• For a minimization problem, an \(\alpha\)-approx algo
A takes any instance \(I\) of the problem and
returns a solution \(S\) s.t.
\[
\text{cost}(S) \leq \alpha \cdot \text{opt}(S)
\]
\(\text{opt}\) is cost of opt soln
for instance \(I\)

Note: \(\alpha > 1\), and closer it's to 1, the
better is quality of the algorithm.

• For a maximization problem, we have a similar
defn except
\[
\text{cost}(S) \geq \frac{\text{opt}(S)}{\alpha}
\]
Again \(\alpha > 1\).

Sometimes one says a \(p\)-approx with \(p < 1\)
for max. problems -- in that case one means
\[
\text{cost}(S) \geq p \cdot \text{opt}(D)
\]

Examples

1. Traveling Salesman Problem (TSP)

 Input: \(n\) points on a metric space \((X, d)\)
 \((u, v, w) \in X,\)
 \(d(u, v) \leq d(u, w) + d(w, v)\)

 Output: A tour ordering of vertices in \(X\)
 \((\sigma_1, \sigma_2, \ldots, \sigma_n) \leftarrow \text{permutation.}\)

 Objective: Minimize
 \[
 \sum_{i=1}^{n-1} d(\sigma_i, \sigma_{i+1}) + d(\sigma_n, \sigma_1)
 \]
2. **Matching**

Input: Undirected graph \(G = (V, E) \)

Output: \(M \subseteq E \) s.t. \(\deg_M(v) \leq 1 \)

degree in \(G(V, M) \)

Example:

![Graph Example](image)

Both the red edges and the blue edges are valid matchings.

Objective: Maximize \(|M| \) \(\text{in P} \)

Algorithm for Matching Problem

a. Initially \(M = \emptyset \), empty set.

b. Consider edges of \(G \) in any order.

c. While considering edge \((u, v)\)

\[
\text{if} \quad \deg_M(u) = \deg_M(v) = 0,
\]

\[
\text{then} \quad M = M + (u, v)
\]

Simple algorithm, fast, how good is it?
Claim: The above algorithm is a 2-approx algo.

Proof: Fix a graph G and let M^* be the maximum matching. Let M be the matching returned by the above algorithm.

We wish to show $|M| \geq \frac{1}{2} |M^*|.$

In order to do so, we define a many-to-1 map $\phi: M^* \rightarrow M$ s.t.

For all $e \in M^*$, there are at most two edges $e_1, e_2 \in M^*$ with

$\phi(e_1) = e \neq \phi(e_2) = e$

This will prove $|M| \geq \frac{1}{2} |M^*|.$

For all $(u, v) \in M^* \cap M$, $\phi(u, v) = (u, v)$

For all $(u, v) \in M^* \setminus M$, since we haven’t picked it yet M

$\Rightarrow \exists (v, w) \text{ or } (u, x) \text{ or both in } M.$

Arbitrarily map $\phi(u, v)$ to one of them.

Pick an edge $(u, v) \in M,$

If $e \in M^*$ has $\phi(e) = (u, v)$

then $e \sim (u, v)$, i.e., e and (u, v) must share a common end point.
then $e \sim (uv)$, i.e. e and (uv) must share a common end point.

No two $e, f \in M^*$ can share the same endpt. $\therefore M^*$ is a matching.

Since (uv) has only two endpts, at most 2 edges in M^* map to (uv).

Algorithm for TSP

Preliminaries

Eulerian Tour: A **walk** in G is an Eulerian walk if every edge is visited exactly once. It's called an Eulerian tour if start and end points are same.

![Graph 1](image1.png)

![Graph 2](image2.png)

1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 3 \rightarrow 5

Theorem: G has an Eulerian tour iff G is connected and $\deg(v)$ is even for all v.

Such graphs are called **Eulerian**.
Checking if there is a tour visiting every edge of a G (exactly once) is easy.

Eulerian tours vs metric TSP

Given a metric (X,d), let G be the complete graph with $wt(u,v) = d(u,v)$. Let F be any Eulerian subgraph of G.

Claim: There is a tour of cost $\leq wt(F)$

$$wt(F) = \sum_{e \in F} wt(e)$$

Proof: Let W be the Eulerian tour of F.

$\sigma = \text{Shortest}(W)$

whenever a vertex is repeated we just skip it.

eg: in the example above W is $5 \to 1 \to 2 \to 5 \to 4 \to 3 \to 2 \to 1 \to 4 \to 3 \to 5$

$\text{Shortest}(W) = 5 \to 1 \to 2 \to 4 \to 3 \to 5$

$\text{cost}(\sigma) \leq \text{cost}(W)$ **of Δ-ineq**.

eg: $2 \to 5 \to 4 \to \text{shortest}$
\[\rightarrow 2 \rightarrow 4 \rightarrow \]

but \[d(2,4) \leq d(2,5) + d(5,4) \]

This is where metric prop is crucially used.

\[: \text{Finding "small" tours in } (X,d) \text{ boils down to finding "small cost" Eulerian subgraphs of } G. \]

Algo 1

1. Let \(T \) be the MST of \(G \)
2. Let \(2T \) be the graph on \(X \)
 obtained by taking two parallel copies of each edge of \(T \).
3. Let \(W \) be the Eulerian tour of \(2T \)
4. Return \(\text{Shortcut}(W) \)

Thm: Algo 1 is a 2-approximation algorithm for TSP.

Pf:

1. \(2T \) is Eulerian by defn.
2. \[\text{cost}(2T) \leq 2 \text{cost}(T) \leq 2 \text{OPT} \]
 since the opt tour contains a cycle.
In the previous algorithm, we ensured that every degree is even by taking two copies of every edge in T. But we can do something better.

Suppose T is the MST. The “problematic” vertices are the odd-degree vertices.

Obs: # of odd-degree nodes in any tree is even.

Idea: “Pair these nodes up.”

How? In the cheapest possible way. By adding a minimum wt perfect matching.
Algorithm 2

1. Find T: MST of G
2. O be the set of odd-degree vertices in T
3. M be the min wt perfect matching connecting O in G
4. TUM is an Eulerian graph.

W: Eulerian tour in TUM
Return: Shortcut (W)

Thm: The above algo is $\frac{3}{2}$-approximate.

Pf: Suffices to show $wt(M) \leq \frac{1}{2} \cdot opt$

Since $w(T) \leq opt$.

Again look at the opt. tour and consider the O-vertices in this tour.

Note:
Note:

\[\text{OPT} \geq "\text{total blue length}" \geq 2 \cdot (\text{min wt matching}) \]

since the blue lines partition into two matchings.