Independent Sets in Bounded-Degree, 3-colorable graphs

Input: - $G = (V, E)$
- $\deg(v) \leq d \forall v$
- Promise: G is 3-colorable

Output: - $I \subseteq V$, I is independent

Obj: - Maximize $|I|$

Randomized Rounding with a fix (even w/o \oplus):

- Select I_1 where $v \in V$ is sampled w.r.t. p
- Remove any pair i, j from I_1 if $(i, j) \in E$
- Return remaining set $I = I_1 - I_2$

$\mathbb{E}[|I_1|] = np$

$\mathbb{E}[|I_2|] \leq \sum_{(i, j) \in E} \mathbb{P}[i \in I_1 \land j \in I_1]$

$\leq \frac{nd}{2} \cdot p^2$

$\therefore \mathbb{E}[|I|] \geq np - \frac{nd}{2} \cdot p^2$
\[\mathbb{E} \left[|I| \right] \geq n[p - \frac{nd}{2}p^2] \\
= n \left(p - \frac{dp^2}{2} \right) \]

\[\therefore \text{If } p \text{ was chosen so that } p = \frac{dp^2}{2} \text{ i.e. } p = \frac{1}{d} \text{; then...} \]

\[\mathbb{E} \left[|I| \right] \geq \frac{n}{2d} \]

linear in d.

Today, we see how to get a sublinear dep.

on d when \(\ast \), i.e., G is 3-colorable.

Uses SDPs and a "simple" rounding trick.

Two ideas:

1. Use G is 3-colorable to obtain an embedding of G to \(S_n \), the n-dimn sphere, with edges' esp. being "far apart".

2. Use a similar idea as above (RR with a fix) to get a better IS. Except of "ind sampling", it'll be correlated
What can be said about 3-colorable Graphs?

→ Checking if \(G \) is 3-COL or not is NP-complete. No exact characterization is known.

→ We use a necessary condition.

Note: \(G \) is 3-COL

\[\max IS \geq \frac{n}{3} \]

We will be nowhere close to finding this large a IS.

\[\exists \text{ an embedding } \phi : V \rightarrow \mathbb{R}^2 \]

s.t. \[\forall i , \quad \| \phi(i) \|_2 = 1 \quad (\text{unit circle}) \]

\[\text{if } (i,j) \in E , \quad \angle \phi(i), \phi(j) = 120^\circ \]
If \(G \) is 3-col, the following has a feasible soln:
\[
\{ (v_1, v_2, \ldots, v_n) \in \mathbb{R}^n : \\
\forall (i,j) \in E : \langle v_i, v_j \rangle = -\frac{1}{2} \\
\|v_i\|_2 = 1 \}
\]

SDP formulation: The following system has a feasible soln
\[
\{ X \in \mathbb{R}^{n \times n} : \\
X_{ii} = 1, \quad \forall i = 1 \ldots n, \\
X_{ij} = -\frac{1}{2}, \quad \forall (i,j) \in E \\
X \geq 0 \}
\]

\(G \) is 3-col \(\implies \) SDP-col is feasible.

We may assume we have unit vectors
\[
\{ v_1, \ldots, v_n \} \text{ st } \langle v_i, v_j \rangle = -\frac{1}{2} \text{ for } i \neq j.
\]
all edges \((i,j) \in E\)

--- End of Part 1. ---

Randomized Rounding with a finer part deux

- Two forces at loggerheads

 - Want to sample so that lots of vertices in \(I_1\).

 - But not so aggressively that many edges enter \(I_1\).

- Pick an edge \((i,j)\):

 \[
 \langle v_i, v_j \rangle = -\frac{1}{2}
 \]

 \[
 \| v_i + v_j \|^2 = \| v_i \|^2 + \| v_j \|^2 + 2 \langle v_i, v_j \rangle \\
 = 2 - 1 = 1
 \]
\[\therefore \|w_i + w_j\| = 1 \quad \ldots \quad \text{while for non-edges it could be as large as 2.} \]

\[\text{ALGO: (Karger-Motwani-Sudan aka KMS alg)} \]

- Sample a random unit gaussian \(g \) in \(\mathbb{R}^n \).

\[I_1 := \{ i \mid \langle v_i, g \rangle \geq c \} \]

for some \(c \) to be chosen later.

- \(I = I_1 - I_2 \), where \(I_2 \) are the left of edges in \(I_1 \).

\[\text{Facts about Gaussians} \]

\(1 \)-dimn: \(X \sim N(0, \sigma) \)

\[\Rightarrow P_X[X = x] = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/(2\sigma^2)} \]

\(n \)-dimn: \(g = (g_1, \ldots, g_n) \)
each $g_i \sim N(0, 1)$ independent

- Unit Gaussian: $g_i \sim \frac{p}{||g||_2}$

- If g is a unit Gaussian in \mathbb{R}^n, and v is any fixed vector in \mathbb{R}^n, then $\langle v, g \rangle$ is a random variable with $\langle v, g \rangle \sim N(0, ||v||)$

- Sum of independent Gaussian r.v.s is Gaussian
- Variances add up

- "Error function" / "Quantile function"

$$erf(t) := P_x \left[X > t \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} dx$$

Bounds:

$\forall t > 0$:

$$\left(\frac{1}{t} \cdot \frac{1}{t^3} \right) e^{-t^2/2} \leq \sqrt{2\pi} \cdot erf(t) \leq \frac{1}{t} \cdot e^{-t^2/2}$$
Analysis of the KMS algorithm

\[
\mathbb{E}[|I_1|] = \sum_{i \in V} \mathbb{P}(\langle \nu_i, g \rangle \geq c) \\
= n \cdot \text{erf}(c)
\]

\[
\mathbb{E}[|I_2|] = \sum_{(i,j) \in E} \mathbb{P}(\langle \nu_i, g \rangle \geq c \land \langle \nu_j, g \rangle \geq c) \\
\leq \sum_{(i,j) \in E} \mathbb{P}(\langle \nu_i + \nu_j, g \rangle \geq 2c) \\
\leq \frac{nd}{2} \cdot \text{erf} \left(\frac{2c}{\|\nu_i + \nu_j\|} \right)
\]
\[\mathbb{E}[|I|] \geq n \operatorname{erf}(c) - \frac{nd}{2} \operatorname{erf}(2c) \]

\[\approx n \left[\frac{1}{c} e^{-c^2/2} - \frac{d}{2} \frac{1}{2c} e^{-2c^2} \right] \]

if \[e^{-c^2/2} \approx \frac{d}{2} e^{-2c^2} \]

i.e. \[e^{\frac{3c^2}{2}} \approx \frac{d}{2} \]

\[c = \sqrt{\frac{2}{3} \ln\left(\frac{d}{2}\right)} \]

\[\approx \frac{n}{\sqrt{\frac{2}{3} \ln\left(\frac{d}{2}\right)}} \cdot \left[\frac{1}{4} e^{-\frac{1}{3} \ln\left(\frac{d}{2}\right)} \right] \]

\[\geq \frac{n}{A \cdot d^{1/3} \sqrt{\ln d}} \]

for some constant \(A \)
Theorem: If G has max-degree d and is 3-colorable, then one can find an independent set of size $\geq \frac{n}{\log d}$.

Corollary: Once we find an independent set, we can "pluck" it out giving it one color and repeat. Thus we can color 3-colorable graphs with $O(\sqrt[3]{d})$ colors.

Using "another trick", this gives a coloring of 3-col. graphs using $\tilde{O}(n^{0.25})$ colors.... sounds ridiculous?

The best known algorithm till date is $\tilde{O}(n^{0.38..})$ colors. From 2012!