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Abstract

In this paper we consider the following maximum bud-
geted allocation(MBA) problem: Given a set of m indivis-
ible items and n agents; each agent i willing to pay bij on
item j and with a maximum budget of Bi, the goal is to
allocate items to agents to maximize revenue.

The problem naturally arises as auctioneer revenue max-
imization in budget-constrained auctions and as winner de-
termination problem in combinatorial auctions when utili-
ties of agents are budgeted-additive. Our main results are:

• We give a 3/4-approximation algorithm for MBA im-
proving upon the previous best of ' 0.632[2, 10].
Our techniques are based on a natural LP relaxation
of MBA and our factor is optimal in the sense that it
matches the integrality gap of the LP.

• We prove it is NP-hard to approximate MBA to any
factor better than 15/16, previously only NP-hardness
was known [21, 17]. Our result also implies NP-
hardness of approximating maximum submodular wel-
fare with demand oracle to a factor better than
15/16, improving upon the best known hardness of
275/276[10].

• Our hardness techniques can be modified to prove that
it is NP-hard to approximate the Generalized Assign-
ment Problem (GAP) to any factor better than 10/11.
This improves upon the 422/423 hardness of [7, 9].

We use iterative rounding on a natural LP relaxation of
MBA to obtain the 3/4-approximation. We also give a
(3/4−ε)-factor algorithm based on the primal-dual schema
which runs in Õ(nm) time, for any constant ε > 0.

∗Research partially supported by NSF Grant CCF-0728640.

1. Introduction

Resource allocation problems of distributing a fixed sup-
ply of resources to multiple agents in an “optimal” manner
are ubiquitous in computer science and economics. In this
paper we consider the following maximum budgeted allo-
cation (MBA) problem: Given a set of m indivisible items
and n agents; each agent i willing to pay bij on item j and
with a maximum budget of Bi, the goal is to allocate items
to agents to maximize revenue.

The problem naturally arises as a revenue maximiza-
tion problem for the auctioneer in an auction with budgeted
agents. Examples of such auctions (see, for example [4])
include those used for the privatization of public assets in
western Europe, or those for the distribution of radio spectra
in the US, where the magnitude of the transactions involved
put financial or liquidity constraints on bidders. With the
growth of the Internet, budget-constrained auctions have
gained increasing relevance. Firstly, e-auctions held on the
web (on e-Bay, for instance) cater to the long-tail of users
who are inherently budget-constrained. Secondly, spon-
sored search auctions hosted by search engines (Google,
Yahoo!, MSN and the like) where advertisers bid on key-
words include budget specification as a feature. A common
(and natural) assumption in keyword auctions that is typi-
cally made is that bids of advertisers are much smaller than
the budgets. However, with the extension of the sponsored
search medium from the web onto the more classical media,
such as radio and television, where this assumption is not as
reasonable, the general budget-constrained auctions need to
be addressed.

MBA is known to be NP-hard - even in the case of
two bidders it is not hard to see that MBA encodes PAR-
TITION. In this paper we study the approximability of
MBA and improve upon the best known approximation
and hardness of approximation factors. Moreover, we use
our hardness reductions to get better hardness results for
other allocation problems like submodular welfare max-
imization(SWM), generalized assignment problem (GAP)
and maximum spanning star-forest (MSSF).



1.1 Maximum Budgeted Allocation

We start with the formal problem definition.

Definition 1 Let Q and A be a set of m indivisible items
and n agents respectively, with agent i willing to pay bij
for item j. Each agent i has a budget constraint Bi and on
receiving a set S ⊆ Q of items, pays min(Bi,

∑
j∈S bij).

An allocation Γ : A → 2Q is the partition of the
set Q into disjoint sets Γ(1), · · · ,Γ(n). The maximum
budgeted allocation problem, or simply MBA, is to find
the allocation which maximizes the total revenue, that is,∑
i∈A min(Bi,

∑
j∈Γ(i) bij).

Note that we can assume without loss of generality that
bij ≤ Bi, ∀i ∈ A, j ∈ Q. This is because if bids are larger
than budget, decreasing it to the budget does not change
the value of any allocation. Sometimes, motivated by the
application, one can add the constraint that bij ≤ β · Bi
for all i ∈ A and j ∈ Q, for some β ≤ 1. We call such an
instance β-MBA.

Previous and Related Work: As noted above, MBA is
NP-hard and this observation was made concurrently by
many authors ([12, 21, 2, 17]). The first approximation
algorithm for the problem was given by Garg, Kumar and
Pandit[12] who gave a 2/(1+

√
5)(' 0.618) factor approx-

imation. Andelman and Mansour[2] improved the factor to
(1 − 1/e)(' 0.632). For the special case when budgets of
all bidders were equal, [2] improved the factor to 0.717. We
refer to the thesis of Andelman[1] for an exposition.

Remark 1.1 Very recently, and independent of our work,
Azar et.al. [3] obtained a 2/3-factor for the MBA problem,
and subsequently Srinivasan [23] extended their algorithm
to obtain a 3/4-factor for MBA. Thus along with our two
algorithms, there are three different 3/4-factor approxima-
tion algorithms for MBA.

In the setting of sponsored search auctions, MBA, or
rather β-MBA with β → 0, has been studied mainly in
an online context. Mehta et.al.[19] and later, Buchbinder
et.al.[6] gave (1 − 1/e)-competitive algorithms when the
assumption of bids being small to budget is made. The
dependence of the factor on β is not quite clear from either
of the works. Moreover, as per our knowledge, nothing
better was known the approximability of the offline β-MBA
than what was suggested by algorithms for MBA.

Our results: We give two approximation algorithms for
MBA. The first, based on iterative LP rounding, attains a
factor of 3/4. The algorithm is described in Section 2.
The second algorithm, based on the primal-dual schema, is

faster and attains a factor of 3/4−ε, for any ε > 0. The run-
ning time of the algorithm is Õ(nmε ). We describe the algo-
rithm in Section 3. Our algorithms can be extended suitably
for β-MBA as well giving a 1 − β/4 factor approximation
algorithm.

In Section 4, we show it is NP hard to approximate
MBA to a factor better than 15/16 via a gap-preserving re-
duction from MAX-3-LIN(2). Our hardness instances are
uniform in the sense of Azar et.al.∗ [3] implying uniform
MBA is as hard. Our hardness reductions extend to give a
(1− β/16) hardness for β-MBA as well. Interestingly, our
reductions can be used to obtain better inapproximability re-
sults for other problems: SWM (15/16 hardness even with
demand queries), GAP (10/11 hardness) and MSSF(10/11
and 13/14 for the edge and node weighted versions), which
we elaborate below.

1.2 Relations to other allocation problems

Submodular Welfare Maximization (SWM): As in the
definition of MBA, let Q be a set of m indivisible items and
A be a set of n agents. For agent i, let ui : 2Q → R+ be
a utility function where for a subset of items S ⊆ Q, ui(S)
denote the utility obtained by agent i when S is allocated
to it. Given an allocation of items to agents, the total social
welfare is the sum of utilities of the agents. The welfare
maximization problem is to find an allocation of maximum
social welfare.

Welfare maximization problems have been extensively
studied (see, for example, [5]) in the past few years with
various assumptions made on the utility functions. One
important set of utility functions are monotone submod-
ular utility functions. A utility function ui is monotone
if ui(S) ≤ ui(T ) whenever S ⊆ T . A utility func-
tion ui is submodular if for any two subsets S, T of items,
ui(S∪T )+ui(S∩T ) ≤ ui(S)+ui(T ). The welfare maxi-
mization problem when all the utility functions are submod-
ular is called the submodular welfare maximization prob-
lem or simply SWM. In many cases, explicit representation
of these functions becomes an issue. Thus an access to an
oracle is generally assumed (see [5, 24, 10]). One such or-
acle is the demand oracle which for any agent i and prices
p1, p2, · · · , pm for all items in Q, returns a subset S ⊆ Q
which maximizes (ui(S)−

∑
j∈S pj). Given an access to a

demand oracle, Feige and Vondrák [10] gave a (1−1/e+ρ)-
approximation for SWM with ρ ∼ 0.0001 and showed that
it is NP-hard to approximate SWM to better than 275/276.†

MBA is a special case of SWM. This fol-
lows from the observation that the utility function
∗An MBA instance is uniform if bij = bj whenever bij > 0.
†We remark that SWM with a different oracle, the value oracle, has

recently been resolved. There was a (1 − 1/e) hardness given by Khot
et.al.[15] and recently Vondrak[24] gave a matching polynomial time al-
gorithm.



ui(S) = min(Bi,
∑
j∈S bij) when Bi, bij’s are fixed is a

submodular function. In Section 4, we show that in the
hardness instances of MBA, the demand oracle can be
simulated in poly-time and therefore the 15/16 hardness
of approximation for MBA implies a 15/16-hardness of
approximation for SWM with the demand oracle.

Generalized Assignment Problem (GAP): GAP is a prob-
lem related to MBA: Every item j, along with the bid
(profit) bij for agent (bin) i, also has an inherent size sij .
Instead of a budget constraint, each agent (bin) has a ca-
pacity constraint Ci which defines feasible sets: A set S is
feasible for (bin) i if

∑
j∈S sij ≤ Ci. The goal is to find a

revenue (profit) maximizing feasible assignment. The main
difference between GAP and MBA is that in GAP we are
not allowed to violate capacity constraints, while in MBA
the budget constraint only caps the revenue. As was noted
by Chekuri and Khanna[7], a 1/2 approximation algorithm
was implicit in the work of Shmoys and Tardos[22]. The
factor was improved by Fleischer et.al.[11] to 1 − 1/e. In
the same paper where they give the best known algorithm
for SWM, Feige and Vondrák[10] also give a (1−1/e+ρ′)
algorithm for GAP (ρ′ ≤ 10−5). The best known hard-
ness for GAP was 1− ε, for some small ε which was given
by Chekuri and Khanna [7] via a reduction from maximum
3D-matching. Improved hardness results for maximum 3D
matching by Chlebik and Chlebikova[9], imply a 422/423
hardness for GAP.

Although MBA and GAP are in some sense incompara-
ble problems, we can use our hardness techniques to get a
10/11 factor hardness of approximation for GAP.

Maximum Spanning Star-Forest Problem (MSSF):
Given an undirected unweighted graph G, the MSSF prob-
lem is to find a forest with as many edges such that each
tree in the forest is a star — all but at most one vertex of
the tree are leaves. The edge-weighted MSSF is the natural
generalization with weights on edges. The node-weighted
MSSF has weights on vertices and the weight of a star is
the weight on the leaves. If the star is just an edge, then the
weight of the star is the maximum of the weights of the end
points.

The unweighted and edge-weighted MSSF was intro-
duced by Nguyen et.al [20] who gave a 3/5 and 1/2-
approximation respectively for the problems. They also
showed APX hardness of the unweighted version. Chen
et.al. [8] improved the factor of unweighted MSSF to 0.71
and introduced node-weighted MSSF giving a 0.64 factor
algorithm for it. They also give a 31/32 and 19/20 hardness
for the node-weighted and edge-weighted MSSF problems.

Although, at the face of it, MSSF does not seem to have
a relation with MBA, once again our hardness techniques
can be used to improve the hardness of node-weighted and

edge-weighted MSSF to 13/14 and 10/11, respectively.

1.3 The LP Relaxation for MBA

One way to formulate MBA as an integer program is the
following:

max{
∑
i∈A

πi : πi = min(Bi,
∑
j∈Q

bijxij), ∀i;

∑
i∈A

xij ≤ 1,∀j; xij ∈ {0, 1} }

Relaxing the integrality constraints to non-negativity con-
straints gives an LP relaxation for the problem. We work
with the following equivalent LP relaxation of the problem.
The equivalence follows by noting that in there exists an
optimal fractional solution, Bi ≥

∑
j∈Q bijxij . This was

noted by Andelman and Mansour[2] and a similar relax-
ation was used by Garg et.al. [12].

max{
∑

i∈A,j∈Q
bijxij : ∀i ∈ A,

∑
j∈Q

bijxij ≤ Bi; (1)

∀j ∈ Q,
∑
i∈A

xij ≤ 1; ∀i ∈ A, j ∈ Q, xij ≥ 0}

We remark that the assumption bij ≤ Bi is crucial for
this LP to be of any use. Without this assumption it is
easy to construct examples having arbitrarily high integral-
ity gaps. Consider the instance with one item, n agents each
having a budget 1 but bidding n on the item. The LP has a
solution of value nwhile the maximum welfare is obviously
1.

1.4 Technical Contributions

Apart from being an important problem in its own right,
we believe the MBA problem is interesting as it allows us
to enhance certain algorithmic ideas. As we mention above,
one of our algorithms is an iterative rounding algorithm us-
ing LP(1). Recently, the technique of iterative rounding has
achieved considerable success in designing approximation
algorithms [14, 16]. However, these successes have been
limited to minimization problems, and as per our knowl-
edge, this work is the first iterative rounding based result
for a natural maximization problem.

The iterative rounding schema can be broadly described
in the following two step procedure: find an optimal solu-
tion satisfying some desirable property (for instance, some
variable has value 1 or at least 1/2 ([14])), then move to
a residual problem after rounding some variables to 1 and
iterate. The proof of approximation factor, say α > 1, is



shown by proving that the cost incurred by the algorithm
in one iteration is at most α times the drop in the LP-value
across the iteration.

In minimization problems, the constraints on the vari-
ables are normally covering constraints. Thus, a solution to
the original problem is also a solution to the natural residual
problem obtained after rounding up. The non-trivial part of
most algorithms ([14, 16]) lies in proving the existence of a
desirable property.

In this problem, the desirable property as we show later
(this was observed by most previous works on MBA) is
that xij = 1 for some agent i and item j. However, in
the natural residual problem obtained after the item j is
allocated to agent i, the LP might drop by as much as twice
as the value obtained by the algorithm (giving only a 1/2
factor). To overcome this difficulty, we show how to move
to a residual problem in a non-trivial manner which allows
us to control the LP-drop across iterations. We give the
details in Section 2. We believe this technique of a clever
definition of the residual problem might be an approach
towards iterative rounding of other maximization problems
like SWM and GAP. That said, it is also non-trivial for
such problems even to get the desirable property of a solu-
tion; in fact it is unclear what a desirable property should be.

We also give a primal-dual algorithm for MBA in Sec-
tion 3 which for any ε > 0 gives a ( 3

4 − ε) approxima-
tion factor. Primal-dual algorithms have been successful in
obtaining approximation algorithms for minimization prob-
lems (whose duals are maximization). The typical schema
is to start with an all-zeroes feasible dual solution and then
raising the duals till some dual constraint goes tight which
suggests which primal variable to pick. Since MBA is a
maximization problem, the dual is a minimization and the
all-zeroes solution is not feasible any more. We deviate
from the schema by setting a subset of dual variables to
zero and raising these variables. The remaining dual vari-
ables are set so as to maintain dual feasibility. Details can
be found in Section 3.

2 An iterative rounding algorithm for MBA

Let P be a problem instance defined by the bids and bud-
gets of every agent, that is P := ({bij}i,j , {Bi}i). With P ,
we associate a bipartite graph G(P) = (A ∪ Q,E), with
(i, j) ∈ E if i bids on j.

Let x∗(P) be an extreme point solution to LP(1) for the
problem instance P . For brevity, we omit writing the de-
pendence on P when the instance is clear from context. Let
E∗ be the support of the solution, that is E∗ := {(i, j) ∈
E : x∗ij > 0}. Note that these are the only important
edges — one can discard all bids of agents i on item j
when (i, j) /∈ E∗. This does not change the LP optimum

and a feasible integral solution in this instance is a feasi-
ble solution of the original instance. Call the set of neigh-
bors of an agent i in G[E∗] as Γ(i). Call an agent tight if∑
j bijx

∗
ij = Bi.

The starting point of the algorithm is the following claim
about the structure of the extreme point solution. Such an
argument using polyhedral combinatorics, was first used in
the machine scheduling paper of Lenstra, Shmoys and Tar-
dos [18]. A similar claim can be found in the thesis of
Andelman [1]. We omit the proof in the extended abstract.

Claim 2.1 The graph, G[E∗], induced by E∗ can be as-
sumed to be a forest. Moreover, except for at most one, all
the leaves of a connected component are items. Also at most
one agent in a connected component can be non-tight.

Call an item a leaf item, if it is a leaf in G[E∗]. Also
call an agent i a leaf agent if, except for at most one, all
of his neighboring items in E∗(P) are leaves. Note the
above claim implies each connected component has at least
one leaf item and one leaf agent: in any tree there are two
leaves both of which cannot be agents, and there must be
an agent with all but one of its neighbors leaves and thus
leaf items. For the sake of understanding, we first discuss
the following natural iterative algorithm which assigns the
leaf items to their neighbors and then adjusts the budget
and bids to get a new residual problem.

1/2-approx algorithm: Solve LP (P) to get x∗(P). Now
pick a leaf agent i. Assign all the leaf items in Γ(i) to i.
Let j be the unique non-leaf item (if any) in Γ(i). Form the
new instance P ′ by removing Γ(i)\ j and all incident edges
from P ′. Let b =

∑
l∈Γ(i)\j bil, be the portion of budget

spent by i. Now modify the budget of i and his bid on j in
P ′ as follows: B′i := Bi − b, and b′ij := min(bij , B′i). Its
instructive to note the drop (bij − b′ij) is at most b. (We use
here the assumption bids are always smaller than budgets).
Iterate on the instance P ′.

The above algorithm is a 1/2-approximation algorithm.
In every iteration, we show that the revenue generated by
the items allocated is at least 1/2 of the drop in the LP
value (LP (P) − LP (P ′)). Suppose in some iteration,
i be the leaf agent chosen, and let j be the its non-leaf
neighbor, and let the revenue generated by algorithm be b.
Note that x∗, the solution to P , restricted to the edges in
P ′ is still a feasible solution. Thus the drop in the LP is:
b + (bij − b′ij)xij . Since (bij − b′ij) is atmost b, and xij at
most 1, we get LP (P)− LP (P ′) ≤ 2b.

To prove a better factor in the analysis, one way is to give
a better bound on the drop, (LP (P) − LP (P ′)). Unfor-
tunately, the above analysis is almost tight and there exists
an example where the LP drop in the first iteration is '
twice the revenue generated by the algorithm in that iter-



ation. Thus, for an improved analysis for this algorithm,
one needs a better amortized analysis across different it-
erations rather than analyzing iteration-by-iteration. This
seems non-trivial as we solve the LP again at each iteration
and the solutions could be very different across iterations
making it harder to analyze over iterations.

Instead, we modify the above algorithm by defining
the residual problem P ′ in a non-trivial manner. After
assigning leaf items to agent i, we do not decrease the
budget by the amount assigned, but keep it a little “larger”.
Thus these agents lie about their budgets in the subsequent
rounds, and we call these lying agents. Since the budget
doesn’t drop too much, the LP value of the residual problem
doesn’t drop much either. A possible trouble would arise
when items are being assigned to lying agents since they do
not pay as much as they have bid. This leads to a trade-off
and we show by suitably modifying the residual problem
one can get a 3/4 approximation. We now elaborate.

Given a problem instance P0 := P , the algorithm proceeds
in stages producing newer instances at each stage. On go-
ing from Pi to Pi+1, at least one item is allocated to some
agent. Items are never de-allocated, thus the process ends
in at most m stages. The value of an item is defined to
be the payment made by the agent who gets it. That is,
value(j) = min(bij , Bi − spent(i)), where spent(i) is
the value of items allocated to i at the time j was being
allocated. We will always ensure the condition that a lying
agent i bids on at most one item j. We will call j the false
item of i and the bid of i on j to be i’s false bid. In the
beginning no agent is lying.

We now describe the k-th iteration of the iterative algo-
rithm which we call MBA-ITER (Algorithm 1).

Claim 2.2 In each step, at least one item is allocated and
thus MBA-ITER terminates in m steps.

Proof: We show that one of the three steps 2,3 or 4 is always
performed and thus some item is always allocated. Con-
sider any component. If a component has only one agent i,
then all the items in Γ(i) are leaf items. If Γ(i) has at least
two items, then the agent cannot be lying since the lying
agent bids on only one item and Step 3 can be performed.
If Γ(i) = {j}, then x∗ij = 1 since otherwise x∗ij could be
increased giving a better solution. Thus Step 2 or 3 can al-
ways be performed depending on if i is lying or not. If the
component has at least two agents, then it must have two
leaf agents. This can be seen by rooting the tree at any item.
At least one of them, say i, is tight by Claim 2.1. Thus Step
4 can be performed. 2

Theorem 2.3 Given a problem instance P , the allocation
obtained by algorithm MBA-ITER attains value at least 3

4 ·
LP (P).

Algorithm 1 k-th step of MBA-ITER

1. Solve LP (Pk). Remove all edges which are not in
E∗(Pk). These edges will stay removed in all subse-
quent steps.

2. If there is a lying agent iwith x∗ij = 1 for his false item
j, assign item j to him. In the next instance, Pk+1,
remove i and j. Proceed to (k + 1)-th iteration.

3. If there is a non-lying agent i such that all the items in
Γ(i) are leaf items. Then allocate Γ(i) to i. Remove i,
Γ(i) and all the incident edges to get the new instance
Pk+1 and proceed to (k + 1)-th iteration step.

4. Pick a tight leaf agent i. Notice that i must have at
least two items in Γ(i), otherwise tightness would im-
ply that the unique item is a leaf item and thus either
step 2 or step 3 must have been performed. Moreover,
exactly one item in Γ(i) is not a leaf item, and let j
be this unique non-leaf item. Allocate all the items in
Γ(i) \ j to i. In Pk+1, remove Γ(i) \ j and all incident
edges. Also, modify the budget and bids of agent i.
Note that agent i now bids only on item j as there are
no other edges incident to i. Let the new bid of agent i
on item j be

b′ij := max(0,
4bijx∗ij −Bi

3x∗ij
)

Let the new budget of agent i beB′i := b′ij . Call i lying
and j be his false item. Proceed to (k+ 1)-th iteration.

Proof: Let ∆k := LP (Pk)− LP (Pk+1) denote the drop
in the optimum across the k-th iteration. Denote the set of
items allocated at step k as Qk. Note that the total value of
the algorithm is

∑
j∈Q value(j) =

∑
k(

∑
j∈Qk

value(j)).
Also, the LP optimum of the original solution is LP (P) =∑
k ∆k since after the last item is allocated the LP value

becomes 0. The following lemma proves the theorem. 2

Lemma 2.4 In every stage k, value(Qk) :=∑
j∈Qk

value(j) ≥ 3
4∆k.

Proof: Items are assigned in either Step 2,3 or 4. Let us
analyze Step 2 first. Let i be the lying agent obtaining his
false item j. Since x∗ij = 1 and lying agents bid on only
one item, the remaining solution (keeping the same x∗ on
all remaining edges) is a valid solution for the LP in Pk+1.
Thus

LP (Pk)− LP (Pk+1) ≤ b′,

where b′ is the false bid of lying agent i on item j. Let b
be the bid of agent i on item j, before it was made lying.



Then, from Step 4 we know that b′ := 4bx−B
3x , where x

was the fraction of item j assigned to i and B is the budget
of i. Moreover, the portion of budget spent by i is at most
(B − bx). This implies value(j) ≥ bx. The claim follows
by noting for all b ≤ B and all x,‡

bx ≥ 3
4
· 4bx−B

3x
In Step 3, in fact the LP drop equals the value obtained -

both the LP drop and the value obtained is the sum of bids
on items in Γ(i) or Bi, whichever is less.

Coming to step 4, Qk = Γ(i) \ j be the set of goods
assigned to the tight, non-lying leaf agent i. Let b and b′

denote the bids of i on j before and after the step: bij and
b′ij . Let x be x∗ij . Note that x∗il ≤ 1 for all l ∈ Qk. Also,
x∗ restricted to the remaining goods still is a feasible solu-
tion in the modified instance Pk+1. Since the bid on item j
changes from b to b′, the drop in the optimum is at most

LP (Pk)− LP (Pk+1) ≤ (
∑
l∈Qk

bil) + (bx− b′x)

Note that value(Qk) =
∑
l∈Qk

bil ≥ B − bx by tightness
of i. We now show (bx−b′x) ≤ 1

3 ·value(Qk) which would
prove the lemma.

If b′ = 0, this means 4bx ≤ B. Thus, value(Qk) ≥
B − bx ≥ 3bx. Otherwise, we have

(bx− b′x) = bx− 4bx−B
3x

· x =
B − bx

3
≤ value(Qk)/3

implying the claim, as before. 2

Remark: The algorithm above can be extended to the case
of β-MBA as well. The only difference is in the modifi-
cation of bids and budgets in Step 4. The modification is
b′ij = 4bijx

∗
ij−β·Bi

(4−β)x∗ij
. It is not hard to modify Theorem 2.3 to

show this gives a 1− β/4-factor algorithm for β-MBA.

3 Primal-dual algorithm for MBA

In this section we give a faster primal-dual algorithm for
MBA although we lose a bit on the factor. The main theo-
rem of this section is the following:

Theorem 3.1 For any ε > 0, there exists an algorithm
which runs in Õ(nm/ε) time and gives a 3

4 · (1− ε)-factor
approximation algorithm for MBA.

Let us start by taking the dual of the LP relaxation LP(1).

DUAL := min{
∑
i∈A

Biαi +
∑
j∈Q

pj (2)

∀i ∈ A, j ∈ Q; pj ≥ bij(1− αi);
∀i ∈ A, j ∈ Q; pj , αi ≥ 0}

‡4bx2 − 4bx+B = b(2x− 1)2 + (B − b) ≥ 0

We make the following interpretation of the dual variables:
Every agent retains αi of his budget, and all his bids are
modified to bij(1−αi). The price pj of a good is the highest
modified bid on it. The dual program finds retention factors
to minimize the sum of budgets retained and prices of items.
We start with a few definitions.

Definition 2 Let Γ : A → 2Q be an allocation of items to
agents and let the set Γ(i) be called the items owned by i.
Let Si :=

∑
j∈Γ(i) bij denote the total bids of i on items

in Γ(i). Note that the revenue generated by Γ from agent
i is min(Si, Bi). Given αi’s, the prices generated by Γ is
defined as follows: pj = bij(1−αi), where j is owned by i.
Call an item wrongly allocated if pj < blj(1−αl) for some
agent l, call it rightly allocated otherwise. An allocation Γ is
called valid (w.r.t αi’s) if all items are rightly allocated, that
is, according to the interpretation of the dual given above,
all items go to agents with the highest modified bid (bij(1−
αi)) on it. Note that if Γ is valid, (pj ,αi)’s form a valid dual
solution. Given an ε > 0, Γ is ε-valid if pj/(1− ε) satisfies
the dual feasibility constraints with the αi’s.

Observe that given αi’s; and given an allocation Γ and
thus the prices pj generated by it, the objective of the dual
program can be treated agent-by-agent as follows

DUAL =
∑
i

Dual(i), where (3)

Dual(i) = Biαi +
∑
j∈Γ(i)

pj = Biαi + Si(1− αi)

Now we are ready to describe the main idea of the
primal-dual schema. The algorithm starts with all αi’s
set to 0 and an allocation valid w.r.t to these. We will
“pay-off” this dual by the value obtained from the alloca-
tion agent-by-agent. That is, we want to pay-off Dual(i)
with min(Bi, Si) for all agents i. Call an agent paid for if
min(Bi, Si) ≥ 3

4Dual(i). We will be done if we find αi’s
and an allocation valid w.r.t these such that all agents are
paid for.

Let us look at when an agent is paid for. From the defini-
tion of Dual(i), an easy calculation shows that an agent is
paid for iff Si ∈ [L(αi), U(αi)] · Bi, where L(α) = 3α

1+3α

and U(α) = 4−3α
3−3α . Note that Si depends on Γ which was

chosen to be valid w.r.t. αi’s. Moreover, observe that in-
creasing αi can only lead to the decrease of Si and vice-
versa. This suggests the following next step: for agents i
which are unpaid for, if Si > U(αi)Bi, increase αi and if
Si < L(αi)Bi, decrease αi and modify Γ to be the valid
allocation w.r.t the αi’s.

However, it is hard to analyze the termination of an al-
gorithm which both increases and decreases αi’s. This is
where we use the following observation about the function
L() and U(). (In fact 3/4 is the largest factor for which the



correspondingL() andU() have the following property; see
Remark 3.4)

Property 3.2 For all α, U(α) ≥ L(α) + 1. §

The above property shows that an agent with Si > U(αi)Bi
on losing a single item j will still have Si > U(αi)Bi −
bij ≥ (U(αi) − 1)Bi ≥ L(αi)Bi, for any αi ∈ [0, 1].
Also observe that in the beginning when αi’s are 0, Si ≥
L(αi)Bi. Thus if we can make sure that the size of Γ(i)
decreases by at most one, when the αi’s of an unpaid agent
i is increased, then the case Si < L(αi)Bi never occurs and
therefore we will never have to decrease α’s and termination
will be guaranteed.

However, an increase in αi can lead to movement of
more than one item from the current allocation of agent i
to the new valid allocation. Thus to ensure steady progress
is made throughout, we move to ε-valid allocations and get
a 3

4 ·(1−ε) algorithm. We now give details of the Algorithm
2.

Algorithm 2 MBA-PD: Primal Dual Algorithm for MBA

Define εi := ε · 1−αi

αi
. Throughout, pj will be the price

generated by Γ and current αi’s.

1. Initialize αi = 0 for all agents. Let Γ be the allocation
assigning item j to agent i which maximizes bij .

2. Repeat the following till all agents are paid for:

Pick an agent i who is not paid for (that is Si >
U(αi)Bi), arbitrarily. Repeat till i becomes paid
for:

If i has no wrongly allocated items in Γ(i),
then increase αi → αi(1 + εi). (Note that when
αi = 0, εi is undefined. In that case, modify
αi = ε from 0.)

Else pick any one wrongly allocated item
j of agent i, and modify Γ by allocating j to the
agent l who maximizes blj(1 − αl). (Note that
this makes j rightly allocated but can potentially
make agent l not paid for).

Claim 3.3 Throughout the algorithm, Si ≥ L(αi)Bi.

Proof: The claim is true to start with (L(0) = 0). Moreover,
Si of an agent i decreases only if i is not paid for, that is,
Si > U(αi)Bi. Now, since items are transferred one at a
time and each item can contribute at most Bi to Si, the fact
U(α) ≥ 1 + L(α) for all α proves the claim. 2

§U(α)− 1 = 1
3−3α

≥ 3α
1+3α

=: L(α)⇐ 1 + 3α ≥ 9α(1− α)⇐
9α2 − 6α+ 1 ≥ 0

Remark 3.4 In general, one can compare Dual(i) and
min(Si, Bi) to figure out what L,U should be to get a ρ-
approximation. As it turns out, the largest ρ for which U,L
satisfies property 3.2 is 3/4 (and it cannot be any larger
due to the integrality gap example). However, the bottle-
neck above is the fact that each item can contribute at most
Bi to Si. Note that in the case of β-MBA this is β · Bi
and indeed this is what gives a better factor algorithm. See
Theorem 3.8.

Theorem 3.5 For any ε > 0, given αi’s, an allocation Γ ε-
valid w.r.t it and pj , the prices generated by Γ; if all agents
are paid for then Γ is a 3/4(1− ε)-factor approximation for
MBA.

Proof: Consider the dual solution (pj , αi). Since all agents
are paid for, min(Bi, Si) ≥ 3/4 · Dual(i). Thus the total
value obtained from Γ is at least 3/4

∑
i∈ADual(i). More-

over, since Γ is ε-valid, (pj/(1 − ε), αi) forms a valid dual
of cost 1

1−ε
∑
i∈ADual(i) which is an upper bound on the

optimum of the LP and thus the proof follows. 2

Along with Theorem 3.5, the following theorem about the
running time proves Theorem 3.1.

Theorem 3.6 Algorithm MBA-PD terminates in (nm ·
ln (3m)/ε) iterations with an allocation Γ with all agents
paid for. Moreover, the allocation is ε-valid w.r.t the final
αi’s.

Proof: Let us first show the allocation throughout remains
ε-valid w.r.t. the αi’s. Note that initially the allocation is
valid. Subsequently, the price of an item j generated by
Γ decreases only when the αi of an agent i owning j in-
creases. This happens only in Step 2, and moreover j must
be rightly allocated before the increase. Now the following
calculation shows that after the increase of αi, pj decreases
by a factor of (1− ε). Thus, (pj/(1− ε), αi)’s form a valid
dual solution implying Γ is ε-valid.

p
(new)
j = bij(1− α(new)

i ) = bij(1− αi(1 + εi))

= bij(1− αi)(1− εiαi/(1− αi)) = p
(old)
j (1− ε)

Now in Step 2, note that until there are agents not paid
for, either we decrease the number of wrongly allocated
items or we increase the αi for some agent i. That is,
in at most m iterations of Step 2, αi of some agent be-
comes αi(1 + εi). Now, note that if αi > 1 − 1/3m for
some agent, he is paid for. This follows simply by noting
that Si ≤ mBi = U(1 − 1/3m) · Bi and the fact that
Si ≥ L(αi)Bi, for all αi.

Claim 3.7 If αi is increased t > 0 times, then it becomes
1− (1− ε)t.



Proof: At t = 1, the claim is true as αi becomes ε. Suppose
the claim is true for some t ≥ 1. On the t+ 1th increase, αi
goes to

αi(1 + εi) = αi + ε(1− αi) = αi(1− ε) + ε

= (1− (1− ε)t)(1− ε) + ε

= 1− (1− ε)t+1

2

Thus if αi is increased ln (3m)/ε times, i becomes paid for
throughout the remainder of the algorithm. Since there are
n agents, and in each m-steps some agent’s αi increases, in
(nm · ln (3m)/ε) iterations all agents are paid for and the
algorithm terminates. 2

The algorithm can be generalized for β-MBA by chang-
ing the definition of paid for and L(), U(). Call an agent
paid for if min(Bi, Si) ≥ 4−β

4 Dual(i). Define the function
L(α) := α(4−β)

α(4−β)+β and U(α) := (1−α)(4−β)+β
(1−α)(4−β) Note that

when β = 1, the definitions coincide with the definitions
in the previous section. The following theorem generalizes
Theorem 3.1.

Theorem 3.8 The algorithm 2 with the above definitions
gives a (1 − β/4)(1 − ε)-factor approximation for β-MBA
in Õ(nm/ε) time.

4 Inapproximability of MBA and related
problems

In this section we study the inapproximability of MBA
and the related problems as stated in the introduction. The
main theorem of this section is the following 15/16 hard-
ness of approximation factor for MBA.

Theorem 4.1 For any ε > 0, it is NP-hard to approximate
MBA to a factor 15/16 + ε. This holds even for uniform
instances.

We give a reduction from MAX-3-LIN(2) to MBA to
prove the above theorem. The MAX-3-LIN(2) problem is
as follows: Given a set of m equations in n variables over
GF (2), where each equation contains exactly 3 variables,
find an assignment to the variables to maximize the number
of satisfied equations. Håstad, in his seminal work [13],
gave the following theorem.

Theorem 4.2 [13] Given an instance I of MAX-3-LIN(2),
for any δ, η > 0, its NP hard to distinguish between the
two cases: YES: There is an assignment satisfying (1 −
δ)-fraction of equations, and NO: No assignment satisfies
more than (1/2 + η)-fraction of equations.

Let I be an instance of MAX-3-LIN(2). Denote the vari-
ables as x1, · · · , xn. Also let deg(xi) be the degree of vari-
able xi i.e. the number of equations in which variable xi
occurs. Note that

∑
i deg(xi) = 3m. We construct an in-

stance R(I) of MBA as follows:

• For every variable xi, we have two agents which we
label as 〈xi : 0〉 and 〈xi : 1〉, corresponding to the
two assignments. The budget of both these agents is
4deg(xi) (4 per equation).

• There are two kinds of items. For every variable xi,
we have a switch item si. Both agents, 〈xi : 0〉 and
〈xi : 1〉 , bid their budget 4deg(xi) on si. No one else
bids on si.

• For every equation e : xi + xj + xk = α (α ∈ {0, 1}),
we have 4 kinds of items corresponding to the four
assignments to xi, xj , xk which satisfy the equation:
〈xi : α, xj : α, xk : α〉, 〈xi : α, xj : ᾱ, xk : ᾱ〉,
〈xi : ᾱ, xj : ᾱ, xk : α〉 and 〈xi : ᾱ, xj : α, xk : ᾱ〉.
For each equation, we have 3 copies of each of the four
items. The set of all 12 items are called equation items,
and denoted by Se. Thus we have 12m equation items,
in all.

For every equation item of the form 〈xi : αi, xj :
αj , xk : αk〉, only three agents bid on it: the agents
〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. The bids are of
value 1 each.

The following lemma is not hard to see.

Lemma 4.3 There always exists an optimal solution to
R(I) in which every switch item is allocated.

Since agents who get switch items exhaust their budget,
any more equation items given to them generate no extra
revenue. We say that an equation item can be allocated in
R(I) only if it generates revenue, that is, it is not allocated
to an agent who has spent all his budget.

Lemma 4.4 Given an assignment of variables by R(I), if
an equation e is satisfied then all the 12 items of Se can be
allocated in R(I). Otherwise, at most 9 items of Se can be
allocated in R(I).

Proof: If an equation e is satisfied, then there must be one
equation item 〈xi : αi, xj : αj , xk : αk〉 such that xr is
assigned αr (r = i, j, k) in the assignment by R(I) (that
is the switch item sr is given to 〈xr : ᾱr〉). Assign the 12
items of Se as follows: give one the three copies of 〈xi :
αi, xj : αj , xk : αk〉 to agents 〈xi : αi〉, 〈xj : αj〉 and
〈xk : αk〉. Note that none of them have got the switch item.
Moreover, for the other items in Se, give all 3 copies of
〈xi : αi, xj : ᾱj , xk : ᾱk〉 to agent 〈xi : αi〉, and similarly



for the three copies of 〈xi : ᾱi, xj : αj , xk : ᾱk〉 and 〈xi :
ᾱi, xj : ᾱj , xk : αk〉. Since each agent gets 4 items, he does
not exhaust his budget.

If an equation e is not satisfied, then observe that there
must be an equation item 〈xi : αi, xj : αj , xk : αk〉 such
that xr is assigned ᾱr (r = i, j, k) in the assignment. That
is, all the three agents bidding on this item have their bud-
gets filled up via switch items. Thus none of the copies
of this equation item can be allocated, implying at most 9
items can be allocated. 2

The following two lemma along with Håstad’s theorem
prove the hardness for maximum budgeted allocation given
in Theorem 4.1.

Lemma 4.5 If OPT (I) ≥ m(1 − ε), then the maximum
budgeted allocation revenue ofR(I) is at least 24m−12mε.

Proof: Allocate the switch elements in R(I) so that
the assignment of variables by R(I) is same as the
assignment of I . That is, if xi is assigned 1 in the so-
lution to I , allocate si to 〈xi : 0〉, and vice versa if xi is
assigned 0. For every equation which is satisfied, allocate
the 12 equation items as described in Lemma(4.4). Since
each agent gets at most 4 items per equation, it gets at most
4deg(xi) revenue which is under his budget. Thus the total
budgeted allocation gives revenue: gain from switch items
+ gain from equation items =

∑
i 4deg(xi) + 12m(1 − ε)

= 24m− 12mε. 2

Lemma 4.6 If OPT (I) ≤ m(1/2 + η), then the maximum
budgeted allocation revenue of R(I) is at most 22.5m +
3mη

Proof: Suppose not. i.e . the maximum revenue of R(I)
is strictly greater than 22.5m + 3mη. Since the switch
items can attain at most 12m revenue, 10.5m + 3mη must
have been obtained from equation items. We claim that
there must be strictly more than m(1/2 + η) equations
so that at least 10 out of their 12 equation items are al-
located. Otherwise the revenue generated will be at most
12m(1/2 + η) + 9m(1/2 − η) = 10.5m + 3mη The con-
tradiction follows from Lemma(4.4). 2

As noted in Section 1.2, MBA is a special case of SMW.
Thus the hardness of approximation in Theorem 4.1 would
imply a hardness of approximation for SMW with the de-
mand oracle, if the demand oracle could be simulated in
poly-time in the hard instances of MBA. Lemma 4.8 below
shows that this indeed is the case which gives the following
theorem.

Theorem 4.7 For any ε > 0, it is NP-hard to approxi-
mate submodular welfare with demand queries to a factor
15/16 + ε.

Lemma 4.8 Given any instance I of MAX-3-LIN(2), in
the corresponding instance R(I) as defined in Section 4 the
demand oracle can be simulated in polynomial time.

Proof: We need to show that for any agent i and given
prices p1, p2 · · · to the various items, one can find a sub-
set of items S which maximizes (min(Bi,

∑
j∈S bij) −∑

j∈S pj). Call such a bundle the optimal bundle. Observe
that in the instance R(I), the bid of an agent i is 1 on an
equation item and Bi on the switch item. Therefore, the
optimal bundle S either consists of just the switch item or
consists of Bi equation items. The best equation items are
obviously those of the smallest price and thus can be found
easily (in particular in polynomial time). 2

The following hardness of approximation results for β-
MBA, GAP and weighted MSSF are obtained using similar
reductions and are deferred to in the full version of the pa-
per.

Theorem 4.9 For any ε > 0, it is NP-hard to approximate
β-MBA to a factor 1− β/16 + ε.

Theorem 4.10 For any ε > 0, it is NP-hard to approximate
GAP to a factor 10/11 + ε.

Theorem 4.11 For any ε > 0, it is NP-hard to approxi-
mate edge-weighted MSSF and node-weighted to a factor
10/11 + ε and 13/14 + ε respectively.

5 Discussion

In this paper we studied the maximum budgeted allo-
cation problem and showed that the true approximability
lies between 3/4 and 15/16. Our algorithms were based
on a natural LP relaxation of the problem and we, in some
sense, got the best out if it: the integrality gap of the LP is
3/4. An approach to get better approximation algorithms
might be to look at stronger LP relaxations of the problem.
One such relaxation is the configurational LP relaxation.
Configurational LPs have been used for other allocation
problems; in fact the best known approximation algorithm
of Feige and Vondrák [10] for SMW and GAP proceeds
by rounding the solution of the LP. In the full version of
the paper, we demonstrate an example which shows that
the integrality gap of this LP is at most 5/6. We leave the
pinning down of the integrality gap as an open question and
we believe that the resolution might require some newer
techniques in addition to the ones developed in this paper.

Another direction of research is improving the hardness of
approximation factor. We define a natural extention of SAT
below which seems to be at the core of MBA and other al-
location problems like GAP and SWM.



Definition 3 BUDGETED-3SAT(b): Given a formula φ =
C1 ∧ C2 · · · ∧ Cm, where each clause Ci is a disjunction
of three literals, let the degree, deg(l), of a literal l be the
number of clauses the literal appears in. The BUDGETED-
3SAT(b) asks for an assignment of variables and a maxi-
mum sized pairing {li, Ci} for every clause Ci and li ∈ Ci
such that the assignment of the literal satisfies the disjunc-
tion Ci, and every literal l appears in at most b · deg(l)
pairings.

Clearly, MAX-3-SAT is just the BUDGETED-3SAT(1)
problem. Our hardness result essentially shows that
BUDGETED-3SAT(b) (for any budget b) can be reduced to
MBA, and a hardness of ρ(b) for BUDGETED-3SAT(b) im-
plies a hardness of 2ρ(b)+3b

2+3b . Implicit in our reduction is the
fact that BUDGETED-3SAT(2/3) is 7/8-hard which gives
us a 15/16 hardness for MBA.

For general values of b however the approximibility
BUDGETED-3SAT(b) is open. In fact, for general b, it
is not even clear if BUDGETED-3SAT(b) is easier or
harder than MAX-3-SAT. Obtaining hardness results for
BUDGETED-3SAT(b) seems to be an interesting approach
towards the inapproximibility of allocation problems.
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