A Crash Course in Linear Programming

A general LP: \(\min c^T x : A x \geq b \)

- \(x \in \mathbb{R}^n \): variables
- \(A \in \mathbb{R}^{m \times n} \): constraint matrix, (usually \(m \geq n \))
- \(c \in \mathbb{R}^n \): obj. function

\(c^T x = c \cdot x = \langle c, x \rangle = \sum_{i=1}^n c_i x_i \).

Picture when \(n = 2 \):

\[\begin{align*}
\min & \quad x_1 + 3x_2 \\
\text{s.t.} & \quad 3x_1 + 2x_2 \geq 6 \\
& \quad x_1 - x_2 \geq 1 \\
& \quad x_1 \geq 0 \\
& \quad x_2 \geq 0
\end{align*} \]

Linear Algebra Preliminaries

- Given \(A \), \(\{a_1, \ldots, a_m \} \subseteq \mathbb{R}^n \) are the \(m \)-rows
 \(\{A_1, \ldots, A_n \} \subseteq \mathbb{R}^m \) — \(m \)-cols.
• \(\text{Span} (v_1, \ldots, v_k) := \{ \sum_{i=1}^{k} \lambda_i v_i : \lambda_i \in \mathbb{R} \} \)

 This is an example of a Vector Space.

 • if \(\alpha \in \mathbb{R} \Rightarrow \alpha v \in V \)
 • \(v, \sigma \in V \Rightarrow v + \sigma \in V \)

• Lin. Ind: A set \(\{v_1, \ldots, v_k\} \) of vectors are lin. independent iff

 \[\sum_{i=1}^{k} \lambda_i v_i = 0 \Leftrightarrow \lambda_i = 0 \text{ for } i = 1, \ldots, k \]

 eg: \(v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \)

 \(v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \)

 \(v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \)

• FACT: Any maximal collection of lin. ind. sets in a vector space has the same cardinality.

 The size of this “basis” is \(\dim(V) \).

 Try to prove this.

• Given a matrix \(A \), two important \(V \)-spaces

 1. Row-Space \(\equiv \text{Span} \{ a_1, \ldots, a_m \} \subseteq \mathbb{R}^n \)
 2. Col-Space \(\equiv \text{Span} \{ A_1, \ldots, A_n \} \subseteq \mathbb{R}^m \)

 \[\text{row-rank} \equiv \dim(\mathbb{R}) ; \quad \text{col-rank} \equiv \dim(\mathbb{C}) \]

 \[\max \# \text{ of lin-ind rows} \quad \max \# \text{ of lin-ind cols} \]
AMAZING FACT: \(\text{row-rank}(A) = \text{col-rank}(A) = \text{rank}(A) \)

Ways to think of \(Ax = \sum_{j=1}^{n} A_j x_j \) i.e. a linear comb of cols.

\[Ax \in \mathbb{C}^m, \quad y^T A \in \mathbb{R} \]

\[\forall x \in \mathbb{R}^n, \quad \forall y \in \mathbb{R}^m. \]

Proof:

In \(\mathbb{R}^n \) (which is an inner-prod-space, i.e., it has an inner product defined on it), any \(V \)-space \(\leq \mathbb{R}^n \), has a “perpendicular” \(V \)-space \(V^\perp \) also.... \(V^\perp = \{ u : \langle u, v \rangle = 0 \quad \forall v \in V \} \)

Fact: \(\dim(V) + \dim(V^\perp) = n \)

\[R^\perp = \{ x \in \mathbb{R}^n : (y^T A)x = 0, \quad \forall y \in \mathbb{R}^m \} \]

\[= \{ x : Ax = 0 \} \]

Let \(\{ v_1, \ldots, v_d \} \) be a basis of \(R^\perp \)

\[\leq \mathbb{R}^n \quad \text{note } d = n - \text{row-rank}(A) \]

This can be completed to a basis of \(\mathbb{R}^n \)
\[B = \{ r_1, \ldots, r_d, s_{d+1}, \ldots, s_n \} \]

\[\forall v \in \mathbb{R}^n, \quad v = \sum_{i=1}^{d} \lambda_i r_i + \sum_{i=d+1}^{n} \beta_i s_i \]

\[\mathcal{C} = \{ Av \mid v \in \mathbb{R}^n \} \]

\[= \{ A \sum_{i=1}^{d} \lambda_i r_i + \beta_{d+1}s_{d+1} + \cdots + \beta_n s_n \} \]

\[= \{ A \cdot \sum_{i=1}^{d} \beta_i s_i \mid \beta_{d+1}, \ldots, \beta_n \} \]

\[\text{dim } (\mathcal{C}) = n - d \]

\[\begin{array}{ll}
\text{Col-rank} & \text{row-rank} \\
\end{array} \]

- A matrix \(A \) is said to have full row-rank if \(\text{row-rank } (A) = n \).

\[\Rightarrow \mathbb{R}^n \equiv \{ 0 \} \]

Coming back to LP's:

- \(F = \{ x \mid Ax \geq b \} \) is called the feasible region.
- Given \(x \in F \), let \(B(x) \subseteq \{a_1, \ldots, a_m\} \) be the set of inequalities that hold with equality.

- Henceforth we assume \(A \) has full row-rank.

BASIC FEASIBLE SOLN:

Any \(x \in F \) is a basic feasible point if \(B(x) \) forms a basis of \(\mathbb{R}^n \).

Also called an **EXTREME POINT SOLN** or a **VERTEX solution**.

All bases of \(\{a_1, \ldots, a_m\} \) \(\leftrightarrow \) Basic Feasible Solutions.

\[
Bx = b_b \quad x = B^{-1}b_b
\]

Thm: Any LP has an Optimum Solution @ a basic feasible soln.

Pf: If \(x \) is an opt-soln & \(B(x) \) is full-row-rnk, then \(\exists v \in \mathbb{R}^n \) s.t. \(v^Ta_i = 0 \Rightarrow a_i \in B(x) \).
Consider \(x + \delta v \) \(\cdots \) finish the proof.

\[
\text{LOCAL-OPT} = \text{GLOBAL-OPT}
\]

- Fact: For any basis \(B \) of any \(\nu \)-space, \(\forall i \in B, \exists i' \in B \text{ at } B - i + i' \text{ is also a basis.} \)

- \(\text{cost} (B) := c^T x_B = c^T B^{-1} b_e \)

- Let \(B^* \) be the "local-opt" basis. i.e. \(\forall i \in B^*, \forall j \notin B^* \text{ if } \)
 \[B_i = B^* - i + j \text{ is a basis}, \]
 then \(\text{cost} (B_i) \geq \text{cost} (B^*) \)

Thm: \(x_{B^*} \) is a Global Opt.

Pf: \(\tilde{x} := x_{B^*} = B^* b_{B^*} \)

\[\forall i \in B^* \text{ \(x_i := x_{B_i} \)} \]

What is \(A(x_i - \tilde{x}) \) \(\mid \text{B}^* \) ?
it has the i^{th} coor > 0
and rest all 0

\[A(x_i - \bar{x})\big|_{B^*} = \delta_i e_i \quad \text{for some} \quad \delta_i > 0 \]
\[i = 1 \ldots n \]

\[\Rightarrow \quad (x_i - \bar{x}) \text{'s span row-span}(A) = \mathbb{R}^n \]

\[\Rightarrow \quad \text{Any } x \in F \text{ must satisfy } \]
\[(x - \bar{x}) = \sum \alpha_i (x_i - \bar{x}) \]

\[\text{with } \alpha_i \geq 0 \]

Why? Again multiply by A and restrict all to B^*

\[0 \leq A(x - \bar{x})\big|_{B^*} = \sum \alpha_i \delta_i e_i \]
\[\Rightarrow \quad \alpha_i \geq 0 \]

Picture:

Now we are done. If \hat{x} is LOCAL OPT, then,

\[c^T (x_i - \hat{x}) \geq 0 \]
if x^* is global opt

$$0 \geq c^T(x^* - \bar{x}) = c^T\left(\sum_{i>0} d_i (x_i - \bar{x})\right)$$

\[
\geq 0
\]

\[
\Rightarrow \text{we have } c^T \text{ everywhere}
\]

\[
\Rightarrow c^T x^* = c^T x
\]

This is the "Simplex" method

... ok, not quite

... silly simplex method