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Abstract

In the capacitated survivable network design problem (Cap-SNDP), we are given an undirected
multi-graph where each edge has a capacity and a cost. The goal is to find a minimum cost subset of
edges that satisfies a given set of pairwise minimum-cut requirements. Unlike its classical special case
of SNDP when all capacities are unit, the approximability of Cap-SNDP is not well understood; even in
very restricted settings no known algorithm achieves a o(m) approximation, where m is the number of
edges in the graph. In this paper, we obtain several new results and insights into the approximability of
Cap-SNDP.

We give an O(log n) approximation for a special case of Cap-SNDP where the global minimum cut
is required to be at least R. (Note that this problem generalizes the min-cost λ-edge-connected subgraph
problem, which is the special case of our problem when all capacities are unit.) Our result is based
on a rounding of a natural cut-based LP relaxation strengthened with knapsack-cover (KC) inequalities.
Our technique extends to give a similar approximation for a new network design problem that captures
global minimum cut as a special case. We then show that as we move away from global connectivity,
even for the single pair case (that is, when only one pair (s, t) has positive connectivity requirement),
this strengthened LP has Ω(n) integrality gap.

We also consider a variant of Cap-SNDP in which multiple copies of an edge can be bought: we give
anO(log k) approximation for this case, where k is the number of vertex pairs with non-zero connectivity
requirement. This improves upon the previously known O(min{k, logRmax})-approximation when
Rmax is large; here Rmax is the largest requirement. On the other hand, we observe that the multiple
copy version of Cap-SNDP is Ω(log log n)-hard to approximate even for the single-source version of the
problem.
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1 Introduction

In this paper we consider the capacitated survivable network design problem (Cap-SNDP). The input con-
sists of an undirected n-vertex multi-graph G(V,E) and an integer requirement Rij for each unordered
pair of nodes (i, j). Each edge e of G has a cost c(e) and an integer capacity u(e). The goal is to find
a minimum-cost subgraph H of G such that for each pair of nodes i, j the capacity of the minimum-cut
between i and j in H is at least Rij . This generalizes the well-known survivable network design problem
(SNDP) in which all edge capacities are 1. SNDP already captures as special cases a variety of fundamental
connectivity problems in combinatorial optimization such as min-cost spanning tree, min-cost Steiner tree
and forest, as well as min-cost λ-edge-connected subgraph; each of these problems has been extensively
studied on its own and several of these special cases are NP-hard and APX-hard to approximate. Jain, in an
influential paper [20], obtained a 2-approximation for SNDP via the standard cut-based LP relaxation using
the iterated rounding technique.

Although the 2-approximation for SNDP mentioned above has been known since 1998, the approxima-
bility of Cap-SNDP has essentially been wide open even in very restricted special cases. Similar to SNDP,
Cap-SNDP is motivated by both practial and theoretical considerations. These problems find applications
in the design of resilient networks such as in telecommunication infrastructure. In such networks it is often
quite common to have equipment with different discrete capacities; this leads naturally to design problems
such as Cap-SNDP. At the outset, we mention that a different and somewhat related problem is also referred
to by the same name, especially in the operations research literature. In this version the subgraph H has to
support simultaneously a flow of Rij between each pair of nodes (i, j); this is more closely related to mul-
ticommodity flows and buy-at-bulk network design. Our version is more related to connectivity problems
such as SNDP.

As far as we are aware, the version of Cap-SNDP that we study was introduced (in the approximation
algorithms literature) by Goemans et al. [15] in conjunction with their work on SNDP. They made several
observations on Cap-SNDP: (i) Cap-SNDP reduces to SNDP if all capacities are the same, (ii) there is an
O(min(m,Rmax)) approximation where m is the number of edges in G and Rmax = maxij Rij is the
maximum requirement, and (iii) if multiple copies of an edge are allowed then there is an O(logRmax)-
approximation. We note that in the capacitated case Rmax can be exponentially large in n, the number
of nodes of the graph. Carr et al. [5] observed that the natural cut-based LP relaxation has an unbounded
integrality gap even for the graph consisting of only two nodes s, t connected by parallel edges with different
capacities. Motivated by this observation and the goal of obtaining improved approximation ratios for Cap-
SNDP, [5] strengthened the basic cut-based LP by using knapsack-cover inequalities. (Several subsequent
papers in approximation algorithms have fruitfully used these inequalities.) Using these inequalities, [5]
obtained a β(G)+1 approximation for Cap-SNDP where β(G) is the maximum cardinality of a bond in the
underlying simple graph: a bond is a minimal set of edges that separates some pair of vertices with positive
demand. Although β(G) could be Θ(n2) in general, for certain topologies — for instance, if the underlying
graph is a line or a cycle — this gives constant factor approximations.

The above results naturally lead to several questions. What is the approximability of Cap-SNDP? Should
we expect a poly-logarithmic approximation or even a constant factor approximation? If not, what are
interesting and useful special cases to consider? And do the knapsack cover inequalities help in the general
case? What is the approximability of Cap-SNDP if one allows multiple copies of edges? Does this relaxed
version of the problem allow a constant factor approximation?

In this paper we obtain several new positive and negative results for Cap-SNDP that provide new insights
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into the questions above.

1.1 Our Results

We first discuss results for Cap-SNDP where multiple copies are not allowed. We initiate our study by
considering the global connectivity version of Cap-SNDP where we want a min-cost subgraph with global
min-cut at least R; in other words, there is a “uniform” requirement Rij = R for all pairs (i, j). We refer to
this as the Cap-R-Connected Subgraph problem; the special case when all capacities are unit corresponds
to the classical minimum cost λ-edge-connected (spanning) subgraph problem, which is known to be APX-
hard [13]. We show the following positive result for arbitrary capacities.

Theorem 1.1. There is a randomized O(log n)-approximation algorithm for the Cap-R-Connected Sub-
graph problem. Moreover, for any γ ≥ 1, there is a randomized O(γ log n)-approximation algorithm with
running time nO(γ) for “nearly uniform” Cap-SNDP when all pairwise requirements are in [R, γR].

To prove Theorem 1.1, we begin with a natural LP relaxation for the problem. Almost all positive results
previously obtained for the unit capacity case are based on this relaxation. As remarked already, this LP has
an unbounded integrality gap even for a graph with two nodes (and hence for Cap-R-Connected Subgraph).
We strengthen the relaxation by adding the valid knapsack cover inequalities. Although we do not know of
a polynomial time algorithm to separate over these inequalities, following [5], we find a violated inequality
only if the current fractional solution does not satisfy certain useful properties. Our main technical tool both
for finding a violated inequality and subsequently rounding the fractional solution is Karger’s theorem on
the number of small cuts in undirected graphs [21].

We believe the approach outlined above may be useful in other network design applications. As a con-
crete illustration, we use it to solve an interesting and natural generalization of Cap-R-Connected Subgraph,
namely, the k-Way–R-Connected Subgraph problem. The input consists of (k − 1) integer requirements
R1, . . . Rk−1, such that R1 ≤ R2 ≤ . . . ≤ Rk−1. The goal is to find a minimum-cost subgraph H of G such
that for each 1 ≤ i ≤ k − 1, the capacity of any (i + 1)-way cut of G is at least Ri.1 It is easy to see that
Cap-R-Connected Subgraph is precisely the k-Way–R-Connected Subgraph, with k = 2. Note that the k-
Way–R-Connected Subgraph problem is not a special case of the general Cap-SNDP as the cut requirements
for the former problem are not expressible as pairwise connectivity constraints. Interestingly, our techniques
for Cap-R-Connected Subgraph can be naturally extended to handle the multiway cut requirements, yielding
the following generalization of Theorem 1.1.

Theorem 1.2. There is a randomized O(k log n)-approximation algorithm for the k-Way–R-Connected
Subgraph problem with nO(k) running time.

We remark that even for the unit-capacity case of this problem, it is not clear how to obtain a better ratio
than that guaranteed by the above theorem. We discuss this further in Section 2.4.

Once the pairwise connectivity requirements are allowed to vary arbitrarily, Cap-SNDP seems to become
distinctly harder. Surprisingly, the difficulty of the general case starts to manifest even for the simplest
representative problem in this setting, where there is only one pair (s, t) with Rst > 0; we refer to this as
the single pair problem. The only known positive result for this seemingly restricted case is a polynomial-
factor approximation that follows from the results in [15, 5] for general Cap-SNDP. We give several negative

1An i-way cut C of a graph G(V,E) is a partition of its vertices into i non-empty sets V1, . . . , Vi; we use δ(C) to denote the set
of edges with endpoints in different sets of the partition C. The capacity of an i-way cut C is the total capacity of edges in δ(C).
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results to suggest that this special case may capture the essential difficulty of Cap-SNDP. In particular, we
start by observing that the LP with knapsack cover inequalities has an Ω(n) integrality gap even for the
single-pair problem.2 Next we show that the single pair problem is Ω(log logn)-hard to approximate.

Theorem 1.3. The single pair Cap-SNDP problem cannot be approximated to a factor better than Ω(log logn)
unless NP ⊆ DTIME(nlog log logn).

The above theorem is a corollary of the results in Chuzhoy et al. ’s work on the hardness of related
network design problems [9]. For completeness, we provide a brief proof in Section 3.1.

Allowing Multiple Copies: Given the negative results above for even the special case of the single-pair
Cap-SNDP, it is natural to consider the relaxed version of the problem where multiple copies of an edge
can be chosen. Specifically, for any integer α ≥ 0, α copies of e can be bought at a cost of α · c(e) to
obtain a capacity α ·u(e). In some applications, such as in telecommunication networks, this is a reasonable
model. As we discussed, this model was considered by Goemans et al. [15] who gave an O(logRmax)
approximation for Cap-SNDP. This follows from a simple O(1) approximation for the case when all re-
quirements are in {0, R}. The advantage of allowing multiple copies is that one can group request pairs
into classes and separately solve the problem for each class while losing only the number of classes in the
approximation ratio. For instance, one easily obtains a 2-approximation for the single pair problem even in
directed graphs, in contrast to the difficulty of the problem when multiple copies are not allowed. Note that
this also implies an easy 2k approximation where k is the number of pairs with Rij > 0. We address the
approximability of Cap-SNDP with multiple copies of edges allowed. When Rmax is large, we improve the
min{2k,O(logRmax)}-approximation discussed above via the following.

Theorem 1.4. In undirected graphs, there is an O(log k)-approximation algorithm for Cap-SNDP with
multiple copies, where k is the number of pairs with Rij > 0.

Both our algorithm and analysis are inspired by the O(log k)-competitive online algorithm for the
Steiner forest problem by Berman and Coulston [4], and the subsequent adaptation of these ideas for the
priority Steiner forest problem by Charikar et al. [7]. However, we believe the analysis of our algorithm is
more transparent (although it gets weaker constants) than the original analysis of [4].

We complement our algorithmic result by showing that the multiple copy version is Ω(log logn)-hard to
approximate. This hardness holds even for the single-source Cap-SNDP where we are given a source node
s ∈ V , and a set of terminals T ⊆ V , such that Rij > 0 iff i = s and j ∈ T . Observe that single-source
Cap-SNDP is a simultaneous generalization of the classical Steiner tree problem (Rij ∈ {0, 1}) as well as
both Cap-R-Connected Subgraph and single-pair Cap-SNDP.

Theorem 1.5. In undirected graphs, single source Cap-SNDP with multiple copies cannot be approximated
to a factor better than Ω(log logn) unless NP ⊆ DTIME(nlog log logn).

The above theorem, like Theorem 1.3, follows easily from the results of [9] and is sketched in Sec-
tion 3.1. We note that the hardness reduction above creates instances with super-polynomially (in k) large
capacities. For such instances, our O(log k)-approximation strongly improves on the previously known
approximation guarantees.

2In [5] it is mentioned that there is a series-parallel graph instance of Cap-SNDP such that the LP with knapsack-cover inequal-
ities has an integrality gap of at least bβ(G)/2c+1. However, no example is given; it is not clear if the gap applied to a single pair
instance or if β(G) could be as large as n in the construction.

3



Related Work: Network design has a large literature in a variety of areas including computer science
and operations research. Practical and theoretical considerations have resulted in numerous models and
results. Due to space considerations it is infeasible even to give a good overview of closely related work.
We briefly mention some work that allows the reader to compare the model we consider here to related
models. As we mentioned earlier, our version of Cap-SNDP is a direct generalization of SNDP and hence
is concerned with (capacitated) connectivity between request node pairs. We refer the reader to the survey
[22] and some recent and previous papers [15, 20, 14, 10, 11, 24] for pointers to literature on network
design for connectivity. A different model arises if one wishes to find a min-cost subgraph that supports
multicommodity flow for the request pairs; in this model each node pair (i, j) needs to routes a flow of
Rij in the chosen graph and these flows simultaneously share the capacity of the graph. We observe that
if multiple copies of an edge are allowed then this problem is essentially equivalent to the non-uniform
buy-at-bulk network design problem. Buy-at-bulk problems have received substantial attention; we refer the
reader to [8] for several pointers to this work. If multiple copies are not allowed, the approximability of this
flow version is not well-understood; for example, if the flow for each pair is only allowed to be routed on a
single path, then even checking feasibility of a given subgraph is NP-Hard since the problem captures the
well-known edge-disjoint paths and unsplittable flow problems. Andrews et al. [2] have recently considered
special cases of this problem with uniform capacities obtaining a polylogarithmic approximation while
allowing polylogarithmic congestion (that is, a few copies) on the chosen edges. A more general version of
the problem includes a ‘per-unit-flow’ cost fe for each edge; this problem is called the (capacitated) fixed
charge network flow (FCNF) problem. This problem has been studied extensively in the Operations Research
community (see [25, 19, 3, 26, 18] and references within), although most results have been computational
in nature. At this point, we should mention that in directed graphs, even the single pair Cap-SNDP problem
is hard to approximate to a factor 2log

1−ε n for any ε > 0 unless NP ⊆ DTIME(npoly logn) [12], and
so the interesting case (from a theoretical computer science viewpoint) is that of undirected graphs. The
k-Way–R-Connected Subgraph problem that we consider seems not to have been studied previously even
in the unit-capacity case.

Remark 1.6. There have been significant improvements on the hardness front since the publication of
the conference version of this article. Hajiaghayi et al. [16] show that the single pair Cap-SNDP prob-
lem in undirected graphs is as hard as the group Steiner tree problem, and therefore via [17], there is no
O(log2−ε n)-approximation for any ε > 0 unless NP ⊆ ZTIME(npoly logn). More recently, [6] show
that single pair Cap-SNDP in undirected graphs is as hard as in directed graphs, and therefore, via [12], it
is hard to approximate to within a factor 2log

1−ε n for any fixed ε > 0 unless NP ⊆ DTIME(npoly logn).

2 The Cap-R-Connected Subgraph problem

In this section, we prove Theorem 1.1, giving an O(log n)-approximation for the Cap-R-Connected Sub-
graph problem. For ease of exposition, we first describe the proof assuming each Rij = R; the extension to
the case when requirements are “nearly uniform” is deferred to Subsection 2.3. We start by writing a natural
linear program relaxation for the problem; the integrality gap of this LP can be arbitrarily large. To deal with
this, we introduce additional valid inequalities, called the knapsack cover inequalities, that must be satisfied
by any integral solution. We show how to round this strengthened LP, obtaining anO(log n)-approximation.
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2.1 The Standard LP Relaxation and Knapsack-Cover Inequalities

We assume without any loss of generality that the capacity of any edge is at mostR. For each subset S ⊆ V ,
we use δ(S) to denote the set of edges with exactly one endpoint in S. For a set of edges A, we use u(A) to
denote

∑
e∈A u(e). We say that a set of edges A satisfies (the cut induced by) S if u(A ∩ δ(S)) ≥ R. Note

that we wish to find the cheapest set of edges which satisfies every subset ∅ 6= S ⊂ V . The following is the
LP relaxation of the standard integer program capturing the problem.

min
∑
e∈E

c(e)xe (Std LP)

∀S ⊆ V,
∑
e∈δ(S)

u(e)xe ≥ R

∀e ∈ E, 0 ≤ xe ≤ 1

The following example shows that (Std LP) can have integrality gap as bad as R.

Example 1: Consider a graph G on three vertices p, q, r. Edge pq has cost 0 and capacity R; edge qr has
cost 0 and capacity R − 1; and edge pr has cost C and capacity R. To achieve a global min-cut of size at
least R, any integral solution must include edge pr, and hence must have cost C. In contrast, in (Std LP)
one can set xpr = 1/R, and obtain a total cost of C/R.

In the previous example, any integral solution in which the mincut separating r from {p, q} has size at
leastRmust include edge pr, even if qr is selected. The following valid inequalities are introduced precisely
to enforce this condition. More generally, let S be a set of vertices, andA be an arbitrary set of edges. Define
R(S,A) = max{0, R − u(A ∩ δ(S))} be the residual requirement of S that must be satisfied by edges in
δ(S) \ A. That is, any feasible solution has

∑
e∈δ(S)\A u(e)xe ≥ R(S,A). However, any integral solution

also satisfies the following stronger requirement∑
e∈δ(S)\A

min{R(S,A), u(e)}xe ≥ R(S,A)

and thus these inequalities can be added to the LP to strengthen it. These additional inequalities are re-
ferred to as Knapsack-Cover inequalities, or simply KC inequalities, and were first used by [5] in design of
approximation algorithms for Cap-SNDP.

Below, we write a LP relaxation, (KC LP), strengthened with the knapsack cover inequalities. Note
that the original constraints correspond to KC inequalities with A = ∅; we simply write them explicitly for
clarity.

min
∑
e∈E

c(e)xe (KC LP)

∀S ⊆ V,
∑
e∈δ(S)

u(e)xe ≥ R (Original Constraints)

∀A ⊆ E,∀S ⊆ V,
∑

e∈δ(S)\A

min(u(e), R(S,A))xe ≥ R(S,A) (KC-inequalities)

∀e ∈ E, 0 ≤ xe ≤ 1

The Linear Program (KC LP), like the original (Std LP), has exponential size. However, unlike the (Std LP),
we do not know of the existence of an efficient separation oracle for this. Nevertheless, as we show below,
we do not need to solve (KC LP); it suffices to get to what we call a good fractional solution.
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Definition 2.1. Given a fractional solution x, we say an edge e is nearly integral if xe ≥ 1
40 logn , and we

say e is highly fractional otherwise.

Definition 2.2. For any α ≥ 1, a cut in a graph G with capacities on edges, is an α-mincut if its capacity is
within a factor α of the minimum cut of G.

Theorem 2.3. [Theorems 4.7.6 and 4.7.7 of [21]] The number of α-mincuts in an n-vertex graph is at most
n2α. Moreover, the set of all α-mincuts can be found in O(n2α log2 n) time with high probability.

Given a fractional solution x to the edges, we let Ax denote the set of nearly integral edges, that is,
Ax := {e ∈ E : xe ≥ 1

40 logn}. Define û(e) = u(e)xe to be the fractional capacity on the edges. Let
S := {S ⊆ V : û(δ(S)) ≤ 2R}. A solution x is called good if it satisfies the following three conditions:

(a) The global mincut in G with capacity û is at least R, i.e. x satisfies the original constraints.

(b) The KC inequalities are satisfied for the set Ax and the sets in S. Note that if (a) is satisfied, then by
Theorem 2.3, |S| ≤ n4.

(c)
∑

e∈E c(e)xe is at most the value of the optimum solution to (KC LP).

Note that a good solution need not be feasible for (KC LP) as it is required to satisfy only a subset of
KC-inequalities. We use the ellipsoid method to get such a solution. Such a method was also used in [5].

Lemma 2.4. There is a randomized algorithm that computes a good fractional solution with high probabil-
ity.

Proof: We start by guessing the optimum value M of (KC LP) and add the constraint
∑

e∈E c(e)xe ≤ M
to the constraints of (KC LP). If the guessed value is too small, a good solution may not exist; however, a
simple binary search suffices to identify the smallest feasible value of M . With this constraint in place, we
will use the ellipsoid method to compute a solution that satisfies (a), (b), and (c) with high probability. Since
we do not know of a polynomial-time separation oracle for KC inequalities, we will simulate a separation
oracle that verifies condition (b), a subset of KC inequalities, in polynomial time. Specifically, we give a
randomized polynomial time algorithm such that given a solution x that violates condition (b), the algorithm
detects the violation with high probability and outputs a violated KC inequality. We now describe the entire
process.

Given a solution x we first check if condition (a) is satisfied. This can be done in polynomial time by
O(n) max-flow computations. If (a) is not satisfied, we have found a violated constraint. Once we have a
solution that satisfies (a), we know that |S| ≤ n4. By Theorem 2.3, the set S can be computed in polynomial
time with high probability. Thus we can check condition (b) in polynomial-time, and with high-probability
find a violating constraint for (b) if one exists. Once we have a solution that satisfies both (a) and (b),
we check if

∑
e∈E c(e)xe ≤ M . If not, we have once again found a violated constraint for input to the

ellipsoid algorithm. Thus in polynomially many rounds, where each round runs in polynomial-time, the
ellipsoid algorithm combined with the simulated separation oracle, either returns a solution x that satisfies
(a), (b), and

∑
e∈E c(e)xe ≤ M , with high probability, or proves that the system is infeasible. Using

binary search, we find the smallest M for which a solution x is returned satisfying conditions (a), (b) and∑
e∈E c(e)xe ≤ M . Since M is less than the optimum value of (KC LP), we get that the returned x is a

good fractional solution with high probability. �
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2.2 The Rounding and Analysis

Given a good fractional solution x, we now round it to get a O(log n) approximation to the Cap-R-
Connected Subgraph problem. A useful tool for our analysis is the following Chernoff bound (see [23],
for instance):

Lemma 2.5. LetX1, X2, . . . Xk be a collection of independent random variables in [0, 1], letX =
∑k

i=1Xi,
and let µ = E[X]. The probability that X ≤ (1− δ)µ is at most e−µδ

2/2.

We start by selecting Ax, the set of all nearly integral edges. Henceforth, we lose the subscript and
denote the set as simply A. Let F = E \ A denote the set of all highly fractional edges; for each edge
e ∈ F , select it with probability (40 log n · xe). Let F ∗ ⊆ F denote the set of selected highly fractional
edges. The algorithm returns the set of edges EA := A ∪ F ∗.

It is easy to see that the expected cost of this solution EA is O(log n)
∑

e∈E c(e)xe, and hence by
condition (c) above, withinO(log n) times that of the optimal integral solution. Thus, to prove Theorem 1.1,
it suffices to prove that with high probability, EA satisfies every cut in the graph G; we devote the rest
of the section to this proof. We do this by separately considering cuts of different capacities, where the
capacities are w.r.t û (recall that û(e) = u(e)xe). Let L be the set of cuts of capacity at least 2R, that is,
L := {S ⊆ V : û(δ(S)) > 2R}.

Lemma 2.6. Pr[ ∀S ∈ L : u(EA ∩ δ(S)) ≥ R] ≥ 1− 1
2n10 .

Proof: We partition L into sets L2,L3, · · · where Lj := {S ⊆ V : jR < û(δ(S)) ≤ (j + 1)R}. Note that
Theorem 2.3 implies |Lj | ≤ n2(j+1) by condition (a) above. Fix j, and consider an arbitrary cut S ∈ Lj . If
u(A ∩ δ(S)) ≥ R, then S is clearly satisfied by EA. Otherwise, since the total û-capacity of S is at least
jR, we have û(F ∩ δ(S)) ≥ û(δ(S))− u(A ∩ δ(S)) ≥ (j − 1)R. Thus

∑
e∈F∩δ(S)

u(e)

R
xe ≥ (j − 1)

Recall that an edge e ∈ F is selected in F ∗ with probability (40 log n ·xe). Thus, for the cut S, the expected
value of

∑
e∈F ∗∩δ(S)

u(e)
R ≥ 40(j − 1) log n. Since u(e)/R ≤ 1, we can apply Lemma 2.5 to get that the

probability that S is not satisfied is at most e−16 logn(j−1) = 1/n16(j−1). Applying the union bound, the
probability that there exists a cut in Lj not satisfied by EA is at most n2(j+1)/n16(j−1) = n18−14j . Thus
probability that some cut in L is not satisfied is bounded by

∑
j≥2 n

18−14j ≤ 2n−10 if n ≥ 2. Hence with
probability at least 1− 1/2n10, A ∪ F ∗ satisfies all cuts in L. �

One might naturally attempt the same approach for the cuts in S (recall that S = {S ⊆ V : û(δ(S)) ≤
2R}) modified as follows. Consider any cut S, which is partly satisfied by the nearly integral edges A.
The fractional edges contribute to the residual requirement of S, and since xe is scaled up for fractional
edges by a factor of 40 log n, one might expect that F ∗ satisfies the residual requirement, with the log n
factor providing a high-probability guarantee. This intuition is correct, but the KC inequalities are crucial.
Consider Example 1; edge pr is unlikely to be selected, even after scaling. In the statement of Lemma 2.5,
it is important that each random variable takes values in [0, 1]; thus, to use this lemma, we need the expected
capacity from fractional edges to be large compared to the maximum capacity of an individual edge. But
the KC inequalities, in which edge capacities are “reduced”, enforce precisely this condition. Thus we get
the following lemma using a similar analysis as above.

Lemma 2.7. Pr[ ∀S ∈ S : u(δ(EA ∪ δ(S))) ≥ R] ≥ 1− 1
n12 .
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The O(log n)-approximation guarantee for the Cap-R-Connected Subgraph problem stated in Theo-
rem 1.1 follows from the previous two lemmas.

2.3 Proof of Theorem 1.1: Near Uniform Cap-SNDP

The algorithm described above can be extended to the case where requirements are nearly uniform, that is,
if Rpq ∈ [R, γR] for all pairs (p, q) ∈ V × V . We obtain an O(γ log n)-approximation, while increasing
the running time by a factor of O(n4γ). We work with a similar LP relaxation; for each set S ⊆ 2V , we use
R(S) = maxp∈S,q 6∈S{Rpq} to denote the requirement of S. Now, the original constraints are of the form∑

e∈δ(S)

u(e)xe ≥ R(S)

for each set S, and we define the residual requirement for a set as R(S,A) = min{0, R(S)−u(A∩ δ(S))}.
The KC inequalities use this new definition of R(S,A).

Given a fractional solution x to the KC LP, we modify the definitions of highly fractional and nearly
integral edges: An edge e is said to be nearly integral if xe ≥ 1

40γ logn , and highly fractional otherwise.
Again, for a fractional solution x, we let Ax denote the set of nearly integral edges; the set S of small cuts
is now {S ⊆ V : û(δ(S)) ≤ 2γR}. From the cut-counting theorem, |S| ≤ n4γ . We use L to denote the set
of large cuts, the sets {S ⊆ V : û(δ(S)) > 2γR}.

As before, a fractional solution x is good if the original constraints are satisfied, and the KC Inequal-
ities are satisfied for the set of edges Ax and the sets in S . These constraints can be checked in time
O(n4γ+2 log2 n), so following the proof of Lemma 2.4, for constant γ, we can find a good fractional solu-
tion in polynomial time.

The rounding and analysis proceed precisely as before: For each highly fractional edge e, we select it
for the final solution with probability 40γ log n ·xe. The expected cost of this solution is at most O(γ log n)
times that of the optimal integral solution, and analogously to the proofs of Lemmas 2.6 and 2.7, one can
show that the solution satisfies all cuts with high probability. This completes the proof of Theorem 1.1.

2.4 The k-Way–R-Connected Subgraph Problem

The k-Way–R-Connected Subgraph problem that we define is a natural generalization of the well-studied
min-cost λ-edge-connected subgraph problem. The latter problem is motivated by applications to fault-
tolerant network design where any λ− 1 edge failures should not disconnect the graph. However, there may
be situations in which global λ-connectivity may be too expensive or infeasible. For example the underlying
graph G may have a single cut-edge but we still wish a subgraph that is as close to 2-edge-connected as
possible. We could model the requirement by k-Way–R-Connected Subgraph (in the unit-capacity case)
by setting R1 = 1 and R2 = 3; that is, at least 3 edges have to be removed to partition the graph into 3
disconnected pieces.

To prove Theorem 1.2, we work with the generalization of (KC LP) given below. For any i-way cut C
and for any set of edges A, we use R(C, A) to be max{0, Ri − u(A ∩ δ(C))}.3

3For ease of notation, we assume that for any edge e, u(e) ≤ R1. This is not without loss of generality, but the proof can be
trivially generalized: In the constraint for each i+ 1-way cut C such that e ∈ δ(C), simply use the minimum of u(e) and Ri.
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min
∑
e∈E

c(e)xe (k-way KC LP)

∀i,∀i-way cuts C,
∑
e∈δ(C)

u(e)xe ≥ Ri (Original Constraints)

∀A ⊆ E,∀i,∀i-way cuts C,
∑

e∈δ(C)\A

min{u(e), R(C, A)}xe ≥ R(C, A) (KC-inequalities)

∀e ∈ E, 0 ≤ xe ≤ 1

As before, given a fractional solution x to this LP, we define Ax (the set of nearly integral edges)
to be {e ∈ E : xe ≥ 1

40k logn}. Define û(e) = u(e)xe to be the fractional capacity on the edges. Let
Si := {C : C is an i+ 1-way cut and û(δ(C)) ≤ 2Ri}. The solution x is said to be good if it satisfies the
following three conditions:

(a) If the capacity of e is û(e), the capacity of any i+1-way cut inG is at leastRi; equivalently x satisfies
the original constraints.

(b) The KC inequalities are satisfied for the set Ax and the sets in Si, for each 1 ≤ i ≤ k − 1. Note that
if (a) is satisfied, then by Lemma 2.8, |Si| ≤ n4i.

(c)
∑

e∈E c(e)xe is at most the value of the optimum solution to the linear program (k-way KC LP).

Following the proof of Lemma 2.4, it is straightforward to verify that there is a randomized algorithm
that computes a good fractional solution with high probability in nO(k) time.

Once we have a good fractional solution, our algorithm is to select Ax, the set of nearly integral edges,
and to select each highly fractional edge e ∈ E \Ax with probability 40k log n ·xe. If F ∗ denotes the highly
fractional edges that were selected, we return the solution Ax ∪ F ∗. As before, it is trivial to see that the
expected cost of this solution is O(k log n) times that of the optimal integral solution.

We show below that for any i ≤ k − 1, we satisfy all i + 1-way cuts with high probability; taking the
union bound over the k−1 choices of i yields the theorem. We will need the following lemma due to Karger.

Lemma 2.8 (Lemma 11.2.1 of [21]). In an n-vertex graph, the number of k-way cuts with capacity at most
α times that of a minimum k-way cut is at most n2α(k−1).

As in Lemmas 2.6 and 2.7, we separately consider the “large” and “small” i+1-way cuts. First, consider
any small cut C in Si. From the Chernoff bound (Lemma 2.5) and the KC inequality for C and Ax, it follows
that the probability we fail to satisfy C is at most 1/n19k. From the cut-counting Lemma 2.8, there are at
most n4i < n4k such small cuts, so we satisfy all the small i+ 1 way cuts with probability at least 1− 1

n15k .

For the large i + 1-way cuts L, we separately consider cuts of differing capacities. For each j ≥ 2,
let L(j) denote the i + 1-way cuts C such that jRi ≤ û(C) ≤ (j + 1)Ri. Consider any cut C ∈ Lj ; if
u(Ax ∩ δ(C)) ≥ Ri, then the cut C is clearly satisfied. Otherwise, û(δ(C) \ Ax) ≥ (j − 1)Ri. But since
we selected each edge e in δ(C) \Ax for F ∗ with probability 40k log n ·xe, the Chernoff bound implies that
we do not satisfy C with probability at most 1

n19k(j−1) . The cut-counting Lemma 2.8 implies there are most
n2i(j+1) < n2k(j+1) such cuts, so we fail to satisfy any cut in L(j) with probability at most n21−17j . Taking
the union bound over all j, the failure probability is at most 2n−13.
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It would be interesting to explore algorithms and techniques for other more general variants of the k-
Way–R-Connected Subgraph problem that we consider here.

2.5 Integrality Gap for the Single Pair Cap-SNDP

We show that for any positive integer R, there exists a single-pair Cap-SNDP instance G with (R + 2)
vertices such that the integrality gap of the natural LP relaxation strengthened with KC inequalities is Ω(R).
The instance G consists of a source vertex s, a sink vertex t, and R other vertices v1, v2, . . . , vR.

s t

v1

v2

vR

(2,1) (R,R)

(2,1) (R,R)

(2,1) (R,R)

There is an edge of capacity 2 and cost 1 (call these small edges) between
s and each vi, and an edge of capacity R and cost R between each vi and t
(large edges). We haveRst = R. Clearly, an optimal integral solution must
select at leastR/2 of the large edges (in addition to small edges), and hence
has cost greater than R2/2. The instance is depicted in the accompanying
figure: Label (u, c) on an edge denotes capacity u and cost c.

We now describe a feasible LP solution: set xe = 1 on each small edge
e, and xe′ = 2/R on each large edge e′. The cost of this solution is R
from the small edges, and 2R from the large edges, for a total of 3R. This
is a factor of R/6 smaller than the optimal integral solution, proving the
desired integrality gap.

It remains only to verify that this is indeed a feasible solution to (KC LP). Consider the constraint
corresponding to sets S,A. As edges in A \ δ(S) play no role, we may assume A ⊆ δ(S). If A includes
a large edge, or at least R/2 small edges, the residual requirement R(S,A) that must be satisfied by the
remaining edges of δ(S) is 0, and so the constraint is trivially satisfied. Let A consist of a < R/2 small
edges; the residual requirement is thus R − 2a. Let δ(S) contain i large edges and thus R − i small edges.
Now, the contribution to the left side of the constraint from small edges in δ(S) \ A is 2(R − i − a) =
(R− 2a) + (R− 2i). Therefore, the residual requirement is satisfied by small edges alone unless i > R/2.
But the contribution of large edges is i · 2R · (R−2a) which is greater than R−2a whenever i > R/2. Thus,
we satisfy each of the added KC inequalities.

3 Cap-SNDP with Multiple Copies Allowed

We now consider the version of Cap-SNDP when multiple copies of any edge e can be chosen; that is,
for any integer α ≥ 0, α copies of e can be bought at a cost α · c(e) to obtain a capacity of α · u(e).
Allowing multiple copies makes the problem easier, and Goemans et al. [15] give a O(logRmax) factor
approximation algorithm for the problem. In this section, we complement this result with a O(log k) factor
approximation algorithm, where k is the number of (i, j) pairs with Rij > 0.4 Our algorithm is inspired
by the work of Berman and Coulston [4] on online Steiner Forest. For notational convenience, we rename
the pairs (s1, t1), · · · , (sk, tk), and denote the requirement Rsi,ti as Ri; the vertices si, ti are referred to as
terminals. We also assume that the pairs are so ordered that R1 ≥ R2 ≥ · · · ≥ Rk.

We first give an intuitive overview of the algorithm. The algorithm considers the pairs in decreasing
order of requirements, and maintains a forest solution connecting the pairs that have been already been

4Note that we overload the letter ‘k’, previously used in the definition of the k-Way–R-Connected Subgraph problem; this
should cause no ambiguity as we discuss only pairwise connectivity requirements in this section.
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processed; that is, if we retain a single copy of each edge in the partial solution constructed so far, we obtain
a forest F . For any edge e on the path in F between sj and tj , the total capacity of copies of e will be at
least Rj . When considering si, ti, we connect them as cheaply as possible, assuming that edges previously
selected for F have 0 cost. (Note that this can be done since we are processing the pairs in decreasing
order of requirements and for each edge already present in F , the capacity of its copies is at least Ri.) The
key step of the algorithm is that in addition to connecting si and ti, we also connect the pair to certain
other components of F that are “nearby”. The cost of these additional connections can be bounded by the
cost of the direct connection costs between the pairs. These additional connections are useful in allowing
subsequent pairs of terminals to be connected cheaply. In particular, they allow us to prove aO(log k) upper
bound on the approximation factor.

We now describe the algorithm in more detail. The algorithm maintains a forest F of edges that have
already been bought; F satisfies the invariant that, after iteration i − 1, for each j ≤ i − 1, F contains a
unique path between sj and tj . In iteration i, we consider the pair si, ti. We define the cost function ci(e)
as ci(e) := 0 for edges e already in F , and ci(e) := c(e) + Ri

u(e)c(e), for edges e /∈ F . Note that for an edge
e /∈ F , the cost ci(e) is sufficient to buy enough copies of e to achieve a total capacity of Ri. Thus it suffices
to connect si and ti and pay cost ci(e) for each edge; in the Cap-SNDP solution we would pay at most this
cost and get a feasible solution. However, recall that our algorithm also connects si and ti to other “close”
components; to describe this process, we introduce some notation:

For any vertices p and q, we use di(p, q) to denote the distance between p and q according to the metric
given by edge costs ci(e). We let `i := di(si, ti) be the cost required to connect si and ti, given the current
solution F . We also define the class of a pair (sj , tj), and of a component:

• For each j ≤ i, we say that pair (sj , tj) is in class h if 2h ≤ `j < 2h+1.
Equivalently, class(j) = blog `jc.

• For each connected component X of F , class(X) = max(sj ,tj)∈X class(j).

Now, the algorithm connects si (respectively ti) to componentX if di(si, X) (resp. di(ti, X))≤ 2min{class(i),class(X)}.
That is, if X is close to the pair (si, ti) compared to the classes they are in, we connect X to the pair. As we
show in the analysis, this extra connection cost can be charged to some pair (sj , tj) in the component X .
The complete algorithm description is given below.

CAP-SNDP-MC:
F ← ∅ 〈〈F is the forest solution returned〉〉
For i← 1 to k

For each edge e ∈ F , ci(e)← 0
For each edge e 6∈ F , ci(e)← c(e) + (Ri/u(e))c(e)
`i ← di(si, ti)
Add to F a shortest path (of length `i) from si to ti under distances ci(e)
class(i)← blog `ic
For each connected component X of F

If di(si, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting si and X
For each connected component X of F

If di(ti, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting ti and X
Buy dRi/uee copies of each edge e added during this iteration.
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The structure of our proof is as follows: Recall that `i was the direct connection cost between si and ti; in
addition to paying `i to connect these vertices, the algorithm also buys additional edges connecting si and
ti to existing components. We first show (in Lemma 3.1) that the total cost of extra edges bought can be
charged to the direct connection costs; thus, it suffices to show that

∑
i `i ≤ O(log k)OPT, where OPT is

the cost of an optimal solution. To prove this (Lemma 3.2), we bucket the pairs (si, ti) into O(log k) groups
based on class(i), and show that in each bucket h,

∑
i:class(i)=h `i ≤ O(OPT).

Lemma 3.1. The total cost of all edges bought by CAP-SNDP-MC is at most 9
∑k

i=1 `i.

Proof: Let Fi denote the set of edges added to F during iteration i. First, note the total cost paid for copies
of edge e ∈ Fi is d Ri

u(e)ec(e) < c(e) + Ri
ue
c(e) = ci(e). Thus, it suffices to show:

k∑
i=1

∑
e∈Fi

ci(e) ≤ 9
k∑
i=1

`i

We prove that the total cost of the additional edges bought is at most 8
∑k

i=1 `i; this clearly implies the
desired inequality. It is not true that for each i, the total cost of additional edges bought during iteration i
is at most 8`i. Nonetheless, a careful charging scheme proves the needed bound on total cost. In iteration
i, suppose we connect the pair (si, ti) to the components X1, . . . , Xr. We charge the cost of connecting
(si, ti) and component Xj to the connection cost `j of a pair (sj , tj) in Xj . This is possible since we know
the additional connection cost is at most 2class(Xj). Care is required to ensure no pair is overcharged. To do
so, we introduce some notation.

At any point during the execution of the algorithm, for any current componentX ofF , we let Leader(X)
be a pair (si, ti) ∈ X such that class(i) = class(X). For integers h ≤ class(X), h-Leader(X) will
denote a pair (sj , tj) in X; we explain how this pair is chosen later. (Initially, h-Leader(X) is undefined
for each component X .)

Now, we have to account for additional edges bought during iteration i; these are edges on a shortest
path connecting si (or ti) to some other component X; we assume w.l.o.g. that the path is from si to
X . Consider any such path P connecting si to a component X; we have

∑
e∈P ci(e) = di(si, X) ≤

2min{class(i),class(X)}. Let h = blog di(si, X)c: Charge all edges on this path to h-Leader(X) if it is
defined; otherwise, charge all edges on the path to Leader(X). In either case, the pair (si, ti) becomes
the h-Leader of the new component just formed. Note that a pair (si, ti) could simultaneously be the h1-
Leader, h2-Leader, etc. for a component X if (si, ti) connected to many components during iteration i.
However, it can never be the h-Leader of a component for h > class(i), and once it has been charged as
h-Leader, it is never charged again as h-Leader. Also observe that if a pair is in a component X whose
h-Leader is defined, subsequently, it always stays in a component in which the h-Leader is defined.

For any i, we claim that the total charge to pair (si, ti) is at most 8`i, which completes the proof.
Consider any such pair: any charges to the pair occur when it is either Leader or h-Leader of its current
component. First, consider charges to (si, ti) as Leader of a component. Such a charge can only occur
when connecting some sj (or tj) to X . Furthermore, if h = blog dj(sj , X)c ≤ class(X) = class(i), the
h-Leader(X) must be currently undefined, for otherwise the h-Leader(X) would have been charged.
Subsequently, the h-Leader of the component containing (si, ti) is always defined, and so (si, ti) will
never again be charged as a Leader(X) by a path of length in [2h, 2h+1). Therefore, the total charge to
(si, ti) as Leader of a component is at most

∑class(i)
h=1 2h+1 < 2class(i)+2 ≤ 4`i.
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Finally, consider charges to (si, ti) as h-Leader of a component. As observed above, h ≤ class(i).
Also for a fixed h, a pair is charged at most once as h-Leader. Since the total cost charged to (si, ti) as
h-Leader is at most 2h+1; summing over all h ≤ class(i), the total charge is less than 2class(i)+2 = 4`i.

Thus, the total charge to (si, ti) is at most 4`i + 4`i = 8`i, completing the proof. �

Lemma 3.2. If OPT denotes the cost of an optimal solution to the instance of Cap-SNDP with multiple
copies, then

∑k
i=1 `i ≤ 64(dlog ke+ 1)OPT.

Proof: Let Ch denote
∑

i:class(i)=h `i. Clearly,
∑k

i=1 `i =
∑

hCh. The lemma follows from the two
sub-claims below:

Sub-Claim 1:
∑

hCh ≤ (2(dlog ke+ 1)) ·maxhCh

Sub-Claim 2: For each h, Ch ≤ 32OPT.

Proof of Sub-Claim 1: Let h′ = maxi class(i). We have Ch′ ≥ 2h
′
, and for any terminal i such that

class(i) ≤ h′− (dlog ke+1), we have `i ≤ 2h
′+1

2k . Thus, the total contribution from such classes is at most
2h
′

k · k = 2h
′
, and hence:

h′∑
h=h′−dlog ke

Ch ≥
∑

hCh
2

, which implies

max
h′−dlog ke≤h≤h′

Ch ≥
∑

hCh
2(dlog ke+ 1)

.

�

It remains to show Sub-Claim 2, that for each h, Ch ≤ 32OPT. Fix h. Let Sh denote the set of pairs
si, ti such that class(i) = h. Our proof will go via the natural primal and dual relaxations for the Cap-
SNDP problem. In particular, we will exhibit a solution to the dual relaxation of cost Ch/32. To do so we
will require the following claim. Define ball(si, r), a ball of radius r around si as containing the set of
vertices v such that di(si, v) ≤ r and the set of edges e = uv such that di(si, {u, v}) + ci(e) ≤ r. An edge
e is partially within the ball if di(si, {u, v}) < r < di(si, {u, v}) + ci(e). Subsequently, we assume for
ease of exposition that no edges are partially contained within the balls we consider; this can be achieved
by subdividing the edges as necessary. Similarly, we define ball(ti, r), the ball of radius r around ti. Two
balls are said to be disjoint if they contain no common vertices.

Claim 3.3. There exists a subset of pairs, S ′h ⊆ Sh, |S ′h| ≥ |Sh|/2, and a collection of |S ′h| disjoint balls of
radius 2h/4 centred around either si or ti, for every pair (si, ti) ∈ S ′h.

We prove this claim later; we now use it to complete the proof of Sub-Claim 2. First we describe the
LP. Let the variable xe denote whether or not edge e is in the Cap-SNDP solution. Let Pi be the set of paths
from si to ti. For each P ∈ Pi, variable fP denotes how much flow t sends to the root along path P . We
use ui(e) to refer to min{Ri, u(e)}, the effective capacity of edge e for pair (si, ti).
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Primal min
∑
e∈E

cexe∑
P∈Pi

fP ≥ Ri (∀i ∈ [k])

∑
P∈Pt|e∈P

fP ≤ ui(e)xe (∀i ∈ [k], e ∈ E)

xe, fP ≥ 0

Dual max
∑
t∈T

Riαi∑
i

ui(e)βi,e ≤ ce (∀e ∈ E)

αi ≤
∑
e∈P

βi,e (∀i ∈ [k], P ∈ Pi)

αi, βi,e ≥ 0

We now describe a feasible dual solution of value at least Ch/32 using Claim 3.3. For (si, ti) ∈ S ′h, if
there is a ball B around si (or equivalently ti), we define βi,e = c(e)/ui(e) for each edge in the ball. Since
the balls are disjoint, the first inequality of the dual is clearly satisfied. Set αi = 2h/8Ri. For any path
P ∈ Pi, we have∑

e∈P
βi,e =

1

Ri

∑
e∈P∩B

Ric(e)

ui(e)
≥ 1

2Ri

∑
e∈P∩B

Ric(e)

u(e)
+ c(e) ≥ 1

2Ri

∑
e∈P∩B

ci(e) ≥
1

2Ri

2h

4
= αi

where the first inequality used ui(e) ≤ Ri, the second follows from the definition of ci(e), and the last
inequality follows from the definition of ball(si, 2

h/4). Thus, αi = 2h/8Ri is feasible along with these
βi,e’s. This gives a total dual value of

2h

8
· |S ′h| ≥

2h

16
· |Sh| ≥

1

32

∑
i∈Sh

`i =
Ch
32

where the last inequality follows from the fact that class(i) = h. This proves the lemma modulo Claim
3.3, which we now prove.

Proof of Claim 3.3: We process the pairs in Sh in the order they are processed by the original algorithm
and grow the balls. We abuse notation and suppose these pairs are (s1, t1), . . . , (sp, tp). We maintain a
collection of disjoint balls of radius r = 2h/4, initially empty.

At stage i, we try to grow a ball of radius r around either si or ti. If this is not possible, the ball around
si intersects that around some previous terminal in S ′h, say sj ; similarly, the ball around ti intersects that
of a previous terminal, say t`. Let v be a vertex in ball(si, r) and ball(sj , r). We have di(si, sj) ≤
di(si, v) + di(v, sj) ≤ di(si, v) + dj(v, sj) < 2h/2. (The second inequality follows because for any j < i
and any edge e, ci(e) ≤ cj(e).) Similarly, we have di(ti, t`) < 2h/2.

Now, we observe that sj and t` could not have been in the same component of F at the beginning
of iteration i of CAP-SNDP-MC; otherwise di(si, ti) ≤ di(si, sj) + di(ti, t`) < 2h, contradicting that
class(i) = h. But since di(si, sj) ≤ 2h/2 and class(i) = class(j) = h, we connect si to the component
of sj during iteration i; likewise, we connect ti to the component of t` during this iteration. Hence, at the
end of the iteration, si, ti, sj , t` are all in the same component. As a result, the number of components of F
containing pairs of Sh decreases by at least one during the iteration.

It is now easy to complete the proof: During any iteration of F corresponding to a pair (si, ti) ∈ Sh, the
number of components of F containing pairs of Sh can go up by at most one. Say that an iteration succeeds
if we can grow a ball of radius r around either si or ti, and fails otherwise. During any iteration that fails,
the number of components decreases by at least one; as the number of components is always non-negative,
the number of iterations which fail is no more than the number which succeed. That is, |S ′h| ≥ |Sh−S ′h|. �
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Theorem 1.4 is now a straightforward consequence of Lemmas 3.1 and 3.2. We recall the statement.

Theorem 1.4. In undirected graphs, there is an O(log k)-approximation algorithm for Cap-SNDP with
multiple copies, where k is the number of pairs with Rij > 0.

Proof of Theorem 1.4: The total cost of edges bought by the algorithm is at most
∑k

i=1

∑
e∈Fi

ci(e) ≤
9
∑k

i=1 `i, by Lemma 3.1. But
∑k

i=1 `i ≤ 64(dlog ke + 1)OPT, by Lemma 3.2, and hence the total cost
paid by CAP-SNDP-MC is at most O(log k)OPT. �

3.1 Hardness of Approximation for Cap-SNDP in Undirected Graphs

In this section, we prove Theorem 1.5, Ω(log logn) hardness for the single-source version of Cap-SNDP
with multiple copies. We use a reduction from the Priority Steiner Tree problem. A similar hardness also
applies to the basic Cap-SNDP problem, as the copies of edges do not play a significant role in the reduction;
we omit the details here.

In the Priority Steiner Tree problem, the input is an undirected graph G(V,E) with a cost c(e) and a
priority P (e) ∈ {1, 2, . . . , k} for each edge e. (We assume k is the highest and 1 the lowest priority.) We
are also given a root r and a set of terminals T ⊆ V − {r}; each terminal t ∈ T has a desired priority P (t).
The goal is to find a minimum-cost Steiner Tree in which the unique path from each terminal t to the root
consists only of edges of priority P (t) or higher.5

Chuzhoy et al. [9] showed that one cannot approximate the Priority Steiner Tree problem within a factor
better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn), even when all edge costs are 0 or 1. We now
show an approximation-preserving reduction from this problem to Cap-SNDP with multiple copies.

Given an instance Ipst of Priority Steiner Tree on graph G(V,E) with edge costs in {0, 1}, we construct
an instance Icap of Cap-SNDP defined on the graph G as the underlying graph. Fix R to be any integer
greater than 2m3 wherem is the number of edges in the graphG. We now assign a capacity of u(e) = Ri to
each edge e with priority P (e) = i in Ipst. Each edge e of cost 0 in Ipst has cost c(e) = 1 in Icap, and each
edge e of cost 1 in Ipst has cost c(e) = m2 in Icap. Finally, for each terminal t, set Rtr = Ri if P (t) = i;
for every other pair of vertices (p, q), Rpq = 0.

Let C denotes the cost of an optimal solution to Ipst; note that C ≤ m; we now argue that Ipst has
an optimal solution of cost C iff Icap has an optimal solution of of cost between Cm2 and Cm2 + m <
(C + 1)m2. Given a solution E∗ to Ipst of cost C, simply select the same edges for Icap; the cost in Icap
is at most Cm2 + m since in Icap, we pay 1 for each edge in E∗ that has cost 0 in Ipst. This is clearly a
feasible solution to Icap as each terminal t has a path to r in E∗ containing only edges with priority at least
P (t), which is equivalent to having capacity at least Rtr. Conversely, given a solution E′ to Icap with cost
in [Cm2, (C + 1)m2), select a single copy of each edge in E′ as a solution to Ipst; clearly the total cost is
at most C. To see that this is a feasible solution, suppose that E′ did not contain a path from some terminal
t to the root r using edges of priority P (t) or more. Then there must be a cut separating t from r in which
all edges of E′ have capacity at most RP (t)−1. But since E′ supports a flow of RP (t) from t to r, it must use
at least R edges (counting with multiplicity); this implies that the cost of E′ is at least R ≥ (C + 1)m2, a
contradiction.

5It is easy to see that a minimum-cost subgraph containing such a path for each terminal is a tree; given any cycle, one can
remove the edge of lowest priority.
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The reduction above proved Ω(log log n) hardness for the single-source version of Cap-SNDP (with or
without multiple copies). A similar reduction also proves Ω(log logn) hardness for the single-pair Cap-
SNDP problem if multiple copies are not allowed: One can effectively encode an instance of the single-
source Fixed-Charge Network Flow (FCNF, [9]), very similar to single-source Cap-SNDP with multiple
copies, as an instance of single-pair Cap-SNDP without multiple copies: Create a new sink t∗, and connect
t∗ to each original terminal t with a single edge of cost 0 and capacity Rtr. The only way to send flow∑

t∈T Rtr flow from t∗ to the source s is for each terminal t to send Rtr to s. Thus, Ω(log log n) hardness
for single-pair Cap-SNDP (Theorem 1.3) is a simple consequence of the Ω(log log n) hardness for single-
source FCNF [9].

4 Conclusions

In this paper we made progress on addressing the approximability of Cap-SNDP. We gave an O(log n)
approximation for the Cap-R-Connected Subgraph problem, which is a capacitated generalization of the
well-studied min-cost λ-edge-connected subgraph problem. Can we improve this to obtain an O(1) approx-
imation or prove super-constant hardness of approximation? We also highlighted the difficulty of Cap-SNDP
by focusing on the single pair problem, and showing both super-constant hardness and an Ω(n) integrality
gap example, even for the LP with KC inequalities. Recent results (see Remark 1.6) show that the single
pair problem is essentially as hard as the label cover problem. It may be useful to examine special cases or
assumptions that allow one to bypass these strong negative results. As we noted, allowing multiple copies
of edges makes the problem easier; in practice, however, it may be desirable to not allow too many copies of
an edge to be used. It is therefore of interest to examine the approximability of Cap-SNDP if we allow only
a small number of copies of an edge. Does the problem admit a non-trivial approximation if we allow O(1)
copies or, say, O(log n) copies? This investigation may further serve to delineate the easy versus difficult
cases of Cap-SNDP.

Acknowledgements: CC’s interest in capacitated network design was inspired by questions from Matthew
Andrews. He thanks Mathew Andrews and Lisa Zhang for several useful discussions on their work on
capacitated network design for multi-commodity flows.
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