

i:j∈Si
xi < 1

)
:

i. Set xi = 2xi for all i such that j ∈ Si.
ii. Set yj = yj + 1.

(c) Pick all sets Si with xi ≥ θi. If no set containing j has been picked, then pick an
arbitrary set Si containing j.

The above algorithm is a feasible algorithm, in that, we always pick a set which contains the element
new element j. To argue about the cost, one has three steps.

1. Prove that
∑m

i=1 xi ≤ 1 +
∑n

j=1 yj .

2. Prove that y/ log2m is dual feasible.

3. Prove that Exp[|S|] ≤ (lnn) ·
∑m

i=1 xi + 1. From (1) and (2), we get that the RHS is at most
O(logm log n) times OPT .

The first part is easy. Consider the steps 2.b.i and 2.b.ii when x, y are modified. In each step∑
j yj increases by exactly 1.

∑
i xi increases by

∑
i:j∈Si

xi which is < 1 since we run the while
loop. Initially,

∑m
i=1 xi = 1.

Now pick any set S and consider
∑

j∈S yj . Whenever, any yj increased by +1 in step 2.b.ii,
we know that xi doubled. Also note that xi never can exceed 1. So, the number of time yj can
increase for some j ∈ S is at most logm. This proves

∑
j∈S yj ≤ log2m.

Finally, let’s argue about the expected number of sets in the solution. To that end, let’s divide
these sets into two – good sets, which were picked when xi ≥ θi, and bad sets which an element
j had to pick because no set covering it has xi ≥ θi. Let’s first argue about the number of bad
sets picked. To that end, fix an element j and consider the probability that after the x has been
modified after it has arrived, none of the sets containing it have xi ≥ θi. Clearly at this time all
xi ≤ 1

lnn . Now, consider θi being sampled right after xi has been fixed – this causes no difference
since the evolution of xi didn’t take θi into account. Therefore, the probability (over sampling of
the threshold θi) that xi < θi is exactly (1− lnnxi). Therefore, the probability that j is not covered

5

by a good set is at most 1/n, since
∑

i:j∈Si
xi ≥ 1. Therefore, the expected number of bad sets is

≤ 1.
Now, the probability that Si is picked as a good set is precisely the probability xi ≥ θi. If

xi ≥ 1
lnn , this probability is 1 and is therefore at most lnn · xi. Otherwise, it is precisely (lnn) · xi.

This completes the proof.

6

	The Dual LP
	Dual fitting and Primal Dual on Set Cover
	Solving LPs with exponentially many variables and polynomially many constraints
	Online Set Cover via Primal Dual + Randomized Rounding.

