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A. Given an undirected graph G = (V, E), and a designated vertex q ∈ V , the notion of
a G-parking function (with respect to q) was independently developed and studied by various
authors, and has recently gained renewed attention. This notion generalizes the classical notion
of a parking function associated with the complete graph. In this work, we study properties of
maximum G-parking functions and provide a simpler new bijection between them and the set of
spanning trees of G with no broken circuit. As a case study, we specialize some of our results to
the graph corresponding to the discrete n-cube Qn. We present the article in an expository self-
contained form, since we found the combinatorial aspects of G-parking functions somewhat
scattered in the literature, typically treated in conjunction with sandpile models and closely
related chip-firing games.

1. I

The classical parking functions provide a bijective correspondence between the spanning
trees of the complete graph Kn and certain integer-valued functions on the vertices of Kn. A
notion of parking functions corresponding to the spanning trees of an arbitrary graph G is more
recent and has been independently developed in physics and combinatorics. It was introduced
by Bak, Tang and Wisenfeld [1] as a self-organized sandpile model on grids, and was general-
ized to arbitrary graphs by D. Dhar [15]. See Definition 2.1 below for the precise definition of
a G-parking function, associated with a connected graph G.

This notion is already rather powerful; besides generalizing the classical parking function
from Kn to an arbitrary graph, it has been investigated in the context of chip-firing games
[7, 26, 27] and the Tutte polynomial [8, 12] in discrete mathematics, and also investigated in
algebra and related fields [2, 14, 28]. However, some of the combinatorial aspects of this topic
appear somewhat scattered in the literature and are far from transparent. Several fundamental
results concerning the recurrent configurations of chip-firing can be derived without the chip-
firing context and terminology. For this reason, we shy away from introducing and discussing
the chip-firing terminology. Instead, in this article we describe various interpretations of the
G-parking functions in the most elementary combinatorial ways. Using a natural partial order
≺ on the set P(G, q) of parking functions, we consider the maximal elements in this poset(
P(G, q),≺

)
. Much of our focus in this paper is on understanding the properties of such
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maximal parking functions. The first result we describe (see Theorem 4.1) provides a simple
bijection between the maximal parking functions in the poset and the set A(G; q) of acyclic
orientations of G with a unique source at q. En route, we describe what we call an Extended
Dhar algorithm (since it is an extension of an algorithm due to Dhar [15] to recognize G-
parking functions) in providing an acyclic orientation corresponding to a maximal parking
function. We review various combinatorial consequences and algebraic connections of this
correspondence. For example, using known results (namely those of Greene and Zaslavsky [22]
and more recent work of Gebhard and Sagan [19]), we further identify a 1-1 correspondence
between the set of maximal parking functions and the set of spanning trees with no “broken
circuits,” or equivalently, the set of “safe” spanning trees ; see Section 4 for the definitions of
these terms. In this paper, we provide a much simpler bijection (compared to [19]) between
the set of safe trees and the set of acyclic orientations with a unique sink (or equivalently, a
unique source). Furthermore we generalize this bijection to one between all spanning trees
and all G-parking functions which preserves the bijection between safe trees and maximal
G-parking functions. We must remark here that other bijective proofs between the set of G-
parking functions and the set of spanning trees of G (for arbitrary connected G) have been
given by Chebikin and Pylyavskyy [11]. However, to our knowledge, the simpler bijection we
report here, in Theorem 4.2 below, and its generalization given in Theorem 4.6, are indeed new.

As an additional contribution, we describe a simple way to generate maximal parking func-
tions in the Cartesian product graph G1�G2, using maximal functions in the (factor) graphs
G1 and G2. We then specialize our study to understanding the parking functions in the dis-
crete n-cube Qn on 2n vertices. By describing certain special constructions of maximal parking
functions f on Qn, we obtain a natural description of a set, dom( f ), of parking functions –
those dominated, in the partial order given by ≺, by a special maximal parking function f .
Interestingly enough we shall deduce (see Theorem 5.2) that

(1.1) |dom( f )| =
n∏

k=2

k(n
k) ,

while it is a well-known fact that

(1.2) |P(Qn, q)| =
n∏

k=2

(2k)(
n
k) = 22n−n−1

n∏
k=2

k(n
k) .

Recall that (1.2) corresponds to the total number of spanning trees of Qn (see equation (5.85)
in [29]), using the matrix-tree theorem and the explicit knowledge of the corresponding eigen-
values, to help evaluate the determinantal formula. In light of the fact that finding a bijective
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proof accounting for the number of spanning trees of Qn has been open for several years, we
hope this is a nontrivial step towards such a proof.

The paper is organized as follows. In Section 2, we review some preliminaries, including
Dhar’s burn criterion, which determines whether a given function is a parking function. In
Section 3, we show the bijection between maximum parking functions and acyclic orientations
with a unique source. In Section 4.1, we describe our new and simpler bijection between the set
of acyclic orientations with a unique sink and the set of safe trees. In Section 5.1, we describe
a construction of maximum parking functions on Cartesian products of graphs. In Section 5.2,
we focus our study on the n-cube Qn, and provide some explicit constructions of maximum
parking functions and related bounds. In Section 6, we provide the bijection between diffuse
states and acyclic orientations of a graph. We conclude with some remarks on research in
future directions and a few open problems in Section 7.

2. G-P F  D’ B C

In this section we recall the definition of a G-parking function and review Dhar’s (burning)
algorithm that can be used to determine whether an integer-valued function on the vertices of
G is a G-parking function.

Definition 2.1. For a connected graph G, a G-parking function relative to vertex q ∈ G is a

function f : V(G)→Z≥−1 such that f (q) = −1 and for every non-empty A ⊆ V(G)\{q}, there

exists v ∈ A such that 0 ≤ f (v) < dA(v), where dA(v) is the number of edges e = vw with w < A.

Remark 2.1. Herein, we have modified the standard definition of a G-parking function some-

what. The function f is now defined on all of V(G) instead of restricted to simply V(G)\{q} in

order to improve the compatibility between G-parking functions and Cartesian product graphs

such as Qn; due to this change, for f to be a G-parking function, f (q) = −1 necessarily.

Proposition 2.1. If for a function f : V(G)\{q}→Z≥0, for every non-empty connected subgraph

A ⊆ G\{q}, there exists v ∈ V(A) such that f (v) < dA(v), then f is a G-parking function.

Proof. Assume that, for all connected A ⊆ G\{q}, that there exists v ∈ V(A) such that f (v) <
dA(v). Proceeding by contradiction, suppose that there is some disconnected B ⊆ G\{q} such
that f (v) ≥ dB(v) for every v ∈ V(B). Consider then any connected component C of B. Since C

is connected we have, by the hypothesis of the proposition, that f (v) < dC(v), for some vertex
v in C. Thus dB(v) < dC(v), implying that there is a vertex u in C\B such that v and u are
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connected by an edge in G; otherwise, either f (v) ≥ dC(v) or f (v) < dB(v). This contradicts the
choice of C.

Throughout we assume that the reference vertex q is fixed, and we always consider parking
functions with respect to this fixed vertex q, without necessarily bringing explicit reference to
it.

A natural question to ask is whether a given integer-valued function on the vertices of G can
easily be tested for being a G-parking function. In the context of the so-called sandpile models,
Dhar [15] provided an algorithm, which can be interpreted as an efficient algorithm to test if a
given function is a G-parking function. This was observed in [11], wherein the algorithm was
reformulated as follows. Let f : V \ {q} → Z+. We assume that f (q) = −1.

Step 1. Mark any unmarked vertex v which has more marked neighbors than f (v).

Step 2. Repeat Step 1 until no more vertices can be marked.

Step 3. Declare f to be a G-parking function if and only if all the vertices have been marked.

We omit the proof of correctness of the algorithm (as an exercise), which follows in a fairly
straightforward way from the definition of a parking function.

On the set P(G, q) of parking functions on G with respect to q, there is a natural partial order
we may define:

Definition 2.2. Given two parking functions f , g ∈ P(G, q), we say g ≺ f , if g(v) ≤ f (v), for

all v ∈ V. The maximal elements in this partial order will be referred to as maximal park-

ing functions. Finally, a parking function with the largest sum is called a maximum parking

function.

For f ∈ P(G, q), let ‖ f ‖ :=
∑

v f (v), and dom( f ) = {g ∈ P(G, q) : g ≺ f }. Furthermore, for

f , g ∈ P(G, q), let f ∧ g be the function on vertices, defined as f ∧ g(v) := min{ f (v), g(v)}, for

each v ∈ V(G).

While the following propositions are perhaps folk-lore, the first part of Proposition 2.2 and
Proposition 2.3 appear as Lemmas 7 and 5 in [8].

Proposition 2.2. (a) Let f ∈ P(G, q), and suppose g : V(G)→Z≥−1 such that g(q) = −1 and

0 ≤ g(v) ≤ f (v), for v ∈ G with v , q. Then g ∈ P(G, q).

(b) If f , g ∈ P(G, q), then f ∧ g ∈ P(G, q) and dom( f ∧ g) = dom( f ) ∩ dom(g).
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Proof. While Part (a) is clear from the definition of a G-parking function, it can also be seen
using Dhar’s algorithm.

Note that f ∧ g(q) = −1 and so f ∧ g ∈ P(G, q), by Part (a). Now f ∧ g ≺ f and f ∧ g ≺ g,
so h ∈ dom( f ∧ g) implies that h ∈ dom( f ) ∩ dom(g). Finally consider, h ∈ dom( f ) ∩ dom(g).
Then at each vertex v ∈ V(G), h(v) ≤ f (v) and h(v) ≤ g(v), so h(v) ≤ min{ f (v), g(v)} = f ∧g(v),
proving that h ∈ dom( f ∧ g).

Proposition 2.3. For every connected graph G = (V, E), every f ∈ P(G, q), we have ‖ f ‖ ≤

|E| − |V |. More over, the equality is always achieved.

Proof. We may prove this by induction on the number n ≥ 1 of vertices G. The base case
consisting of V = {q} and no edges is trivially true. For the induction case, let n ≥ 2. Given
f ∈ P(G, q), let vn be the last vertex to be marked by the Dhar algorithm. Then consider
H := G \ {vn}, the graph obtained by removing vn and its incident edges. H is connected,
since Dhar successfully marks all vertices before vn, and more over, the function fH denoting,
f restricted to H, is an H-parking function with respect to q ∈ H. Thus we may apply the
induction hypothesis to H and fH and complete the proof:

‖ f ‖ = f (vn) + ‖ fH‖ ≤
∑
v,vn

f (v) ≤ d(vn) − 1 +
(
|E| − d(vn)

)
− (|V | − 1) ≤ |E| − |V | ,

where we also used the fact that f (v) ≤ d(v) − 1, for every v and parking function f .

The proof also suggests that by assigning the maximum possible value, at each step in Dhar’s
marking algorithm, one easily obtains a (maximum) parking function which achieves the upper
bound.

Note that the quantity g(G) := |E|− |V |+1 is sometimes referred to as the cyclomatic number

or the Betty number of the graph and due to our convention of assigning f (q) := −1, we have
g(G) − 1, as the bound in the above proposition.

Proposition 2.2 also gives us a simple (albeit not necessarily efficient), inclusion-exclusion
method to relate the set of maximum parking functions with the set of all parking functions.
But this has to wait until the next section, where we observe another basic fact concerning the
maximum parking functions.
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3. M G-P F  A O   U S

Given a graph G, the notion of an acyclic orientation of the edges of G is classical, with an
extensive literature. The notion of an acyclic orientation with a unique source at a fixed vertex
is less well-studied. Let AO(G) denote the set of acyclic orientations of the graph G and let
A(G, q) be the set of acyclic orientations of G with a unique source at vertex q. Finally, let
MP(G, q) denote the set of maximum G-parking functions.

Theorem 3.1. There exists a bijection between A(G, q) and the set MP(G, q) of maximum

G-parking functions.

Proof. Given an acyclic orientation O ∈ A(G, q) with a unique source at q, define the function
f = f (O) on the vertices of G: let f (v) be the indegree (in O) of v minus 1. We will show that
this correspondence provides the necessary bijection.

In any orientation, the sum of the indegrees equals the number of edges. Hence
∑

v f (v) =

|E| − |V |. By using Dhar’s algorithm, we may show that f is in fact a parking function: starting
with q, we may repeatedly mark and remove the current set of source(s) in the acyclic orien-
tation of the remaining graph; since a vertex v with value f (v) becomes a source only when
all its f (v) + 1 in-neighbors have been marked and removed, the Dhar criterion is satisfied.
Also observe that the procedure stops only after marking all the vertices, since every acyclic
orientation has at least one source. Thus f (O) ∈ MP(G, q).

To see that f (O1) , f (O2), whenever O1 , O2, simply recall that an acyclic orientation is
uniquely determined by its outdegree sequence: starting with the sinks, orient all edges into
the sinks, remove the sinks, and repeat the process by subtracting one from the outdegrees of
the neighbors of the sinks.

The proof will be complete once we establish the onto property, that every maximum parking
function can be obtained this way. Given a maximum parking function f ∈ MP(G, q), we will
construct an orientation O( f ) using the following modification of Dhar’s algorithm, and will
show that O( f ) ∈ A(G; q), thus essentially providing an inverse map to the above construction.

The Extended Dhar Algorithm.

Input: A maximal parking function f ∈ MP(G, q)

Output: An acyclic orientation O( f ) with a unique source at q.

Step 1. Start with v = q. Orient all edges out of q.



G-PARKING FUNCTIONS, ACYCLIC ORIENTATIONS AND SPANNING TREES 7

Step 2. If there exists a vertex v which accrued indegree(v) equal to f (v) + 1, mark v and
orient the remaining edges incident at v outward from v.

Step 3. Repeat Step 2, until all vertices are marked and all edges are oriented.

The correctness of the original Dhar algorithm guarantees that all vertices will eventually
be marked – indeed, the indegree(v) equals the number of neighbors marked before v; thus all
edges will be oriented, meaning that O( f ) is an orientation of the edges of G. Observe that the
indegree of a vertex v equals f (v) + 1. Since q is unique with f (q) := −1, it must be that q

is the unique source. It is also easy to see that O( f ) is acyclic – if there were to be a cycle,
considering the first vertex in the cycle which was marked, we obtain a contradiction to the
way the edges were oriented (in Step 2 above) from a marked vertex.

Remark 3.1. Upon completion of this work, we discovered (thanks to Matt Baker), that The-

orem 3.1 can also be derived using chip-firing games: As described in [21], the notion of

a so-called diffuse state (introduced by [23] and see Definition 6.1 below) helps relate chip-

firing configurations to acyclic orientations. Also thanks to an anonymous referee of an earlier

version of this work [6], we learned that Theorem 3.1 is Lemma 10 (under the name of allow-
able orientations) of Biggs [8], where it is mentioned that this in fact goes back to an even

earlier result of Greene and Zaslavsky [22].

It is now easy to observe the following fact (which appears as Lemma 8 in [7]).

Corollary 3.2. Every maximal parking function is a maximum parking function.

Proof. This follows from the proof of correctness of the Extended Dhar algorithm described
above – if f were maximal, but not maximum, then there must be a vertex in Dhar’s marking
whose indegree is at least f (v) + 2. But then we can increase f (v) by one, and obtain a valid
parking function, contradicting the maximality of f .

We now return to prove the simple result that was promised at the end of the previous section.

Corollary 3.3. Let G be a finite graph with k maximum G-parking functions. Then there exist

G-parking functions f1, . . . , fn such that the number of G-parking functions is
n∑

i=1

±|dom( fi)| ,

where n = 2k − 1 and the sign + or − is uniquely determined by Proposition 2.2.
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Proof. Let g1, g2, . . . , gk ∈ P(G, q) be all the maximum G-parking functions. Trivially, every
non-maximal parking function is dominated by some maximal parking function, and Corol-
lary 3.2 lets us observe that,

P(G, q) = ∪k
i=1dom(gi) .

Now we may simply use the inclusion-exclusion formula to count the size of the union of the
above k sets:

|P(G, q)| = | ∪k
i=1 dom(gi)|

=
∑

i

|dom(gi)| −
∑

1≤i< j≤k

|dom(gi) ∩ dom(g j)| + · · ·

+(−1)k|dom(g1) ∩ dom(g2) ∩ · · · ∩ dom(gk)|

=
∑

i

|dom(gi)| −
∑

1≤i< j≤k

|dom(gi ∧ g j)| + · · · + (−1)k|dom(g1 ∧ g2 ∧ · · · ∧ gk)| ,

which, upon using Proposition 2.2, completes the proof.

It would indeed be interesting to see if the above corollary can be used in making progress
towards obtaining a bijective proof for the number of spanning trees of Qn, the n-dimensional
hypercube. In Section 5.2, we take a modest step towards it.

Theorem 3.4. Let G be a simple, connected graph. Then, for a fixed choice of q, G has a

unique maximum G-parking function if and only if G is a tree.

Proof. If G is a tree, then there is only one parking function with respect to any q since G has
no cycles and, thus, each vertex can have at most one marked neighbor in the Dhar algorithm.
(Note that this is in fact tautological if one uses the bijection between the parking functions
and the spanning trees of G.) Hence there is only one maximum G-parking function.

The other direction is less obvious. However, observe that in light of the bijection established
in Theorem 3.1, it suffices to show the following. Whenever G is connected and contains a

cycle, then there are at least two acyclic orientations for G, with q as the unique source. This
is easy to establish (for example, by considering the standard directed acyclic graph (DAG)
representation of the graph), and we leave the proof as a simple exercise.

See Remark 4.1 below for another short (but indirect) proof of the above theorem.

Corollary 3.5. A simple, connected graph G has a unique maximum parking function f if and

only if the range of f is a subset of {−1, 0}.
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Proof. This follows from the observation that any tree has a unique parking function and, for
any vertex v , q, f (v) = 0.

Corollary 3.6. For every G, |P(G, q)| = 1 if and only if |MP(G, q)| = 1.

4. B M G- F

We now augment our Theorem 3.1 above to show a bijection between maximal G-parking
functions and spanning trees with no broken circuits. Before stating the theorem, we need to
recall several definitions from the literature.

The Tutte (or Tutte-Whitney) polynomial of a graph G = (V, E) is the two-variable polyno-
mial defined as

(4.1) TG(x, y) =
∑
A⊆E

(x − 1)κ(A)−κ(E) (y − 1)|A|−n+κ(A) ,

where n = |V | and κ(A) denotes the number of connected components of the graph on V

using edgeset A. For λ ∈ Z+, the chromatic polynomial χG(λ) of a graph G is defined as the
number of proper vertex colorings of G using λ colors. For a general variable λ, the following
relation between the chromatic polynomial and the Tutte polynomial is well-known (see e.g.
[4, 5, 30, 31, 32]):

(4.2) χG(λ)) = (−1)n−κ(G) λκ(G) TG(1 − λ, 0) ,

where n = |V | is the number of vertices and κ(G) is the number of connected components of G.

Definition 4.1. Given a graph G = (V, E) and an ordering of all the edges of G, a broken

circuit B ⊆ E is any cycle (of edges) of G minus the largest (according to the ordering) edge in

the cycle.

Note that since every cycle contains (or gives rise to) a broken circuit, a collection of edges
not containing a broken circuit must necessarily be acyclic. Inspired by the terminology of
Kenyon and Winkler [25], we call a spanning tree T safe, if no edge forms a broken circuit with
T . The notion of a broken circuit is more general, and in fact explains the classical terminology:
in the context of a matroid, an independent set of elements of the matroid obtained from a
circuit, by removing the largest element (once again, according to some apriori global ordering
of all the elements) of the circuit.

Theorem 4.1. For every undirected, connected graph G, the following quantities are all the

same.
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• (a) The number of maximum G-parking functions with respect to q.

• (b) The number of acyclic orientations with a unique source at q.

• (c) The number of spanning trees with no broken circuits, or equivalently, with zero

external activity.

• (d) The coefficient (up to sign) of the λ-term in the chromatic polynomial χG(λ).
• (e) The value (up to sign) TG(1, 0) of the Tutte polynomial TG(x, y), evaluated at x = 1

and y = 0.

Proof. The equivalence between (c) and (d) is classical and is part of Whitney’s Broken Circuit
theorem [32]: that the chromatic polynomial on n vertices is given by

χG(λ) =

n−1∑
r=0

(−1) jmrλ
n−r,

where m j is the number of r-subsets of edges of G which contain no broken circuit. The term
mn−1 corresponds to (the absolute value of) the coefficient of λ; note that the n−1-subsets under
consideration being necessarily acyclic, correspond to spanning trees which do not contain a
broken circuit.

The equivalence between (b) and (d) is due to Greene and Zaslavsky [22]. A (direct) bijective
proof of the equivalence between (b) and (c) is given by Gebhard and Sagan [19], using a
modification of an algorithm of Blass and Sagan [10]. In Section 4.1 we provide a much
shorter proof of the equivalence between (b) and (c).

The equivalence between (d) and (e) follows from (4.2), and using κ(G) = 1, for a connected
G. The equivalence between (a) and (e) follows from results of [15] and [26], which confirmed
a conjecture of Biggs [7] in the context of chip-firing. An inductive proof (using edge deletions
and contractions) without involving chip-firing is due to Plautz and Calderer [27]. As described
in [27], the work of Dhar and Lopez provides the following result:

TG(1, y) =
∑

f∈P(G,q)

yw( f ) ,

where w( f ) = |E(G)|−|V(G)|+‖ f ‖, hence the equivalence of (a) and (e). The results in [26] and
[12] also establish the equivalence between (c) and (e), with the minor modification that broken
circuits are equivalently described using external acitivities - each broken circuit contributes an
external activity of one to a spanning tree.
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In addition to the above, Cori and Le Borgne [12] describe certain decreasing traversals of
vertices and edges and a notion of strong edges to provide a bijection between recurrent chip-
firing configurations (with a fixed “level”) and spanning trees with a fixed “external activity”.
While the level corresponds to the sum of the values of a parking function (up to an additive
shift), the external activity reflects the number of broken circuits, and we refer the interested
reader to their paper for additional information.

Remark 4.1. Observe that the nontrivial part of Theorem 3.4 follows easily using the equiva-

lence between (a) and (c). Indeed, let G be a connected graph which contains a cycle of length

3 or more. Then given a spanning tree which contains no broken circuit, we include an edge

not in the tree to form a cycle C. Since C is of length 3 or more, there must be an edge, which

is not the largest edge in the cycle, that can be removed, giving another spanning tree with

no broken circuits. Hence a (connected) graph containing a cycle has more than one parking

function.

4.1. Bijection between Acyclic Orientations with Unique Sink and Safe Trees. In this sec-
tion we give a shorter proof, of equivalence of (b) and (c) of Theorem 4.1, than the one re-
ported in Gebhard and Sagan [19]. For ease of presentation, we will consider orientations with
a unique sink rather than a unique source – clearly this is equivalent.

Let σ be any total ordering of the edges of G. Given two edges e and f , we say e is larger

than f if σ(e) > σ( f ). Similarly we say e is smaller than f , if the inequality is otherwise.
Recall, a spanning tree T of G is called safe with respect to σ if for any edge e < T , there exists
at least one edge f in the unique cycle in T + e such that f is larger than e. Let T (G, σ) be the
set of safe trees with respect to σ, and letA(G, q) be the set of acyclic orientations of G with q

being the unique sink.

Theorem 4.2. For any total order σ, there exists a bijection µσ : T (G, σ)→ A(G, q) .

Henceforth, we fix σ and do not write it as a subscript. Before we proceed, we make a few
more definitions and observations. An arborescence with root q is a directed spanning tree
with all vertices except the root having out-degree exactly 1, and the root having out-degree
0. Any spanning tree corresponds to a unique arborescence with root q and henceforth we will
use the terms interchangeably. Given a vertex i, we let Pi denote the unique directed path from
i to q. Given vertex i and j, we let meet(i, j) be the first vertex in the intersection of Pi and
P j. That is, the path from i to meet(i, j) and the path from j to meet(i, j) are disjoint except
at meet(i, j). If j lies on Pi, we let j be meet(i, j). Observe that for three vertices i, j, k, either
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meet(i, k) = meet( j, k), or meet(i, k) lies on Pi and meet( j, k) = meet(i, j), or meet( j, k) lies on
P j and meet(i, k) = meet(i, j). Given two vertices i and j, we will denote the largest edge in the
path from i to meet(i, j) as ei j and the largest edge from j to meet(i, j) as e ji. If j = meet(i, j),
we let e ji be the null edge.

We (abuse notation and) say i >σ j if ei j is larger than e ji. We will also define eii to be a null
edge. Note that if i >σ j and j >σ k, then going over the three possibilities of meet(i, k) we see
that i >σ k. Thus >σ is transitive and induces a total ordering of vertices. We say i dominates

j, if i >σ j. It is instructive to note that i dominates all vertices in Pi.

We now describe a mapping µ from all arborescences with root q to acyclic orientations
with unique sink q. We will prove that distinct safe trees lead to distinct arborescences. This
proves that the mapping µ restricted to safe trees is one-to-one. Furthermore, given an acyclic
orientation, we describe a procedure π which takes an acyclic orientation and returns a safe
tree. Moreover, for any orientation O ∈ A(G, q), we have µ(π(O)) = O. This shows that µ is
onto and thus it is a bijection.

Arborescence to Acyclic Orientation (µ): Given an arborescence, orient an edge (i, j) as i

to j if i >σ j, or vice-versa. By the transitivity of >σ it is clear that the orientation is acyclic.
Also every vertex dominates the root which therefore is the unique sink. We will call an ori-
entation so obtained as one induced by the arborescence. The following lemma will show that
two safe arborescences cannot lead to the same orientation.

Lemma 4.3. Let T1 and T2 be two distinct safe arborescences and O1 = µ(T1) and O2 = µ(T2).
Then O1 , O2.

Proof. We prove the contrapositive: suppose O1 = O2 = O, then we show that T1 = T2.
Consider the trees rooted at q (note that q is the unique sink of O) with edges directed towards
q. We now show that for each vertex of the graph:

(*) The unique out-neighbor in T1 is the same as that in T2 which will imply that both trees are
the same.

Since O is acyclic with a unique sink, the vertices V can be decomposed as V = (q =: S 0 ∪

S 1 ∪ ... ∪ S r) for some r ≥ 1, where S i is the set of vertices which are sinks in the digraph
G \

⋃i−1
`=0 S `. Let S i be the first set (with the least i) to contain a vertex violating (*). Let this

vertex be denoted i (abusing notation). Let (i, j) and (i, k) be the unique out-neighbors of i

in T1 and T2 respectively, with j , k, j ∈ S j and k ∈ S k (again abusing notation). Observe
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that j, k < i (that is, S j, S k precede S i), by the nature of the decomposition, and the fact that
O = µ(T1) and O = µ(T2).

Now consider the undirected cycle using the edges (i, j), (i, k) and the unique paths, P j from
j to q and Pk from k to q. Observe that both P j and Pk are contained in T1 and T2, by the choice
of i. Also note that the largest edge in this cycle must be either on P j or on Pk, since both T1

and T2 are safe! We now get a contradiction – if the largest edge is on P j, then our definition
of µ demands that (i, j) be oriented from j to i in T1; similarly if it is on Pk, then the edge (i, k)
be oriented from k to i in T2. �

Acyclic Orientations to Safe Trees(π): Now we describe a procedure to get a safe tree from
an acyclic orientation O with single sink q. Let d(v) denote the out-degree of vertex v. Note
that d(q) = 0. For an edge oriented i to j, we say j is a out-neighbor of i and i is an in-neighbor
of j. At each step we maintain a set of labeled vertices X and an arborescence T spanning X.
We maintain the invariant that there is no edge from a vertex in X to a vertex in Y := V \ X,
(think of X as a large sink). Initially, X = {q}. Note that since the orientation is acyclic, at any
step there is at least one vertex u in Y which is a sink in the induced graph G[Y], that is, u has
no out-neighbors in Y . We pick one such u arbitrarily. Also, since there is a unique sink q,
this vertex u must have at least one out-neighbor in X. We add u to X and we connect u to the
arborescence T as follows.

Let Xu ⊆ X be the set of out-neighbors of u. Let x ∈ Xu be the vertex which dominates all
other vertices in Xu with respect to the current arborescence T . Let Wu ⊆ Xu be the subset of
all vertices v such that (u, v) >σ exv. That is, the edge (u, v) is larger than the largest edge in the
path from x to meet(x, v). Note that x ∈ Wu and thus Wu is non-empty. Connect u to the vertex
v with the largest (u, v) among all v in Wu. We end when X = V with an arborescence T .

Lemma 4.4. The arborescence T obtained at the end is a safe tree. Moreover, µ(π(O)) = O,

for O ∈ A(G, q).

Proof. Consider an edge ( j, i) not in the tree. Note that at each step exactly one node is added
to the arborescence. Also note that for an arc oriented ( j, i) in O, i is added before j. Let X j

be the set of labeled vertices in the step when j is added to the arborescence. Note that i ∈ X j.
Suppose x ∈ X j was the dominator of X j and ( j, k) was the edge added at this step.

Observe that whenever the procedure adds a new vertex j, since it attaches itself to the
largest vertex in W j ⊆ X j, it dominates all the other vertices in the arborescence. This is
because ( j, k) >σ exk, that is, the largest edge in the path x to meet(x, k) = meet(x, j) and thus
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j dominates x and so every other vertex. Thus the tree T induces the same orientation O. It
remains to show that T is safe, that is, ( j, i) is not the largest edge in the cycle T + ( j, i).

If i ∈ W j, then by choice of k, ( j, k) >σ ( j, i) and thus ( j, i) is not the largest cycle in T + ( j, i).

If i < W j, this means ( j, i) < exi. That is, ( j, i) is smaller than the largest edge in the path from
x to meet(x, i). Also, by definition, ( j, k) > ex j that is, ( j, k) is larger than the largest edge in the
path from x to meet(x, k). Let the path from x to meet(x, i) be Qi and that from x to meet(x, k)
be Qk.

Now consider meet(i, k). If meet(i, k) does not lie on Px, then meet(x, i) = meet(x, k). Thus,
( j, k) >σ ( j, i). If meet(i, k) lies on Px, then it must be meet(x, i) or meet(x, k). If the latter, then
Qi ⊆ Qk, and therefore ( j, k) >σ ( j, i). If meet(i, k) = meet(x, i), then Qk ⊆ Qi. Either the largest
edge in Qi lies in Qk and we are done as before; Or, the largest lies in Qi \Qk, which lies in the
cycle formed in T + ( j, i). Thus, ( j, i) is smaller than the largest edge in the cycle of T + ( j, i),
completing the proof. �

4.2. Extension to a bijection of G-Parking Functions and Spanning Trees. In this section
we generalize the above bijection between maximal parking functions (or equivalently acyclic
orientations with unique sink) and safe trees to a bijection between G-parking functions and
all spanning trees of G which preserves the bijection between maximal parking functions and
safe trees. We use the definitions of the previous section and make a few more definitions and
claim below before demonstrating the bijection.

Given an arborescence T spanning only a subset of vertices X ⊆ V , and a vertex u < X,
we make a few definitions and observations which will be useful in our bijection. Let Γ(u)
be the neighbors of u and let Xu := Γ(u) ∩ X. We now describe an order on the vertices Xu

(which could be different from the total order of the previous paragraph, but is related), which
we call the power order of Xu. Intuitively, given two neighbors v and w of u in Xu, if v is more
powerful than w, then in the tree T + (u, v), u would dominate w and the edge (u,w) doesn’t
form a broken circuit with T + (u, v). Moreover, in the tree T + (u,w), either v dominates u or

the edge (u, v) forms a broken circuit with T + (u,w).

Let x be the vertex in Xu which dominates all other vertices in Xu with respect to the current
arborescence T . Let Wu ⊆ Xu be the subset of all vertices v such that (u, v) >σ exv. That is, the
edge (u, v) is larger than the largest edge in the path from x to meet(x, v). Note that x ∈ Wu and
thus Wu is non-empty. Let v be such that (u, v) is largest among all v in Wu. Call v the most
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powerful element of Xu. Delete v from Xu and repeat till one gets an order on all vertices of Xu.
We call this order the power order w.r.t T . In Figure 1 we give an illustrative example.

q

a b

c d

1

2

3

4

5

67

8

F 1. The numbers on the edges correspond to the σ value. The dark edges
form the tree T and u < T . Note that a >σ b >σ d >σ c in T . However, the
power order of Xu = {a, b, c, d} is as follows. Firstly, x = a and Wu = {a, b}.
Since (u, b) is bigger, b is the most powerful. Second powerful is a. After that
x = d and Wu = {c, d}, and thus the complete power order is (b, a, c, d).

Claim 4.5. Given a tree T and a vertex u < T with neighbors Xu in T , and two vertices v and w

in Xu. If v is more powerful than w, then u dominates w in the tree T + (u, v) and (u,w) doesn’t

form a broken circuit with T + (u, v). In the tree T + (u,w), either v dominates u or (u, v) forms

a broken circuit with T + (u,w).

Proof. Consider the time when the power order of v is determined. Let x be the dominator at
that stage and let Xu the set of neighbors of u remaining. Note w ∈ Xu. Either v ∈ Wu or v = x

and Wu is empty. If the former, (u, v) is larger than exv and thus in T + (u, v), u dominates x

which dominates w. Moreover (u,w) is either smaller than (u, v) if w ∈ Wu, or smaller than exw

which is smaller than euw since u dominates x. In any case, (u,w) doesn’t form a broken circuit
in T + (u, v). Also, in T + (u,w), (u, v) forms a broken circuit since it is larger than the largest
edge from v to w.

If the latter, then u dominates w in T + (u, v) since v = x dominates w in T . Also since Wu

is empty, the edge (u,w) is smaller than evw implying (u,w) doesn’t form a broken circuit in
T + (u, v). Also, in T + (u,w), v dominates u since (u,w) is smaller than evw. �

Now we are ready to present the next theorem which gives the desired bijection between
G-parking functions and spanning trees of G. Let T (G) be the set of all spanning trees of G.
Recall that T (G, σ) was the set of safe spanning trees with respect to σ.
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Theorem 4.6. There exists a bijection π : P(G, q)→ T (G) such that for all f ∈ P(G, q) which

is maximal, π( f ) is a safe tree.

As in the proof of Theorem 4.1, we describe mappings µ : T (G) → P(G, q) and π :
P(G, q) → T (G) and show that for any parking function f , µ(π( f )) = f (Lemma 4.10) and
for any spanning tree T , π(µ(T )) = T (Lemma 4.11 ). Furthermore we show that for a tree T ,
µ(T ) is a maximal parking function iff T is safe (Proposition 4.7). This completes the proof of
Theorem 4.6

Spanning Trees to Parking Functions (µ): Given a spanning tree T , let E′ be the subset of
edges not in T which form a broken circuit with T . Delete E′ from E. Direct the edges of T

with q as the unique source – that is, all vertices except q have an out-degree of 1 and q has
an out-degree of 0. Given this arborescence, for any undirected edge (i, j) in E \ E′, orient it
as (i, j) if i >σ j, or ( j, i) if j >σ i. This gives di-graph D. The parking function f := µ(T ) is
defined as f (v) = out-degreeD(v) − 1 in the orientation of the edges of E \ E′.

Proposition 4.7. f := µ(T ) is a maximum parking function iff T is a safe tree.

Proof. Note that if T is safe, E′ is empty and therefore all the edges are oriented. Thus∑
v f (v) = |E| − |V | and by Proposition 2.3, f is a maximal parking function. On the other

hand if T is not safe, then E′ is not empty and thus
∑

v f (v) < |E| − |V | implying f is not a
maximal parking function. �

Parking Functions to Spanning Trees (π): Given a valid parking function, we use a modifica-
tion of Dhar’s algorithm to obtain the spanning tree. We maintain a set of vertices Xi connected
via an arborescence Ti, with X0 initialized to {q} and T0 is ∅. At each step we add one vertex to
Xi and one edge to Ti. In the end we get Xn−1 = V and Tn−1 is the spanning tree returned. We
describe the i + 1th step. Let Γ(v) denote the neighbors of v.

(1) Let S i+1 := {v ∈ V \ Xi : |Γ(v) ∩ Xi| > f (v)}.
(2) For every u ∈ S i+1, Xu := Γ(u) ∩ Xi and let M(u) be the (|Xu| − f (u))th vertex in the

power order of Xu with respect to T . Let Yu be the vertices in Xu more powerful than
M(u) and Eu be the set of |Xu| − f (u) − 1 edges of the form (u, v) where v ∈ Yu.

(3) Note that adding all edges of the form (u,M(u)) to Ti gives a new tree T ′. In T ′, let u

be the vertex in S i+1 which is dominated by all other vertices in S i+1 with respect to T ′.
Add u to get Xi+1 and the edge (u,M(u)) to get Ti+1.
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Claim 4.8. Given a parking function f , let the vertices be added in order {q = u0, u1, · · · , un−1}.

That is Xi := {u0, · · · , ui}. Then with respect to the tree Ti, ui dominates ui−1 which dominates

ui−2 and so on.

Proof. The proof is by induction. At stage i, let S i be the set of vertices as defined above.
Suppose ui is added at this stage. We will be done if we show ui dominates ui−1.

Two cases arise: If ui−1 is not a neighbor of ui, then ui must have been in S i−1 as well implying
ui dominated ui−1 in T ′i−1 and since M(ui) doesn’t change, dominates ui−1 in Ti as well.

If ui−1 is a neighbor of ui, then either |Xui | = f (ui) + 1 and ui connects to the most powerful
of its neighbors in Xui and thus dominates ui−1 which is in Xui . Or, |Xui | > f (ui) + 1, which once
again implies ui was in S i−1 and moreover, either M(ui) becomes ui−1, or still remains more
powerful than ui−1. In any case, ui dominates ui−1 in Ti. �

Claim 4.9. For any vertex u, the set of edges Eu are precisely the set of edges from u to Xu

which form broken circuits with T .

Proof. Consider vertex u connecting to vertex w in Xu. From the first part of Claim 4.5 we see
that the edges not in Eu do not form broken circuits. Let (u, v) be an edge in Eu. Since v is more
powerful than w, from the second part of Claim 4.5 we see either (u, v) forms a broken circuit
with T or v dominates u in T . The second possibility is precluded by Claim 4.8. �

Lemma 4.10. For any parking function f , we have µ(π( f )) = f .

Proof. Let T be the arborescence formed by rooting the tree π( f ) at q. Fix a vertex u. From
Claim 4.9 we have that µ will first remove all the edges in Eu. After the removal of these edges,
u will dominate the remaining f (u) + 1 vertices in Xu and thus its out-degree will be that. Thus,
µ(π( f ))(u) = out-degreeD(u) − 1 = f (u). �

Lemma 4.11. For any spanning tree Z, we have π(µ(Z)) = Z.

Proof. Let f := µ(Z). Abuse notation and call the arborescence obtained by rooting Z at q,
also Z. Let E′ be the set of edges which form broken circuits with Z. Let D be the di-graph
obtained by orienting the edges of E \ E′ with respect to Z. Given a subset of vertices X, let
Z[X] be the induced sub-forest of X.

The proof proceeds by induction on the stages of the algorithm computing π. We assume
at stage i, the current tree of the algorithm, T , is a subtree of the tree Z. That is T = Z[Xi].
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We also assume that for every vertex in Xi, all its out-neighbors in D are also in Xi. These are
vacuously true at stage 0. We now show that at stage i + 1 a vertex connects to tree T using an
edge of Z and all its out-neighbors of D are in Xi.

Consider vertices in V \ Xi. At least one of these vertices v must have all its f (v) + 1 out-
neighbors of D in Xi for otherwise we would get a cycle in D. Call this set of vertices S . Note
that Z[Xi ∪ S ] is connected as the vertices in X can only connect to Z using some edge of D.
Let u∗ ∈ S be the vertex which is dominated by all other vertices in S in Z[Xi ∪ S ]. Let (u∗,w∗)
be the edge in Z with w∗ ∈ Xi. We claim that the algorithm which computes π also picks u∗ in
this stage and w∗ is M(u).

Note that S ⊆ S i+1 since each vertex in S has at least f (u) + 1 neighbors in Xi. In fact, we
show for every vertex u ∈ S , the corresponding w in Xi where (u,w) ∈ Z is in fact M(u). Call the
set of these f (u) + 1 out-neighbors of u in Xi, Yu. Observe that any edge of the form (u, v) with
v < Yu must form a broken cycle with Z. This is because these edges are not directed towards
v and cannot be directed towards u by the induction hypothesis. Since they form broken cycles
with Z, these |Xu| − |Yu| vertices must be more powerful than w with respect to the arborescence
Z restricted to vertices of Xi, that is T by the induction hypothesis. This follows from the
definition of power. Moreover, w must be powerful than all other vertices of Yu with respect to
T since u dominates all these vertices. Thus w is the (|Xu| − |Yu| + 1)th powerful vertex in Xu

with respect to T , that is, w = M(u).

We will be done if we show any vertex u′ ∈ S i+1 \Q dominates some vertex in S with respect
to Z. If this is the case, then the algorithm would choose the vertex which is dominated by all
vertices in S i+1 and it has to be the vertex u∗. But this is true since u′ has some out-neighbor
of D in V \ Xi – a path following argument shows we must reach a vertex v ∈ S from u′ using
edges in D. In other words, u′ dominates v with respect to Z. �

In Figure 2 below, we give an example of the bijection on a simple 4-vertex 5-edge graph.

We end this section by using the relation between parking function and orientations to prove
a property about the poset formed by parking functions. Recall given two parking functions f

and g, we say that f ≺ g iff f (v) ≤ g(v) for all vertices v ∈ V . Also recall the parking function
f ∧g defined as ( f ∧g)(v) := min( f (v), g(v)). Finally, recall dom( f ) := {g a parking function :
g ≺ f }.

Lemma 4.12. Given a non-maximum parking function g, let Fg be the set of maximum parking

functions that dominate g. Then, g =
∧

f∈Fg
f .
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 Parking Function
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Spanning Tree

F 2. We illustrate our bijection on the graph on the top left corner. The
numbers on the edges is the ordering σ. The graph has 8 spanning trees and they
are shown beside the graph. The numbers on each spanning tree correspond to
the 8 possible parking functions of the graph. It is instructive to note that the
second row of spanning trees correspond to safe trees w.r.t to σ and correspond
to maximum parking functions – note the sum of the numbers is 1 for the bottom
4 trees. We now take the first tree and show how it leads to the parking function
via the function µ and then how vice-versa is obtained via the function π. µ
first recognizes the edges which form broken circuits with T – the dotted edge
is the only one in this case. Then it orients the tree edges towards the root a. It
orients the edge (c, d) towards d because c >σ d w.r.t T . After the orientation,
the parking function is found by subtracting 1 from the out-degrees. Going from
the parking function to the tree, the dark vertices denote the set Xi at each step,
while the dotted lines enclose the set S i. When S i has size more than 1 (when
it contains vertices {c, d}), it finds M(c) = b and M(d) = b according to the
power-order. It then chooses (d, b) since c dominates d in the tree with both
(c, b) and (d, b) added.

Proof. It is clear that any non-maximum parking function g is dominated by the meet of all
maximum parking functions which dominate it. The lemma claims that it is in fact exactly
equal to the meet. To show this, it suffices to show that for any v, there exists a parking
function f such that f (v) = g(v), f (u) ≥ g(u) for all u ∈ V and f (w) > g(w) for exactly one
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vertex w , v. Continuing this process, we get a maximum parking function which agrees with
g on v. Since this is true for all v, we are done.

To prove the above, note that from the bijection between parking functions and spanning
trees, we see that any parking function g uniquely corresponds to a mixed orientation of the
edges of G, where a mixed orientation has some edges directed and others undirected. More-
over, the directed edges induce a DAG.

Consider the mixed orientation with respect to g. Let D be the DAG induced by the set of
directed edges. Suppose there is an edge (u,w) which is not oriented where u and w are distinct
from v; then in D if there is a directed path from u to w, orient the edge from u to w, else orient
the edge from w to u. if there is no path either way, orient in any of the two ways. We still have
a mixed orientation where the directed edges are acyclic. Moreover, this increases the value of
parking function on exactly one of u or w, and keeps the value the same everywhere else.

Thus, the non-trivial case is when the only undirected edges are incident on v. Let (u, v)
be such an edge. Note that we do not want to increase g(v), that is, we want to orient (u, v)
without increasing v’s out-degree. In other words, we want to orient it from u to v. This is a
problem if and only if there is a path from v to u in D. If so, consider the longest such a path
P = (v,w, . . . , u), where w is the neighbor of v on P.

Note that apart from the edge (v,w), there is no path from v to w. If there were such a path,
it can not use vertices from P, for w “dominates” (in the DAG) all vertices in P other than v.
Thus, the path from v to w must use “new” vertices making P longer, and thus providing a
contradiction.

Therefore, we can flip (v,w) to (w, v) and not create any cycles. That is, the operation to
get f is to flip (v,w) to (w, v) and orient (v, u) from v to u. This only increases g(w) but keeps
everything else the same. �

5. P G  Qn-P F

Given two graphs G1 and G2, there is a standard notion of the Cartesian product G1�G2 of
the two graphs. Given a G1-parking function and a G2-parking function, we define below a
G1�G2-parking function in a natural way that is symmetric in G1 and G2.

Definition 5.1. Given G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product graph G1�G2 =

(V, E) is defined on the vertex set V = V1 × V2, using the edge set E = E′ ∪ E′′, where
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E′ =
{
{(u1, v), (u2, v)} : {u1, u2} ∈ E1 and v ∈ V2

}
, and E′′ =

{
{(u, v1), (u, v2)} : {v1, v2} ∈

E2 and u ∈ V1
}
.

It is easy to see from the definition that the number of vertices in G1�G2 is |V1| |V2|, and that
the number of edges is |V(G2)| |E(G1)| + |V(G1)| |E(G2)|.

5.1. Parking functions on Product graphs. While it seems hard to characterize parking
functions on G1�G2, by simply knowing those on G1 and on G2, the following result gives
an explicit way to construct a particular family of maximum parking functions on product
graphs.

Proposition 5.1. Let f1 ∈ P(G1; q1) and f2 ∈ P(G2; q2). Then f1� f2 ∈ P
(
G1�G2; (q1, q2)

)
,

where f1� f2(u, v) = f1(u) + f2(v) + 1, whenever u ∈ G1 and v ∈ G2.

Further, if f1 and f2 are maximum parking functions, then f1� f2 is a maximum parking

function.

Proof. Let f = f1� f2, G = G1�G2, and q = (q1, q2). To show that f ∈ P(G, q), once again
we make crucial use of Dhar’s marking algorithm; in particular, we will make use of the order
in which the vertices of G1 (and G2) are marked in verifying that f1 ∈ P(G1, q1) (and f2 ∈

P(G2, q2), respectively). Using these in turn, we order the vertices in G1�G2: let (u′, v′) <�
(u, v), if u′ is marked before u in G1, or if u = u′ and v′ is marked before v in G2. We now
prove that f is a valid parking function, by showing that the vertices of G1�G2 can be marked,
using Dhar, in precisely the order given by <�. We begin by noting that f (q) = f (q1, q2) =

f1(q1) + f2(q2) + 1 = −1. Now consider the vertices of G inductively, using the order given by
<�. By the time the vertex (u, v) is considered, observe that there are at least f (u) + f (v) + 2
neighbors of (u, v) that have already been marked, since they precede (u, v) in <�: indeed, at
least f (u)+1 neighbors of the form (u′, v) have been marked, (since the graph induced by fixing
the second coordinate v is simply G1), and similarly at least f (v)+1 neighbors of the form (u, v′)
have also been marked. Thus (u, v) can be assigned the value f (u, v) = f (u) + f (v) + 1, and
hence f is a G-parking function.

Now, suppose that f1 and f2 are maximum G1- and G2-parking functions respectively. Then,
we must show that f achieves the genus of g(G) minus one. This is easy to verify:

‖ f1� f2‖ = |V(G2)| ‖ f1‖ + |V(G1)| ‖ f2‖ + |V(G1)| |V(G2)|

= |V(G2)| |E(G1)| + |V(G1)| |E(G2)| − |V(G1)| |V(G2)|

= |E(G1�G2)| − |V(G1�G2)| = g(G1�G2) − 1.
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5.2. Qn-Parking Functions. A quintessential product graph is the n-dimensional cube Qn,
obtained by taking the product of an edge Q1 with itself n times. For the purpose of this
section, for integer n ≥ 1, we also view the n-cube Qn as the graph on 2n vertices, which may
conveniently be labeled by the 2n binary vectors of length n, and with edges between vertices
whose Hamming distance is one. We are interested in understanding the parking functions on
Qn with respect to the vertex q = (0, 0, . . . , 0).

Definition 5.2. For n = 1, the unique parking function f = f 1 on Q1 is canonical. For n > 1,

the parking function f n = f� f� · · ·� f︸         ︷︷         ︸
n times

, obtained using the product graph construction, is

defined as the canonical Qn-parking function. Further, if a Qn-parking function g is such that

there exists a bijection φ : V(Qn)→V(Qn) such that f (v) = g(φ(v)) for all v ∈ V(Qn), then we

say that g is semi-canonical.

Note that by Proposition 5.1, the canonical Qn-parking function is a maximum parking func-
tion, and hence the semi-canonical one is also a maximum.

Example 5.1. Not all maximal Qn-parking functions are semi-canonical. For instance, con-

sider the Q3-parking function f such that f (000) = −1, f (001) = 1, f (010) = 0, f (100) =

2, f (011) = 0, f (101) = 0, f (110) = 0, f (111) = 2. It is easy to verify that f is a Q3-parking

function, but f is not semi-canonical. Since, ‖ f ‖ = 4 = |E| − |V |, f is maximum (and thus

maximal).

Recall the partial order on parking functions, and the notion of dom( f ) = {g ∈ P(G, q) : g ≺

f }, for a parking function f ∈ P(G, q).

Theorem 5.2. Let f n denote the canonical Qn-parking function. Then f n(v) = wgt(v) − 1,

where wgt(v) is the Hamming weight (the number of 1’s in the binary representation) of the

vertex v ∈ V(Qn). Consequently, if f is semi-canonical, then

|dom( f )| =
n∏

k=2

k(n
k).

Proof. The proof is by an easy induction on n ∈ Z+. The base case is clear, since f 1 takes the
values −1, 0. For the induction step, for n ≥ 1, write f n+1 = f n� f 1, which by Proposition 5.1
implies that, for u ∈ V(Qn) and v ∈ V(Q1) = {0, 1},

f n+1(u, v) = f n(u) + f 1(v) + 1 .
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Thus for 0 ≤ k ≤ n, the value k can be obtained in f n+1 either by taking a k from f n and adding
a zero to it (through, f 1(0) + 1 = −1 + 1), or by taking a k − 1 from f n and adding a one to it
(through, f 1(1) = 0 + 1). By the induction hypothesis, the number of k’s is(

n
k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
,

completing the induction step. Also note that, by definition, a semi-canonical parking function
also has the same distribution of integers.

To complete the proof of the theorem, recall by Proposition 2.2, that for any v ∈ V(Qn)\{q},
if f (v) = k for k ∈ Z≥1, then for g ≺ f , we may have g(v) = 0, 1, . . . k; this implies that there
are k + 1 possible values for such a g with respect to v. Since 0 ≤ k ≤ n and each value in the
range of f is independent with respect to obtaining a dominated function g, we have that

|dom( f )| =
n∏

k=2

k(n
k).

Remark 5.1. Note that it can directly be seen that f is a Qn-parking function, when f is

defined as f (v) = wgt(v) − 1. Using Dhar’s algorithm, starting with q = (0, 0, . . . , 0), we may

proceed by marking vertices level by level (in the Boolean lattice ): Every vertex v in level k has

precisely k down-neighbors in level k − 1, and they have all been marked, so v can be marked

and given value k−1. Thus there are precisely
(

n
k

)
vertices which obtain the value k−1, in such

a canonical parking function on Qn.

Example 5.2. Note that not every semi-canonical parking function is canonical – in satisfying

the level by level property described in Remark 5.1. For instance, consider the Q3-parking

function f such that f (000) = −1, f (010) = f (100) = f (101) = 0, f (001) = f (011) =

f (111) = 1, and f (110) = 2. It is easy to check that f is a Q3-parking function, semi-canonical,

but not canonical – since, for example, the value 2 is adjacent to a 0.

We hope the above remarks and examples indicate the difficulty in understanding the max-

imum parking functions on even a highly structured, symmetric graph such as the n-cube. As
far as we know, the number of maximum parking functions of Qn is known only for n ≤ 4. For
n = 2, 3, and 4, this number is 3, 133, and 3040575, respectively.
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6. D    

As mentioned in the introduction, in the context of chip-firing, the following notion was
introduced in [23].

Definition 6.1. Given a connected graph G, a function s : G → Z+ is called a diffuse state

if for every induced subgraph G[A] = (A, E(A)) ⊆ G, there exists some u ∈ A such that

deg(u)|A ≤ s(u). Further, let ‖s‖ :=
∑

v s(v).

Note the (complementary) similarity with the definition of a parking function, by observing
that deg(u)|A ≤ s(u) is equivalent to deg(u) − s(u) ≤ deg(u)|Ac . However, we have no special
vertex such as q. For chip-firing purposes, s(v) may be thought of as the number of chips on v,
thus ‖s‖ denotes the total number of chips in the graph.

First consider the following algorithm which constructs an acyclic orientation, by using a
given diffuse state s with |E(G)| chips. We will make use of this in proving the necessary
bijection of this section.

Step 1. Since the state s is diffuse, we can find a vertex v ∈ V(G) such that deg(v)|G =

deg(v) ≤ s(v).

Step 2. Orient all of the edges incident to v outward.

Step 3. Delete v (and all of its incident edges).

Step 4. The new graph is diffuse since it is a subgraph of G, so we can repeat Steps 1-3 until
all edges of the graph are oriented.

Note that this process gives an acyclic orientation since we cannot orient edges into a vertex
which has out edges since this vertex has been deleted from the graph.

Lemma 6.1. If s is a diffuse state on graph G with ‖s‖ = |E(G)|, then there is a vertex v with

s(v) = 0. For every diffuse state s, the set {v : s(v) = 0} is an independent set in G.

Proof. The above algorithm which repeatedly removes vertices, removes at least as many chips
as the edges at each step. Before the last vertex, all edges (hence all |E(G)| chips) must have
been removed, which means that the last vertex can has zero chips. For the second part, if
s(u) = s(v) = 0, and u, v ∈ E(G) then the set A = {u, v} violates the diffuse property.

With a similar proof, it can also be shown that there exists a vertex w such that s(w) = deg(w),
under the hypothesis of the above lemma.
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Theorem 6.2. There is a bijection between the set D(G) of diffuse states with |E(G)| chips and

the set AO(G) of acyclic orientations of a connected graph G.

Proof. Let E(G) = m. The proof is based on two injections between the sets, going in each
direction. First, given an acyclic orientation O ∈ AO(G), define the nonnegative function
s = sO by letting s(v) be the out-degree of v in the orientation O. Clearly, the mapping is one-
one, since the out-degree sequence uniquely determines an acyclic orientation; also ‖s‖ = m,
since the sum of out-degrees equals the number of edges. To see that s is diffuse, simply
observe that, each induced subgraph G[A] ⊆ G has a (local) source y ∈ A when restricted to the
acyclic orientation induced on A; such a source y satisfies s(y) ≥ deg(y)|A, since the out-degree
of y is at least the degree deg(y)|A.

For an injection in the other direction, we make use Lemma 6.1. Given a diffuse state s with
m chips, we construct an acyclic orientation, by constructing a DAG: Lemma 6.1 guarantees
the existence of sink(s); so we construct the orientation, by (i) repeatedly removing the current
set of sinks, and (ii) subtracting a chip from each in-neighbor of a removed sink. It is easy to
see that the updated function s at each step is still a diffuse state on the remaining graph. Note
that this construction is one-one, since the DAG representation would come out differently, if
s,s’ are different diffuse states – this can be seen by considering the first time the current sets of
sinks differ, when we start with s versus s′; since the underlying graph is the same, there must
be such a time whenever s , s′.

Remark 6.1. Thanks again to an anonymous referee of [6], we learnt the following: that diffuse

states are also in 1-1 correspondence with the critical configurations of the chip-firing game of

Björner-Lovász-Shor [9], and that the first part of the above proof appears as Theorem 3.3, part

(b) in [9]. In addition, it is easy enough to go between the above theorem and Theorem 3.1:

simply add a new vertex q adjacent to every vertex in G and obtain a new graph Ĝ; then

Ĝ-parking functions (with respect to q, say) correspond to diffuse states in G, and acyclic

orientations with a unique source at q in Ĝ correspond to acyclic orientations of G.

7. C R

In addition to the questions mentioned in the previous sections, several challenging problems
remain open. Given an arbitrary graph G, it is a classical open problem in the topic of Markov
chain Monte Carlo (MCMC) algorithms [24], to efficiently generate an acyclic orientation
uniformly at random from the set of all such orientations. Due to the observations above, a
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closely related problem would be to generate at random an acyclic orientation with a uniquely
identified sink (or source), or equivalently, to sample uniformly from the set of safe spanning
trees of G. The MCMC technique suggests the following natural approach to this problem:
it is well known (see for example, [16, 17]) that the so-called bases exchange walk provides
an efficient way to sample uniformly from the set of all spanning trees of a given graph G.
However it remains to be seen whether (and how) restricting such a random walk to the set
of safe trees affects the mixing time of the walk – the time by which the walk converges to its
steady state distribution, uniform on the set of safe trees. Given that the exact enumeration of
the number of safe trees of Qn is also open, an interesting first step might be to analyze such a
walk on the trees of Qn.

Independent of the above approach, other ways of providing asymptotically accurate esti-
mates, for large n, of the number (or even the logarithm of the number) of maximum parking
functions on Qn , remains interesting and presumably a challenging exercise.
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