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Abstract

In this paper we consider the following maximum budgeted allocation (MBA) problem: Given
a set of m indivisible items and n agents; each agent i willing to pay bij on item j and with a
maximum budget of Bi, the goal is to allocate items to agents to maximize revenue.

The problem naturally arises as auctioneer revenue maximization in budget-constrained auc-
tions and as winner determination problem in combinatorial auctions when utilities of agents
are budgeted-additive. Our main results are:

• We give a 3/4-approximation algorithm for MBA improving upon the previous best of
' 0.632[AM04, Von08] (also implied by the result of [FV06]). Our techniques are based
on a natural LP relaxation of MBA and our factor is optimal in the sense that it matches
the integrality gap of the LP.

• We prove it is NP-hard to approximate MBA to any factor better than 15/16, previously
only NP-hardness was known [SS06, LLN01]. Our result also implies NP-hardness of
approximating maximum submodular welfare with demand oracle to a factor better than
15/16, improving upon the best known hardness of 275/276[FV06].

• Our hardness techniques can be modified to prove that it is NP-hard to approximate the
Generalized Assignment Problem (GAP) to any factor better than 10/11. This improves
upon the 422/423 hardness of [CK00, CC02].

We use iterative rounding on a natural LP relaxation of MBA to obtain the 3/4-approximation.
We also give a (3/4− ε)-factor algorithm based on the primal-dual schema which runs in Õ(nm)
time, for any constant ε > 0.

1 Introduction

Resource allocation problems of distributing a fixed supply of resources to multiple agents in an
“optimal” manner are ubiquitous in computer science and economics. In this paper we consider
the following maximum budgeted allocation (MBA) problem: Given a set of m indivisible items and
n agents; each agent i willing to pay bij on item j and with a maximum budget of Bi, the goal is
to allocate items to agents to maximize revenue.
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The problem naturally arises as a revenue maximization problem for the auctioneer in an auction
with budgeted agents. Examples of such auctions (see, for example [BK01]) include those used for
the privatization of public assets in western Europe, or those for the distribution of radio spectra
in the US, where the magnitude of the transactions involved put financial or liquidity constraints
on bidders. With the growth of the Internet, budget-constrained auctions have gained increasing
relevance. Firstly, e-auctions held on the web (on e-Bay, for instance) cater to the long-tail of
users who are inherently budget-constrained. Secondly, sponsored search auctions hosted by search
engines (Google, Yahoo!, MSN and the like) where advertisers bid on keywords include budget
specification as a feature. A common (and natural) assumption in keyword auctions that is typically
made is that bids of advertisers are much smaller than the budgets. However, with the extension
of the sponsored search medium from the web onto the more classical media, such as radio and
television (see for instance http://www.google.com/adwords/audioads/ and http://www.google.com/adwords/tvads)
where this assumption is not as reasonable, the general budget-constrained auctions need to be
addressed.

MBA is known to be NP-hard even for the special case of two bidders as it encodes the Par-
tition problem: Given n integers a1, · · · , an and a target B, decide whether there is a subset of
these integers adding up to exactly B. In this paper we study the approximability of MBA and
improve upon the best known approximation and hardness of approximation factors. Moreover,
we use our hardness reductions to get better hardness results for other allocation problems like
submodular welfare maximization (SWM), generalized assignment problem (GAP) and maximum
spanning star-forest (MSSF).

1.1 Maximum Budgeted Allocation

We start with the formal problem definition.

Definition 1 Let Q and A be a set of m indivisible items and n agents respectively, with agent i
willing to pay bij for item j. Each agent i has a budget constraint Bi and on receiving a set S ⊆ Q
of items, pays min(Bi,

∑
j∈S bij). An allocation Γ : A→ 2Q is the partitioning the sets of items Q

into disjoint sets Γ(1), · · · ,Γ(n). The maximum budgeted allocation problem, or simply MBA, is
to find the allocation which maximizes the total revenue, that is,

∑
i∈A min(Bi,

∑
j∈Γ(i) bij).

Note that we can assume without loss of generality that bij ≤ Bi, ∀i ∈ A, j ∈ Q. This is
because if bids are larger than budget, decreasing it to the budget does not change the value of any
allocation. Sometimes, motivated by the application, one can add the constraint that bij ≤ β · Bi
for all i ∈ A and j ∈ Q, for some β ≤ 1. We call such an instance β-MBA.

Previous and Related Work: As noted above, MBA is NP-hard and this observation was made
concurrently by many authors ([GKP01, SS06, AM04, LLN01]). The first approximation algorithm
for the problem was given by Garg, Kumar and Pandit[GKP01] who gave a 2/(1 +

√
5)(' 0.618)

factor approximation. Andelman and Mansour[AM04] improved the factor to (1 − 1/e)(' 0.632).
Vondrak [Von08] gave the same factor for a more general class of problems- Submodular Welfare
Maximization (SWM). Feige and Vondrak [FV06] gave a (1 − 1/e + ρ)-approximation algorithm
for SWM with ρ ∼ 0.0001 under some oracle assumptions which gives an approximation factor of
(1 − 1/e + ρ − ε) (for any ε > 0) for MBA (See section 1.2 for details). For the special case when
budgets of all bidders were equal, [AM04] improved the factor to 0.717. We refer to the thesis of
Andelman[And06] for an exposition.

Remark 1.1 Very recently, and independent of our work, Azar et.al. [ABK+08] obtained a 2/3-
factor for the MBA problem, and subsequently Srinivasan [Sri08] extended their algorithm to obtain
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a 3/4-factor for MBA. Thus along with our two algorithms, there are three different 3/4-factor
approximation algorithms for MBA.

In the setting of sponsored search auctions, MBA, or rather β-MBA with β → 0, has been
studied mainly in an online context. Mehta et.al.[MSVV07] and later, Buchbinder et.al.[BJN07]
gave (1− 1/e)-competitive algorithms when the assumption of bids being small to budget is made.
The dependence of the factor on β is not quite clear from either of the works. Moreover, as per our
knowledge, nothing better was known about the approximability of the offline β-MBA than what
was suggested by algorithms for MBA. When β = o(1), a (1 − o(1))-approximation follows quite
easily by randomized rounding of the LP.

Our results: We give two approximation algorithms for MBA. The first, based on iterative LP
rounding, attains a factor of 3/4. The algorithm described in Section 2. The second algorithm,
based on the primal-dual schema, is faster and attains a factor of 3

4(1−ε), for any ε > 0. The running
time of the algorithm is Õ(nmε )∗, and is thus almost linear for constant ε and dense instances. We
describe the algorithm in Section 3. Our algorithms can be extended suitably for β-MBA as well
giving a 1− β/4 factor approximation algorithm.

In Section 4, we show it is NP hard to approximate MBA to a factor better than 15/16 via
a gap-preserving reduction from Max-3-Lin(2). Our hardness instances are uniform in the sense
that for an item j, the bid of any bidder is either 0 or bj , implying that uniform MBA is also as
hard. Hardness reductions extend to give a (1− β/16) hardness for β-MBA as well. Interestingly,
our reductions can be used to obtain better inapproximability results for other problems: SWM
(15/16 hardness in the demand oracle model), GAP (10/11 hardness) and MSSF (10/11 and 13/14
for the edge and node weighted versions), which we elaborate upon below.

1.2 Relations to other allocation problems

Submodular Welfare Maximization (SWM): As in the definition of MBA, let Q be a set of
m indivisible items and A be a set of n agents. For agent i, let ui : 2Q → R+ be a utility function
where for a subset of items S ⊆ Q, ui(S) denotes the utility obtained by agent i when S is allocated
to it. Given an allocation of items to agents, the total social welfare is the sum of utilities of the
agents. The welfare maximization problem is to find an allocation of maximum social welfare.

Before discussing the complexity of the welfare maximization problem, one needs to be careful
of how the utility functions are represented. Since it takes exponential (in the number of items) size
to represent a general set function, oracle access to these functions is assumed and the complexity of
the welfare maximization problem depends on the strength of the oracle. The two most commonly
studied oracle models are value oracle and demand oracle. In the value oracle model, given a set S
of items and an agent i, the oracle returns the utility of the agent i for the set S. In the demand
oracle model, when given an agent i and prices p1, p2, · · · , pm for all items in Q, oracle returns a
subset S ⊆ Q which maximizes (ui(S)−

∑
j∈S pj).

Welfare maximization problems have been extensively studied (see, for example, [BN07]) in the
past few years with various assumptions made on the utility functions. One important set of utility
functions are monotone submodular utility functions. A utility function ui is submodular if for any
two subsets S, T of items, ui(S∪T )+ui(S∩T ) ≤ ui(S)+ui(T ). The welfare maximization problem
when all the utility functions are submodular is called the submodular welfare maximization prob-
lem or simply SWM. In the value oracle model, Khot et.al.[KLMM05] showed that SWM is hard to
approximate to a factor better than (1− 1/e). Recently, Vondrák[Von08] settled the complexity of
∗the˜hides logarithmic factors
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SWM in value oracle model by giving a (1− 1/e)-approximation algorithm. In the demand oracle,
Feige and Vondrák [FV06] gave a (1−1/e+ρ)-approximation for SWM with ρ ∼ 0.0001 and showed
that it is NP-hard to approximate SWM to a factor better than 275/276.

MBA is a special case of SWM. This follows from the observation that the utility function
ui(S) = min(Bi,

∑
j∈S bij) when Bi, bij ’s are fixed is a submodular function. The result of Vondrák

[Von08] directly gives a factor 1 − 1/e for MBA as the value oracle is easy to simulate in MBA.
The demand oracle is NP-hard to simulate in MBA, but there is a knapsack type FPTAS for it.
Feige and Vondrák’s [FV06] proof technique works with the approximate demand oracle as well,
thus giving a (1− 1/e+ ρ− ε)-approximation algorithm for MBA for any ε > 0.

In Section 4.1, we show that in the hardness instances of MBA, the demand oracle can be sim-
ulated in poly-time and therefore the 15/16 hardness of approximation for MBA implies a 15/16-
hardness of approximation for SWM in the demand oracle, improving upon 275/276 of [FV06].

Generalized Assignment Problem (GAP): GAP is a problem quite related to MBA: Every
item j, along with the bid (profit) bij for agent (bin) i, also has an inherent size sij . Instead of a
budget constraint, each agent (bin) has a capacity constraint Ci which defines feasible sets: A set
S is feasible for (bin) i if

∑
j∈S sij ≤ Ci. The goal is to find a revenue (profit) maximizing feasible

assignment. The main difference between GAP and MBA is that in GAP we are not allowed to
violate capacity constraints, while in MBA the budget constraint only caps the revenue. As was
noted by Chekuri and Khanna[CK00], a 1/2 approximation algorithm was implicit in the work of
Shmoys and Tardos[ST93]. The factor was improved by Fleischer et.al.[FGMS06] to 1−1/e. In the
same paper [FV06] where they give the best known algorithm for SWM, Feige and Vondrák[FV06]
also give a (1 − 1/e + ρ′) algorithm for GAP (ρ′ ≤ 10−5). The best known hardness for GAP
was 1− ε, for some small ε which was given by Chekuri and Khanna [CK00] via a reduction from
maximum 3D-matching. Improved hardness results for maximum 3D matching by Chlebik and
Chlebikova[CC02], imply a 422/423 hardness for GAP.

Although MBA and GAP are in some sense incomparable problems, we can use our hardness
techniques to get a 10/11 factor hardness of approximation for GAP in Section 4.3.

Maximum Spanning Star-Forest Problem (MSSF): Given an undirected unweighted graph
G, the MSSF problem is to find a forest with maximum number of edges subject to constraints
that all the nodes are covered and each tree in the forest is a star - all but at most one vertex of the
tree are leaves. The edge-weighted MSSF is the natural generalization with weights on edges. The
node-weighted MSSF has weights on vertices and the weight of a star is the weight on the leaves.
If the star is just an edge, then the weight of the star is the maximum of the weights of the end
points.

The unweighted and edge-weighted MSSF was introduced by Nguyen et.al [NSH+07] who gave
a 3/5 and 1/2-approximation respectively for the problems. They also showed APX hardness of
the unweighted version. Chen et.al. [CEN+07] improved the factor of unweighted MSSF to 0.71
and introduced node-weighted MSSF giving a 0.64 factor algorithm for it. They also give a 31/32
and 19/20 hardness for the node-weighted and edge-weighted MSSF problems.

Although, on the face of it, MSSF does not seem to have a relation with MBA, once again
our hardness technique can be used to improve the hardness of node-weighted and edge-weighted
MSSF to 13/14 and 10/11, respectively. We describe this in Section 4.4.
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1.3 The LP Relaxation for MBA

One way to formulate MBA as an integer program is the following:

max{
∑
i∈A

πi : πi = min(Bi,
∑
j∈Q

bijxij), ∀i;
∑
i∈A

xij ≤ 1, ∀j; xij ∈ {0, 1} }

Relaxing the integrality constraints to non-negativity constraints gives an LP relaxation for the
problem. We work with the following equivalent LP relaxation of the problem. The equivalence
follows by noting that there exists an optimal fractional solution in which Bi ≥

∑
j∈Q bijxij . This

was noted by Andelman and Mansour[AM04] and a similar relaxation was used by Garg et.al.
[GKP01].

max{
∑

i∈A,j∈Q
bijxij : ∀i ∈ A,

∑
j∈Q

bijxij ≤ Bi; ∀j ∈ Q,
∑
i∈A

xij ≤ 1; ∀i ∈ A, j ∈ Q, xij ≥ 0}

(1)

We remark that the assumption bij ≤ Bi is crucial for this LP to be of any use. Without this
assumption it is easy to construct examples having arbitrarily high integrality gaps. Consider the
instance with one item, n agents each having a budget 1 but bidding n on the item. The LP has a
solution of value n while the maximum welfare is obviously 1.

Moreover, the integrality gap of this LP is at most 3/4. In the following example in Figure(1),
the maximum revenue obtained by any feasible allocation is 3 while the value of the LP is 4. The
example is due to [AM04] and thus our main result shows that the integrality gap is exactly 3/4.

1

2
3

A
B

x
 =

 1
/2

x
 =

 1
/2 x
 =

 1
x
 =

 1

Figure 1: Agents are black squares and have budget 2. The bids of agent A and B on item 1 is 2.
A bids 1 on 2 and B bids 1 on 3. Note the agent who doesn’t get item 1 will spend only 1 and thus
the maximum allocation is 3. The LP however gets 4 as shown by the solution x.

2 An iterative rounding algorithm for MBA

Let P be a problem instance defined by the bids and budgets of every agent, that is P :=
({bij}i,j , {Bi}i). With P, we associate a bipartite graph G(P) = (A ∪ Q,E), with (i, j) ∈ E if
i bids on j.

Let x∗(P) be an extreme point solution to LP(1) for the problem instance P. For brevity, we
omit writing the dependence on P when the instance is clear from context. Let E∗ be the support of
the solution, that is E∗ := {(i, j) ∈ E : x∗ij > 0}. Note that these are the only important edges - one
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can discard all bids of agents i on item j when (i, j) /∈ E∗. This does not change the LP optimum
and a feasible integral solution in this instance is a feasible solution of the original instance. Call
the set of neighbors of an agent i in G[E∗] as Γ(i). Call an agent tight if

∑
j bijx

∗
ij = Bi.

The starting point of the algorithm is the following claim about the structure of the extreme
point solution. Such an argument using polyhedral combinatorics was first used in the machine
scheduling paper of Lenstra, Shmoys and Tardos [LST90]. A similar claim can be found in the
thesis of Andelman [And06].

Claim 2.1 The graph, G[E∗], induced by E∗ can be assumed to be a forest. Moreover, except for at
most one, all the leaves of a connected component are items. Also at most one agent in a connected
component can be non-tight.

Proof: Consider the graph G[E∗]. Without loss of generality assume that it is a single connected
component. Otherwise we can treat every connected component as a separate instance and argue on
each of them separately. Thus, G[E∗] has (n+m) nodes. Also since there are (n+m) constraints
in the LP which are not non-negativity constraints, therefore the support of any extreme point
solution can be of size at most (n + m). This follows from simple polyhedral combinatorics: at
an extreme point, the number of inequalities going tight is at least the number of variables. Since
there are only (n+m) constraints which are not non-negativity constraints, all but at most (n+m)
variables must satisfy the non-negativity constraints with equality, that is, should be 0. Thus
|E∗| ≤ n+m.

Hence there is at most one cycle in G[E∗]. Suppose the cycle is: (i1, j1, i2, j2, · · · , jk, i1), where
{i1, · · · , ik} and {j1, · · · , jk} are the subsets of agents and items respectively. Consider the feasible
fractional solution obtained by decreasing x∗ on (i1, j1) by ε1 and increasing on (i2, j1) by ε1,
decreasing on (i2, j2) by ε2 , increasing on (i3, j2) by ε2, and so on. Note that if the εi’s are
small enough, the item constraints are satisfied. The relation between ε1 and ε2 (and cascading
to other εr’s) is: ε1bi2,j1 = ε2bi2,j2 , that is, the fraction of money spent by i2 on j1 equals the
money freed by j2. The exception is the last εk, which might not satisfy the condition with ε1. If
εkbi1,jk > ε1bi1,j1 , then just stop the increase on the edge (i1, jk) to the point where there is equality.
If εkbi1,jk < ε1bi1,j1 , then start the whole procedure by increasing x∗ on the edge (i1, j1) instead of
decreasing and so on. In one of the two cases, we will get a feasible solution of equal value and
the εi’s can be so scaled so as to reduce x∗ on one edge to 0. In other words, the cycle is broken
without decreasing the LP value.

Thus, G[E∗] is a tree. Moreover, since (n+m−1) edges are positive, there must be (n+m−1)
equalities among the budget and the item constraints. Thus at most one budget constraint can be
violated which implies at most one agent can be non tight. Now since the bids are less than the
budget, if an agent is a leaf of the tree G[E∗], and the tree has at least two agents, i.e. the unique
item of leaf agent is shared with at least one more agent, then this leaf agent must be non-tight.
Hence at most one agent can be a leaf of the tree G[E∗]. 2

Call an item a leaf item, if it is a leaf in G[E∗]. Also call an agent i a leaf agent if, except for
at most one, all of his neighboring items in E∗(P) are leaves. Note the above claim implies each
connected component has at least one leaf item and one leaf agent: in any tree there are two leaves
both of which cannot be agents, and there must be an agent with all but one of its neighbors leaves
and thus leaf items. For the sake of understanding, we first discuss the following natural iterative
algorithm which assigns the leaf items to their neighbors and then adjusts the budget and bids to
get a new residual problem.
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1/2-approx algorithm: Solve LP (P) to get x∗(P). Now pick a leaf agent i. Assign all the leaf
items in Γ(i) to i. Let j be the unique non-leaf item (if any) in Γ(i). Form the new instance P ′
by removing Γ(i) \ j and all incident edges from P. Let b =

∑
l∈Γ(i)\j bil, be the portion of budget

spent by i. Now modify the budget of i and his bid on j in P ′ as follows: B′i := Bi − b, and
b′ij := min(bij , B′i). It is instructive to note the drop (bij − b′ij) is at most b. (We use here the
assumption bids are always smaller than budgets). Iterate on the instance P ′.

The above algorithm is a 1/2-approximation algorithm. In every iteration, we show that the rev-
enue generated by the items allocated is at least 1/2 of the drop in the LP value (LP (P)−LP (P ′)).
Suppose in some iteration, i be the leaf agent chosen, and let j be its non-leaf neighbor, and let
the revenue generated by algorithm be b. Note that x∗, the solution to P, restricted to the edges
in P ′ is still a feasible solution. Thus the drop in the LP is: b+ (bij − b′ij)xij . Since (bij − b′ij) is at
most b, and xij at most 1, we get LP (P)− LP (P ′) ≤ 2b.

To prove a better factor in the analysis, one way is to give a better bound on the drop, (LP (P)−
LP (P ′)). Unfortunately, the above analysis is almost tight and there exists an example (Figure 2
below) where the LP drop in the first iteration is ' twice the revenue generated by the algorithm
in that iteration.

Thus, for an improved analysis for this algorithm, one needs a better amortized analysis across
different iterations rather than analyzing iteration-by-iteration. This seems non-trivial as we solve
the LP again at each iteration and the solutions could be very different across iterations making it
harder to analyze over iterations.

Instead, we modify the above algorithm by defining the residual problem P ′ in a non-trivial
manner. After assigning leaf items to agent i, we do not decrease the budget by the amount as-
signed, but keep it a little “larger”. Thus these agents lie about their budgets in the subsequent
rounds, and we call these lying agents. Since the budget doesn’t drop too much, the LP value of the
residual problem doesn’t drop much either. A possible trouble would arise when items are being
assigned to lying agents since they do not pay as much as they have bid. This leads to a trade-off
and we show by suitably modifying the residual problem one can get a 3/4 approximation. We now
elaborate.

Given a problem instance P0 := P, the algorithm proceeds in stages producing newer instances
at each stage. On going from Pi to Pi+1, at least one item is allocated to some agent. Items are
never de-allocated, thus the process ends in at most m stages. The value of an item is defined to
be the payment made by the agent who gets it. That is, value(j) = min(bij , Bi − spent(i)), where
spent(i) is the value of items allocated to i at the time j was being allocated. We will always ensure
the condition that a lying agent i bids on at most one item j. We will call j the false item of i and
the bid of i on j to be i’s false bid. In the beginning no agent is lying.

We now describe the k-th iteration of the iterative algorithm which we call MBA-Iter (Algo-
rithm 1).

Claim 2.2 In each step, at least one item is allocated and thus MBA-Iter terminates in m steps.

Proof: We show that one of the three steps 2,3 or 4 is always performed and thus some item is
always allocated. Consider any component. If a component has only one agent i, then all the items
in Γ(i) are leaf items. If Γ(i) has more than two items, then the agent cannot be lying since the
lying agent bids on only one item and Step 3 can be performed. If Γ(i) = {j}, then x∗ij = 1 since
otherwise x∗ij could be increased giving a better solution. Thus Step 2 or 3 can always be performed
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Algorithm 1 k-th step of MBA-Iter

1. Solve LP (Pk). Remove all edges which are not in E∗(Pk). These edges will stay removed in
all subsequent steps.

2. If there is a lying agent i with x∗ij = 1 for his false item j, assign item j to him. In the next
instance, Pk+1, remove i and j. Proceed to (k + 1)-th iteration.

3. If there is a non-lying agent i such that all the items in Γ(i) are leaf items, then allocate Γ(i)
to i. Remove i, Γ(i) and all the incident edges to get the new instance Pk+1 and proceed to
(k + 1)-th iteration step.

4. Pick a tight leaf agent i. Notice that i must have at least two items in Γ(i), and thus is also
non-lying, otherwise tightness would imply that the unique item is a leaf item and thus either
step 2 or step 3 must have been performed. Moreover, exactly one item in Γ(i) is not a leaf
item, and let j be this unique non-leaf item. Allocate all the items in Γ(i) \ j to i. In Pk+1,
remove Γ(i) \ j and all incident edges. Also, modify the budget and bids of agent i. Note
that agent i now bids only on item j as there are no other edges incident to i. Let the new
bid of agent i on item j be

b′ij :=
4
3
bijx

∗
ij

Let the new budget of agent i be B′i := b′ij . Call i lying and j be his false item. Proceed to
(k + 1)-th iteration.

depending on if i is lying or not. If the component has at least two agents, then it must have two
leaf agents. This can be seen by rooting the tree at any item. At least one of them, say i, is tight
by Claim 2.1. Thus Step 4 can be performed. 2

Theorem 2.3 Given a problem instance P, the allocation obtained by algorithm MBA-Iter at-
tains value at least 3

4 · LP (P).

Proof: Let ∆k := LP (Pk)− LP (Pk+1) denote the drop in the optimum across the k-th iteration.
Denote the set of items allocated at step k as Qk. Note that the total value of the algorithm is∑

j∈Q value(j) =
∑

k(
∑

j∈Qk
value(j)). Also, the LP optimum of the original solution is LP (P) =∑

k ∆k since after the last item is allocated the LP value becomes 0. The following lemma proves
the theorem. 2

Lemma 2.4 In every stage k, value(Qk) :=
∑

j∈Qk
value(j) ≥ 3

4∆k.

Proof: Items are assigned in either Step 2, 3 or 4. Let us analyze Step 2 first. Let i be the lying
agent obtaining his false item j. Since x∗ij = 1 and lying agents bid on only one item, the remaining
solution (keeping the same x∗ on all remaining edges) is a valid solution for the LP in Pk+1. Thus
LP (Pk) − LP (Pk+1) ≤ b′, where b′ is the false bid of lying agent i on item j. The true budget of
the lying agent i is 3

4b
′. Thus value(Qk) ≥ 3

4∆k in this step.
In Step 3, the LP drop equals the value obtained - both the LP drop and the value obtained is

the sum of bids on items in Γ(i) or Bi, whichever is less.
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In step 4, Qk = Γ(i) \ j be the set of goods assigned to the tight, non-lying leaf agent i. Let
b and b′ denote the bids of i on j before and after the step: bij and b′ij . Let x be x∗ij . Note that
x∗il ≤ 1 for all l ∈ Qk. Also, x∗ restricted to the remaining goods still is a feasible solution in the
modified instance Pk+1. Since the bid on item j changes from b to b′, the drop in the optimum is
at most

LP (Pk)− LP (Pk+1) ≤ (
∑
l∈Qk

bil) + (bx− b′x)

Note that value(Qk) =
∑

l∈Qk
bil ≥ B − bx ≥ b− bx by tightness of i. We now show (bx− b′x) ≤

1
3 · value(Qk) which would prove the lemma.

(bx− b′x) = bx− 4
3
bx2 ≤ 1

3
(b− bx) ≤ 1

3
value(Qk),

where bx− 4
3bx

2 ≤ 1
3(b− bx) follows from the fact that 4bx2 − 4bx+ b = b(2x− 1)2 ≥ 0. 2

3 Primal-dual algorithm for MBA

In this section we give a faster primal-dual algorithm for MBA although we lose a bit on the factor.
The main theorem of this section is the following:

Theorem 3.1 For any ε > 0, there exists an algorithm which runs in Õ(nm/ε) time and gives a
3
4 · (1− ε)-factor approximation algorithm for MBA.

Let us start by taking the dual of the LP relaxation LP(1).

DUAL := min{
∑
i∈A

Biαi +
∑
j∈Q

pj : ∀i ∈ A, j ∈ Q; pj ≥ bij(1− αi); ∀i ∈ A, j ∈ Q; pj , αi ≥ 0}

(2)

We make the following interpretation of the dual variables: Every agent retains αi of his budget,
and all his bids are modified to bij(1 − αi). The price pj of a good is the highest modified bid on
it. The dual program finds retention factors to minimize the sum of budgets retained and prices of
items. We start with a few definitions.

Definition 2 Let Γ : A → 2Q be an allocation of items to agents and let the set Γ(i) be called
the items owned by i. Let Si :=

∑
j∈Γ(i) bij denote the total bids of i on items in Γ(i). Note that

the revenue generated by Γ from agent i is min(Si, Bi). Given αi’s, the prices generated by Γ are
defined as follows: pj = bij(1 − αi), where j is owned by i. Call an item wrongly allocated if
pj < blj(1− αl) for some agent l, call it rightly allocated otherwise. An allocation Γ is called valid
(w.r.t αi’s) if all items are rightly allocated, that is, according to the interpretation of the dual given
above, all items go to agents with the highest modified bid (bij(1−αi)) on it. Note that if Γ is valid,
(pj,αi)’s form a valid dual solution. Given an ε > 0, Γ is ε-valid if pj/(1 − ε) satisfies the dual
feasibility constraints with the αi’s.

Observe that given αi’s; and given an allocation Γ and thus the prices pj generated by it, the
objective of the dual program can be treated agent-by-agent as follows

DUAL =
∑
i

Dual(i), where Dual(i) = Biαi +
∑
j∈Γ(i)

pj = Biαi + Si(1− αi) (3)

9



Now we are ready to describe the main idea of the primal-dual schema. The algorithm starts
with all αi’s set to 0 and an allocation valid w.r.t to these. We will “pay off” this dual by the value
obtained from the allocation agent-by-agent. That is, we want to pay off Dual(i) with min(Bi, Si)
for all agents i. Call an agent paid for if min(Bi, Si) ≥ 3

4Dual(i). We will be done if we find αi’s
and an allocation valid w.r.t these such that all agents are paid for.

Let us look at when an agent is paid for. From the definition of Dual(i), an easy calculation
shows that an agent is paid for iff Si ∈ [L(αi), U(αi)] · Bi, where L(α) = 3α

1+3α and U(α) = 4−3α
3−3α .

Note that Si depends on Γ which was chosen to be valid w.r.t. αi’s. Moreover, observe that
increasing αi can only lead to the decrease of Si and vice-versa. This suggests the following next
step: for agents i which are unpaid for, if Si > U(αi)Bi, increase αi and if Si < L(αi)Bi, decrease
αi and modify Γ to be the valid allocation w.r.t the αi’s.

However, it is hard to analyze the termination of an algorithm which both increases and de-
creases αi’s. This is where we use the following observation about the function L() and U(). (In
fact 3/4 is the largest factor for which the corresponding L() and U() have the following property;
see Remark 3.4 below).

Property 3.2 For all α, U(α) ≥ L(α) + 1.

Proof: (U(α)− 1)− L(α) = 1
3−3α −

3α
1+3α = 1+3α−(9α−9α2)

(3−3α)(1+3α) = (1−3α)2

(3−3α)(1+3α) ≥ 0. 2

The above property shows that an agent with Si > U(αi)Bi on losing a single item j will still
have Si > U(αi)Bi − bij ≥ (U(αi) − 1)Bi ≥ L(αi)Bi, for any αi ∈ [0, 1]. Also observe that in the
beginning when αi’s are 0, Si ≥ L(αi)Bi. Thus if we can make sure that the size of Γ(i) decreases
by at most one, when the αi’s of an unpaid agent i is increased, then the case Si < L(αi)Bi never
occurs and therefore we will never have to decrease α’s and termination will be guaranteed.

However, an increase in αi can lead to movement of more than one item from the current
allocation of agent i to the new valid allocation. Thus to ensure steady progress is made throughout,
we move to ε-valid allocations and get a 3

4 · (1− ε) algorithm.
We now give details of the Algorithm 2.

Algorithm 2 MBA-PD: Primal Dual Algorithm for MBA
Throughout the algorithm, pj will be the price generated by Γ and current αi’s. Thus, the prices
are modified whenever αi or Γ is altered.

1. Initialize αi = 0 for all agents. Let Γ be the allocation assigning item j to agent i which
maximizes bij .

2. Repeat the following till all agents are paid for:

Pick an agent i who is not paid for (that is Si > U(αi)Bi), arbitrarily. Repeat till i
becomes paid for:

If i has no wrongly allocated items in Γ(i), then increase αi → αi + ε(1− αi).
Else pick any one wrongly allocated item j of agent i, and modify Γ by allocating

j to the agent l who maximizes blj(1 − αl). (Note that this makes j rightly allocated
but can potentially make agent l not paid for).

Claim 3.3 Throughout the algorithm, Si ≥ L(αi)Bi.

10



Proof: The claim is true to start with (L(0) = 0). Moreover, Si of an agent i decreases only if i is
not paid for, that is, Si > U(αi)Bi. Now, since items are transferred one at a time and each item
can contribute at most Bi to Si, the fact U(α) ≥ 1 + L(α) for all α proves the claim. 2

Remark 3.4 In general, one can compare Dual(i) and min(Si, Bi) to figure out what L,U should
be to get a ρ-approximation. As it turns out, the largest ρ for which U,L satisfies property 3.2 is
3/4 (and it cannot be any larger due to the integrality gap example). However, the bottleneck above
is the fact that each item can contribute at most Bi to Si. Note that in the case of β-MBA this is
β ·Bi and indeed this is what gives a better factor algorithm. Details in Section 3.1.

Theorem 3.5 For any ε > 0, given αi’s, an allocation Γ ε-valid w.r.t it and pj, the prices generated
by Γ; if all agents are paid for then Γ is a 3

4(1− ε)-factor approximation for MBA.

Proof: Consider the dual solution (pj , αi). Since all agents are paid for, min(Bi, Si) ≥ 3/4·Dual(i).
Thus the total value obtained from Γ is at least 3/4

∑
i∈ADual(i). Moreover, since Γ is ε-valid,

(pj/(1−ε), αi) forms a valid dual of cost 1
1−ε
∑

i∈ADual(i) which is an upper bound on the optimum
of the LP and thus the proof follows. 2

Along with Theorem 3.5, the following theorem about the running time proves Theorem 3.1.

Theorem 3.6 Algorithm MBA-PD terminates in (nm · ln (3m)/ε) iterations with an allocation Γ
with all agents paid for. Moreover, the allocation is ε-valid w.r.t the final αi’s.

Proof: Let us first show the allocation throughout remains ε-valid w.r.t. the αi’s. That is, for all
items j and agents i, we show that pj ≥ (1− ε)bij(1− αi). Fix an item j. Note that if j is rightly
allocated, then the pj ≥ bij(1 − αi) for all agents i. Also note that j can be wrongly allocated
iff at some point j is rightly allocated to some unpaid for agent i, and the algorithm increases αi
(which decreases pj since j is allocated to i), and subsequently the agent i remains paid for. pj
doesn’t change subsequently, and let poldj = bij(1 − αi) be the price of j before αi is increased,
and let pnewj = bij(1 − (αi + ε(1 − αi)) be the subsequent price which remains unchanged till the
end of the algorithm. Since j was rightly allocated before αi∗ was increased, it suffices to show
pnewj ≥ (1− ε)poldj . In fact, the inequality is an equality since

1− (αi + ε(1− αi)) = (1− ε)(1− αi) (4)

We now argue about the number of iterations of the algorithm. Note that, in Step 2, until there
are agents not paid for, either we decrease the number of wrongly allocated items or we increase
the αi for some agent i. That is, in at most m iterations of Step 2, αi of some agent becomes
αi + ε(1− αi). Also note that if αi > 1− 1/3m for some agent, he is paid for. This follows simply
by noting that Si ≤ mBi = U(1− 1/3m) ·Bi and the fact that Si ≥ L(αi)Bi, for all αi.

Claim 3.7 If αi is increased t > 0 times, then it becomes 1− (1− ε)t.

Proof: This is true for t = 0. Suppose the claim is true for some t ≥ 1, and that αi = 1− (1− ε)t.
On the (t+ 1)th increase, from (4), we get αi becomes 1− (1− ε)(1− αi) = 1− (1− ε)t 2

Thus if αi is increased ln (3m)/ε times, i becomes paid for throughout the remainder of the algo-
rithm. Since there are n agents, and in each m-steps some agent’s αi increases, in (nm · ln (3m)/ε)
iterations all agents are paid for and the algorithm terminates. 2
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3.1 Extension to β-MBA

The algorithm for β-MBA is exactly the same as Algorithm 2. The only difference is the definition
of paid for and L(), U(). Call an agent paid for if min(Bi, Si) ≥ 4−β

4 Dual(i). Define the function
L(α) := α(4−β)

α(4−β)+β and U(α) := (1−α)(4−β)+β
(1−α)(4−β) Note that when β = 1, the definitions coincide with

the definitions in the previous section.

Claim 3.8 For a given αi, agent i is paid for if Si ∈ [L(αi), U(αi)] ·Bi

Proof: Agent i is paid for if both Bi ≥ 4−β
4 (Biαi + Si(1− αi)) and Si ≥ 4−β

4 (Biαi + Si(1− αi)).
Let us lose the subscript for the remainder of the proof.
The first implies

S(1− α) ≤ B
( 4

4− β
− α

)
⇒ S(1− α) ≤ B (4− β)(1− α) + β

4− β
⇒ S ≤ U(α)B

The second implies

S
( 4

4− β
− (1− α)

)
≥ Bα⇒ S

α(4− β) + β

4− β
≥ Bα⇒ S ≥ L(α)B

2

Property 3.9 For all α, U(α) ≥ L(α) + β

Proof: Note that U(α) = 1 + β
(1−α)(4−β) and L(α) = 1− β

α(4−β)+β . Now,

U(α)− β ≥ L(α)⇐ β

(1− α)(4− β)
− β ≥ β

α(4− β) + β

⇐ 1
(1− α)(4− β)

≥ α(4− β)− (1− β)
α(4− β) + β

⇐ α(4− β) + β ≥ (4− β)2α(1− α)− (1− α)(1− β)(4− β)

⇐ α2(4− β)2 − α(4− β)((1− β) + (4− β)− 1) + β + (1− β)(4− β) ≥ 0

⇐ (α(4− β))2 − 2α(4− β)(2− β) + (2− β)2 ≥ 0

⇐ (α(4− β)− (2− β))2 ≥ 0

which is true for any α. 2

Theorem 3.10 The algorithm 2 with the above definitions gives a (1 − β
4 )(1 − ε)-factor approxi-

mation for β-MBA in Õ(nm/ε) time.

Proof: Armed with the Property 3.9 which implies Si ≥ L(α)Bi for all i, the proof of Theorem 3.6
can be modified (the only difference is we need to run till αi > 1− 1

4−βm instead of (1− 1/3m)), to
show that the algorithm terminates with an ε-valid allocation with all agents paid for. The proof
of the factor follows from the proof of Theorem 3.5 and Claim 3.8. 2
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4 Inapproximability of MBA and related problems

In this section we study the inapproximability of MBA and the related problems as stated in the
introduction. The main theorem of this section is the following 15/16 hardness of approximation
factor for MBA.

Theorem 4.1 For any ε > 0, it is NP-hard to approximate MBA to a factor 15/16+ε. This holds
even for uniform instances in the which for an item j, the bid of any bidder is either 0 or bj.

We give a reduction from Max-3-Lin(2) to MBA to prove the above theorem. The Max-3-
Lin(2) problem is as follows: Given a set of m equations in n variables over GF (2), where each
equation contains exactly 3 variables, find an assignment to the variables to maximize the number
of satisfied equations. H̊astad, in his seminal work [H̊as01], gave the following theorem.

Theorem 4.2 [H̊as01] Given an instance I of Max-3-Lin(2), for any δ, η > 0, it is NP hard
to distinguish between the two cases: Yes: There is an assignment satisfying (1 − δ)-fraction of
equations, and No: No assignment satisfies more than (1/2 + η)-fraction of equations.

We now describe the main idea of the hardness reduction, the same idea will also be used in
the reduction for other problems. For every variable x in a Max-3-Lin(2) instance, we will have
two agents corresponding to the variable being 0 or 1. For each such pair of agents we have a
switch item, an item bid on only by this pair of agents, and the allocation of the item will coincide
with the assignment of the variable. For every equation e in the Max-3-Lin(2) instance, we will
have items coinciding with the satisfying assignments of the equation. For instance if the equation
e : x+y+z = 0, we will have have items corresponding to 〈x : 0, y : 0, z : 0〉, 〈x : 0, y : 1, z : 1〉 and so
on. Each such item will be desired by the three corresponding agents: for example 〈x : 0, y : 0, z : 0〉
will be wanted by the 0 agent corresponding to x, y and z. The bids and budgets are so set so that
the switch items are always allocated and thus each allocation corresponds to an assignment. In
this way, an allocation instance encodes an assignment instance. The hardness of MBA and other
allocation problems follows from the hardness of Max-3-Lin(2). We give the details now.

Let I be an instance of Max-3-Lin(2). Denote the variables as x1, · · · , xn. Also let deg(xi) be
the degree of variable xi i.e. the number of equations in which variable xi occurs. Note that∑

i deg(xi) = 3m. We construct an instance R(I) of MBA as follows:

• For every variable xi, we have two agents which we label as 〈xi : 0〉 and 〈xi : 1〉, corresponding
to the two assignments. The budget of both these agents is 4deg(xi) (4 per equation).

• There are two kinds of items. For every variable xi, we have a switch item si. Both agents,
〈xi : 0〉 and 〈xi : 1〉 , bid their budget 4deg(xi) on si. No one else bids on si.

• For every equation e : xi + xj + xk = α (α ∈ {0, 1}), we have 4 kinds of items corresponding
to the four assignments to xi, xj , xk which satisfy the equation: 〈xi : α, xj : α, xk : α〉,
〈xi : α, xj : ᾱ, xk : ᾱ〉, 〈xi : ᾱ, xj : ᾱ, xk : α〉 and 〈xi : ᾱ, xj : α, xk : ᾱ〉. For each equation, we
have 3 copies of each of the four items. The set of all 12 items are called equation items, and
denoted by Se. Thus we have 12m equation items, in all.

For every equation item of the form 〈xi : αi, xj : αj , xk : αk〉, only three agents bid on it: the
agents 〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. The bids are of value 1 each.
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Figure 3 illustrates the reduction above locally on three variables x1, x2, x3 for the equation
x1 + x2 + x3 = 1.
We call a solution to R(I) a valid assignment if it allocates all the switch items. The following
lemma is not hard to see.

Lemma 4.3 There always exists an optimal solution to R(I) in which every switch item is allo-
cated, that is the solution is valid.

Proof: Suppose there is a solution which is not valid. Thus there is a switch item si which is not
allocated. Allocating si to either 〈xi : 0〉 or 〈xi : 1〉 and de-allocating the items allocated to the
agent can only increase the value of the allocation. 2

Suppose R(I) allocates switch item si to agent 〈xi : 0〉, then we say that R(I) assigns xi to 1,
and similarly if si is allocated to 〈xi : 1〉 then we say xi is assigned to 0. Thus by lemma 4.3, every
optimal solution of R(I) also gives an assignment of variables for I, and we call this the assignment
by R(I). Now observe the following property which is used to prove a crucial lemma 4.5:

Property 4.4 If (xi = αi, xj = αj , xk = αk) is a satisfying assignment for the equation xi + xj +
xk = α, then the other three satisfying assignments are (xi = ᾱi, xj = ᾱj , xk = αk), (xi = ᾱi, xj =
αj , xk = ᾱk), and (xi = αi, xj = ᾱj , xk = ᾱk).

Since agents who get switch items exhaust their budget, any more equation items given to
them generate no extra revenue. We say that an equation item can be allocated in R(I) only if it
generates revenue, that is, it is not allocated to an agent who has spent all his budget.

Lemma 4.5 Given an assignment of variables by R(I), if an equation e is satisfied then all the 12
items of Se can be allocated in R(I). Otherwise, at most 9 items of Se can be allocated in R(I).

Proof: If an equation e is satisfied, then there must be one equation item 〈xi : αi, xj : αj , xk : αk〉
such that xr is assigned αr (r = i, j, k) in the assignment by R(I) (that is the switch item sr is
given to 〈xr : ᾱr〉). Assign the 12 items of Se as follows: give one the three copies of 〈xi : αi, xj :
αj , xk : αk〉 to agents 〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. Note that none of them have got the switch
item. Moreover, for the other items in Se, give all 3 copies of 〈xi : αi, xj : ᾱj , xk : ᾱk〉 to agent
〈xi : αi〉, and similarly for the three copies of 〈xi : ᾱi, xj : αj , xk : ᾱk〉 and 〈xi : ᾱi, xj : ᾱj , xk : αk〉.
Since each agent gets 4 items, he does not exhaust his budget.

If an equation e is not satisfied, then observe that there must be an equation item 〈xi : αi, xj :
αj , xk : αk〉 such that xr is assigned ᾱr (r = i, j, k) in the assignment. That is, all the three agents
bidding on this item have their budgets filled up via switch items. Thus none of the copies of this
equation item can be allocated, implying at most 9 items can be allocated. 2

The following two lemmas along with H̊astad’s theorem prove the hardness for maximum budgeted
allocation given in Theorem 4.1.

Lemma 4.6 If OPT (I) ≥ m(1− ε), then the maximum budgeted allocation revenue of R(I) is at
least 24m− 12mε.

Proof: Allocate the switch elements in R(I) so that the assignment of variables by R(I) is same
as the assignment of I. That is, if xi is assigned 1 in the solution to I, allocate si to 〈xi : 0〉, and
vice versa if xi is assigned 0. For every equation which is satisfied, allocate the 12 equation items
as described in Lemma(4.5). Since each agent gets at most 4 items per equation, it gets at most
4deg(xi) revenue which is under his budget. Thus the total budgeted allocation gives revenue: gain
from switch items + gain from equation items =

∑
i 4deg(xi) + 12m(1− ε) = 24m− 12mε. 2
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Lemma 4.7 If OPT (I) ≤ m(1/2 + η), then the maximum budgeted allocation revenue of R(I) is
at most 22.5m+ 3mη

Proof: Suppose not. I.e . the maximum revenue of R(I) is strictly greater than 22.5m + 3mη.
Since the switch items can attain at most 12m revenue, 10.5m + 3mη must have been obtained
from equation items. We claim that there must be strictly more than m(1/2 + η) equations so that
at least 10 out of their 12 equation items are allocated. Otherwise the revenue generated will be at
most 12m(1/2 + η) + 9m(1/2− η) = 10.5m+ 3mη. The contradiction follows from Lemma 4.5. 2

4.1 Hardness of SWM with demand oracle

As noted in Section 1.2, MBA is a special case of SWM. Thus the hardness of approximation in
Theorem 4.1 would imply a hardness of approximation for SWM with the demand oracle, if the
demand oracle could be simulated in poly-time in the hard instances of MBA. Lemma 4.9 below
shows that this indeed is the case which gives the following theorem.

Theorem 4.8 For any ε > 0, it is NP-hard to approximate submodular welfare with demand
queries to a factor 15/16 + ε.

Lemma 4.9 Given any instance I of Max-3-Lin(2), in the corresponding instance R(I) as defined
in Section 4 the demand oracle can be simulated in polynomial time.

Proof: We need to show that for any agent i and given prices p1, p2 · · · to the various items, one
can find a subset of items S which maximizes (min(Bi,

∑
j∈S bij) −

∑
j∈S pj). Call such a bundle

the optimal bundle. Observe that in the instance R(I), the bid of an agent i is 1 on an equation
item and Bi on the switch item. Therefore, the optimal bundle S either consists of just the switch
item or consists of Bi equation items. The best equation items are obviously those of the smallest
price and thus can be found easily (in particular in polynomial time). 2

4.2 Hardness of β-MBA

The hardness reduction given above can be easily modified to give a hardness result for β-MBA, for
any constant 1 ≥ β > 0. Note that the budget of an agent is four times the degree of the analogous
variable. We increase the budget of agents 〈xi : 0〉 and 〈xi : 1〉 to 1

β4deg(xi). For each agent,
introduce dummy items so that the total bid of an agent on these dummy items is ( 1

β − 1) times
its original budget. The rest of the reduction remains the same. Call this new instance β-R(I).

Claim 4.10 We can assume that in any optimal allocation, all the dummy items are assigned

Proof: If a dummy item is not assigned and assigning it exceeds the budget of the agent, the agent
must be allocated an equation item. De-allocating the equation item and allocating the dummy
item gives an allocation of at least the original cost. 2

Once the dummy items are assigned, the instance reduces to the original instance. We have the
following analogous lemmas of Lemma 4.6 and Lemma 4.7.

Lemma 4.11 If OPT (I) ≥ m(1− ε), then the maximum budgeted allocation revenue of β-R(I) is
at least 24m−12mε+24m( 1

β −1). If OPT (I) ≤ m(1/2+η), then the maximum budgeted allocation
revenue of R(I) is at most 22.5m+ 3mη + 24m( 1

β − 1)
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Proof: The extra 24m( 1
β − 1) is just the total value of the dummy items which is obtained in both

cases. 2

The above theorem with H̊astad’s theorem gives the following hardness result for β-MBA.

Theorem 4.12 For any ε > 0, it is NP-hard to approximate β-MBA to a factor 1− β/16 + ε.

4.3 Hardness of GAP

To remind the reader, in the generalized assignment problem (GAP) we have n bins each with a
capacity Bi. There are a set of items with item j having a profit pij and size sij corresponding to
bin i. The objective is to find an allocation of items to bins so that no capacities are violated and
the total profit obtained is maximized.

One of the bottlenecks for getting a better lower bound for MBA is the extra contribution of
switch items which are always allocated irrespective of I. A way of decreasing the effect of these
switch items is to decrease their value. In the case of MBA this implies reducing the bids of agents
on switch items. Note that this might lead to an agent having a switch item and an equation item
as he has budget remaining, and thus the allocation does not correspond to an assignment for the
variables. This is where the generality of GAP helps us: the switch item will have a reduced profit
but the size will still be the capacity of the agent (bin). However, since we would want switch items
to be always allocated, we cannot reduce their profits by too much. We use this idea to get the
following theorem.

Theorem 4.13 For any ε > 0, it is NP-hard to approximate GAP to a factor 10/11 + ε.

We now describe our gadget more in detail. The gadget is very much like the one used for
MBA.

• For every variable xi, we have two bins 〈xi : 0〉 and 〈xi : 1〉, corresponding to the two
assignments. The capacity of both these bins is 2deg(xi) (2 per equation).

• There are two kinds of items. For every variable xi, we have a switch item si. si can go to
only one of the two bins, 〈xi : 0〉 and 〈xi : 1〉. Its size for both bins is 2deg(xi) while its profit
is deg(xi)/2.

• For every equation of the form e : xi + xj + xk = α (α ∈ {0, 1}), we have a set Se of 4
items, called equation items, corresponding to the four assignments to xi, xj , xk which satisfy
the equation: 〈xi : α, xj : α, xk : α〉, 〈xi : α, xj : ᾱ, xk : ᾱ〉, 〈xi : ᾱ, xj : ᾱ, xk : α〉 and
〈xi : ᾱ, xj : α, xk : ᾱ〉. Thus we have 4m equation items, in all. Every equation item of the
form 〈xi : αi, xj : αj , xk : αk〉, can go to any one of the three bins 〈xi : αi〉, 〈xj : αj〉 and
〈xk : αk〉. The profit and size for each of these bins is 1.

We will use R(I) to refer to the instance of GAP obtained from the instance I of Max-3-Lin(2).
Let us say a solution to an instance R(I) of GAP is a k-assignment solution if exactly k switch
items have been allocated. We will use valid-assignment to refer to the n-assignment solution.

Lemma 4.14 For every solution of R(I) which is a k-assignment solution such that variable xi is
unassigned ( i.e. item si is neither allocated to 〈xi : 0〉 nor 〈xi : 1〉 ) there exists a k-assignment
solution of at least the same value in which xi is unassigned and both 〈xi : 0〉 and 〈xi : 1〉 together
get at most one item from Se for every equation e of xi. i.e. they both get a total of at most deg(xi)
items.
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Proof: Suppose not. i.e. there exists an equation e (say xi + xj + xk = α) s.t. both 〈xi : 0〉
and 〈xi : 1〉 together gets at least two items out of Se. Notice that the switch items of xj and
xk can fill the capacity of at most one bin out of their respective two bins. Suppose the free bins
are 〈xj : α〉 and 〈xk : α〉 (The other cases can be considered similarly). Now except for the item
〈xi : α, xj : ᾱ, xk : ᾱ〉, all the other 3 items in Se are wanted by 〈xj : α〉 and 〈xk : α〉. By the
above property, all of these 3 items can be allocated to the bins 〈xj : α〉 and 〈xk : α〉. Thus we can
reallocate the items of Se such that at most one item out of Se is allocated to the corresponding
bins of variable xi without decreasing the profit. 2

Now by the above lemma, for any unassigned variable xi in a k-assignment solution, one of the
bins out of 〈xi : 0〉 and 〈xi : 1〉 will have at most deg(xi)/2 items. We can remove these items and
allocate the switch element of xi without reducing the profit. Thus we get the following corollary.

Corollary 4.15 For every optimal solution of R(I) which is a k-assignment solution there exists
a (k+1)-assignment solution which is also optimal. Therefore, there exists an optimal solution of
R(I) which is a valid assignment.

Now using arguments similar to Lemma 4.5 , one can show the following:

Lemma 4.16 Consider a valid assignment solution (say v-sol) of R(I). If an equation e is satisfied
by the assignment of variables given by v-sol then all the 4 items of Se can be allocated in v-sol.
Otherwise at most 3 items out of Se can be allocated in v-sol.

Now using arguments similar to lemma 4.6 and 4.7, one can prove the following lemma which
along with H̊astad’s theorem implies Theorem 4.13.

Lemma 4.17 Let I be an instance of Max-3-Lin(2) and R(I) be its reduction to GAP, then:

• If OPT (I) ≥ m(1− ε), then the maximum profit of R(I) is at least 5.5m− 4mε.

• If OPT (I) ≤ m(1/2 + η), then the maximum profit of R(I) is at most 5m+mη

Proof: Suppose OPT (I) ≥ m(1 − ε). Allocate switch elements in R(I) so that the assignment
of variables is same as the one given by optimal solution of I. Now the profit from switch items
equals:

∑
i(deg(xi)/2) = 3m/2. Also by lemma 4.16, the profit from equation items is at least

4m(1− ε). Combining both, we get the first part of the lemma.
Suppose OPT (I) ≤ m(1/2 + η). By corollary 4.15, there exists a optimum solution of R(I)

which is a valid assignment. Consider any such solution. Now the claim is that for no more than
m(1/2+η) equations, all the 4 items of Se’s can be allocated in this solution. If they do, then along
with lemma 4.16 it contradicts the fact that OPT (I) ≤ m(1/2 + η). Thus profit from equation
items can be at most: 4m(1/2 + η) + 3m(1/2− η) = 7m/2 +mη. Hence total profit can be at most
3m/2 + 7m/2 +mη. 2

4.4 Hardness of weighted MSSF

Given an undirected graph G, the unweighted maximum spanning star forest problem (MSSF) is
to find a forest with as many edges such that each tree in the forest is a star. The edge-weighted
MSSF (eMSSF) is the natural generalization with weights on edges. The node-weighted MSSF
(nMSSF) has weights on vertices and the weight of a star is the weight on the leaves. If the star is
just an edge, then the weight of the star is the maximum of the weights of the end points.
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It is clear that the non-trivial part of the above problem is to identify the vertices which are
the centers of the stars. Once more, we reduce Max-3-Lin(2) to both eMSSF and nMSSF. Let us
discuss the edge-weighted MSSF first. For every variable x in an instance of Max-3-Lin(2), we
introduce two vertices: 〈x : 0〉, 〈x : 1〉. The interpretation is clear: we will enforce that exactly one
of these vertices will be the center which will coincide with the assignment in the Max-3-Lin(2)
instance. Such an enforcing is brought about by putting a heavy cost edge between the vertices.
For every equation we will add vertices as we did in the reduction to GAP.

In the node-weighted MSSF, we need to add an extra vertex, the switch vertex, along with the
two vertices 〈x : 0〉, 〈x : 1〉. These vertices form a triangle and have a weight high enough to ensure
that exactly one of 〈x : 0〉, 〈x : 1〉 is chosen as a center in any optimum solution to nMSSF.

We remark that Chen et.al [CEN+07] also use a similar gadget as the one above, although their
reduction is from a variation of MAX-3-SAT and thus their results are weaker.

Hardness of eMSSF: Let I be an instance of Max-3-Lin(2). Denote the variables as x1, · · · , xn.
Also let deg(xi) be the degree of variable xi i.e. the number of equations in which variable xi occurs.
Note that

∑
i deg(xi) = 3m. We construct an instance E(I) of eMSSF as follows:

• For every variable xi, we have two variables which we label as 〈xi : 0〉 and 〈xi : 1〉, corre-
sponding to the two assignments. These variables are called variable vertices. There is an
edge between them of weight deg(xi)/2.

• For every equation e : xi + xj + xk = α (α ∈ {0, 1}), we have 4 vertices corresponding
to the four assignments to xi, xj , xk which satisfy the equation: 〈xi : α, xj : α, xk : α〉,
〈xi : α, xj : ᾱ, xk : ᾱ〉, 〈xi : ᾱ, xj : ᾱ, xk : α〉 and 〈xi : ᾱ, xj : α, xk : ᾱ〉. This set of vertices
are called equation vertices denoted by Se. Thus we have 4m equation vertices in all. Each
equation vertex of the form 〈xi : αi, xj : αj , xk : αk〉 is connected to three variable vertices:
〈xi : αi〉, 〈xj : αj〉 and 〈xk : αk〉. The weight of all these edges is 1. Thus, the degree of every
equation vertex is 3 and the degree of every variable vertex 〈xi : 0〉 or 〈xi : 1〉 is 2deg(xi).

Lemma 4.18 Given any solution to E(I), there exists a solution of at least the same weight where
the centers are exactly one variable vertex per variable.

Proof: Firstly note that if none of the variable vertices are centers then one can make one of them
a center and connect the other to it and get a solution of higher cost (note that the degrees of the
variables in the equations can be assumed to be bigger than 4 by replication). The proof is in two
steps. Call a variable xi ∈ I unassigned if both of 〈xi : 0〉 and 〈xi : 1〉 is a center. Call a solution of
E(I) k-satisfied if exactly k of the variables are assigned. The claim is that there exists a solution
of equal or more weight which is n-satisfied. We do this via induction.

We show that if a solution to E(I) is k-satisfied with k < n,then we can get a solution of at
least this weight which is k+1-satisfied. Pick a variable xi which is unassigned. For every equation
e : xi + xj + xk = 0, say, containing xi we claim that one can assume of the four equation vertices
in Se, only one is connected to 〈xi : 0〉 and 〈xi : 1〉. This is because at least one of the two variable
vertices corresponding to both xj and xk are centers. Suppose these are 〈xj : 0〉 and 〈xk : 0〉. Now
note that of the four vertices in Se only 〈xi : 0, xj : 1, xk : 1〉 is not neighboring to either of these
centers. The three remaining can be moved to these without any decrease in the weight of the
solution and the claim follows.

Thus, we can assume that for every unassigned variable xi in the k-satisfied solution, one of the
two variable vertices 〈xi : 0〉 or 〈xi : 1〉 (say 〈xi : 0〉), is connected to at most deg(xi)/2 equation
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vertices. Therefore, disconnecting all the equation items connected to 〈xi : 0〉, making it a leaf and
connecting it to 〈xi : 1〉, gives a k + 1-satisfied solution of weight at least the original weight. 2

Now we get the hardness of eMSSF using the theorem of H̊astad.

Theorem 4.19 For any ε > 0, it is NP-hard to approximate edge-weighted MSSF to a factor
10/11 + ε.

Proof: The proof follows from the following two calculations and Theorem 4.2.

• If OPT (I) ≥ m(1 − δ), then the maximum profit of E(I) is at least 5.5m − 4mδ. For every
variable xi, if the assignment of xi is α ∈ {0, 1}, make 〈xi : α〉 the center. Observe that for
every satisfied equation e : xi + xj + xk = α, all the four vertices of Se can be connected to a
center. Thus the weight of E(I) is at least

∑
i deg(xi)/2 + 4m(1− δ) = 5.5m− 4mδ.

• If OPT (I) ≤ m(1/2 + η), then the maximum profit of E(I) is at most 5m + mη From the
claim above we can assume for each variable xi, one of its two variable vertices is a center.
This defines an assignment of truth values to the variables and around half of the equations
are not satisfied by this assignment. The observation is that for any unsatisfied equation
e : xi+xj+xk = α, one of the four equation vertices in Se is not connected to any center. Thus,
the total weight of any solution is at most

∑
i deg(xi)/2+4m(1/2+η)+3m(1/2−η) = 5m+mη.

2

Hardness of nMSSF: Let I be an instance of Max-3-Lin(2). The only difference between the
instance of nMSSF, N(I), and the eMSSF E(I) is that for every variable xi ∈ I, along with the
variable vertices 〈xi : 0〉 and 〈xi : 1〉, we have a switch vertex si. The three vertices form a triangle
and the node-weights of all of them are deg(xi)/2. The rest of the instance of N(I) is exactly like
E(I) with the edge-weights being replaced by node-weights of 1 on the equation vertices.

The reason we require the third switch vertex per variable is that otherwise we cannot argue
that in any solution to N(I) at least one of the variable vertices should be a center. With the
switch vertex, we can argue that this is the case. If none of the variable vertices is a center, then
the switch item is not connected to any vertex. Thus making any one of the variable vertices a
center connected to the switch item gives a solution to N(I) of weight at least the original weight.

Lemma 4.18 now holds as in the case of E(I) and thus similar to Theorem 4.19 we have the
following hardness of node-weighted MSSF.

Theorem 4.20 For any ε > 0, it is NP-hard to approximate node-weighted MSSF to a factor
13/14 + ε.

Proof: The proof follows from the following two calculations and Theorem 4.2.

• If OPT (I) ≥ m(1 − δ), then the maximum profit of N(I) is at least 7m − 4mδ. For every
variable xi, if the assignment of xi is α ∈ {0, 1}, make 〈xi : α〉 the center. Connect the
switch item and the vertex 〈xi : ᾱ〉 to this center. Observe that for every satisfied equation
e : xi + xj + xk = α, all the four vertices of Se can be connected to a center. Thus the weight
of N(I) is at least

∑
i deg(xi) + 4m(1− δ) = 7m− 4mδ.

• If OPT (I) ≤ m(1/2 + η), then the maximum profit of N(I) is at most 6.5m+mη From the
claim above we can assume for each variable xi, one of its two variable vertices is a center.
This defines an assignment of truth values to the variables and around half of the equations
are not satisfied by this assignment. The observation is that for any unsatisfied equation
e : xi+xj+xk = α, one of the four equation vertices in Se is not connected to any center. Thus,
the total weight of any solution is at most

∑
i deg(xi)+4m(1/2+η)+3m(1/2−η) = 6.5m+mη.
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2

5 Discussion

In this chapter we studied the maximum budgeted allocation problem and showed that the true
approximability lies between 3/4 and 15/16. Our algorithms were based on a natural LP relaxation
of the problem and we, in some sense, got the best out if it: the integrality gap of the LP is 3/4.
An approach to get better approximation algorithms might be looking at stronger LP relaxations
to the problem. One such relaxation is the configurational LP relaxation which we describe below.

5.1 The configurational LP relaxation

In this relaxation, we have a variable xi,S for every agent i and every subset of items S ⊆ Q. The
LP is as follows

Max {
∑
i

∑
S⊆Q

ui(S)xi,S (5)

s.t.: ∀i ∈ A,
∑
S⊆Q

xi,S ≤ 1;

∀j ∈ Q,
∑

i,S⊆Q:j∈S
xi,S ≤ 1;

∀i ∈ A,S ⊆ Q, xi,S ≥ 0}

The first constraint implies that each agent gets at most one subset of items. The second implies
that each item is at most one subset. The value generated on giving a subset S to agent i is
ui(S) = min(Bi,

∑
j∈S bij).

Solving the LP: Although the LP has exponentially (in n and m) many variables, one can solve
this LP approximately by going to the dual which has polynomially many variables. Such a trick
is now fairly standard and was first used by Carr and Vempala [CV02], and by Fleischer et al.
[FGMS06] for solving configurational LPs. We sketch the process and refer the reader to [FGMS06]
for details.

The dual of LP 5 is as follows

Min {
∑
i∈A

αi +
∑
j∈Q

pj (6)

s.t.:∀i ∈ A,S ⊆ Q, αi +
∑
j∈S

pj ≥ ui(S);

∀i ∈ A, ∀j ∈ Q, αi, pj ≥ 0}

Suppose, for the time being, the LP6 has a separation oracle: Given (αi, pj) one can say in poly-
nomial time if it is feasible for LP6 or find a subset of agents S with αi +

∑
j∈S pj < ui(S). If so,

then the ellipsoid algorithm can be used to solve the LP by making a polynomial number of queries
to the separation oracle. Moreover, the subsets returned by the separation oracle are enough to
describe the optimal solution to the dual. In other words, in the primal LP 5, only the variables
corresponding to these constraints need be positive and the rest can be set to 0 and the optimum is
not changed. Since they are only polynomially many, LP 5 can now be solved in polynomial time.
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Moreover, if one had an r-separation oracle (r ≤ 1): Given (αi, pj) one can say in polynomial time
if 1

r · (αi, pj) is feasible for LP6 or find a subset of agents S with αi +
∑

j∈S pj < ui(S); then the
above argument can be used to get an r-approximation for the primal LP 5.

Although the separation oracle for the above is NP-hard, one can find an (1 − ε)-separation
oracle for LP 6 via an FPTAS similar to that for the knapsack problem. We leave the details; the
interested reader can refer [FGMS06] for more details.

Integrality gap of the configurational LP: In the next theorem we show that the integrality gap
of the configurational LP is between 3/4 and 5/6. The lower bound follows basically by showing
that the value of LP 5 is at most the value of LP 1 (and thus is a better upper bound on the
optimum). The upper bound follows from an example which we demonstrate below.

Theorem 5.1 The integrality gap of the configurational LP of MBA is between 3/4 and 5/6.

Proof: An easy way to see that the configurational LP is stronger than LP(1) is by looking at
the duals of both LP’s. One can show that any solution (αi, pj) to LP(2) corresponds to a feasible
solution (Biαi, pj) to LP 6 of equal value. Thus the configurational LP value is smaller than that
of LP(1).

The 5/6-example is as follows: The instance consists of 4 agents a1, b1, a2, b2. a1, a2 have a budget
of 1, b1, b2 have a budget of 2. There are five items: c, x1, y1 and x2, y2. Only b1 and b2 bid on c
and bid 2. For i = 1, 2, ai and bi each bid on xi and yi, and the bid is 1.

a 1
a 2

b
1

b
2

c

x
1

x
2

y 1
y 2

2
2

1
1

1
1 1

1
1

1

Figure 4: Integrality gap example for configurational LP.

Once again, if c is given to b1, then either a2 or b2 ends up spending 1 less than his budget. Thus,
the optimum MBA solution is 5. But there is a solution to the configurational LP(5) of value 6. The
sets are S1 = {x1}, S2 = {y1}, S3 = {x2}, S4 = {y2}, S5 = {c},S6 = {x1, y1} and S7 = {x2, y2}.
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The solution is: xa1,S1 = xa1,S2 = xa2,S3 = xa2,S4 = 1/2 and xb1,S6 = xb1,S5 = xb2,S5 = xb2,S7 = 1/2.
2

The above theorem is about all we know for the configurational LP relaxation for MBA. We be-
lieve that the integrality gap should be strictly better (larger) than 3/4 although it is not clear how
to do so. Configurational LPs have been used for other allocation problems; in fact the best known
approximation algorithm of Feige and Vondrák [FV06] for SMW and GAP proceeds by rounding
the solution of the LP. However, we do not know how to use the “simplicity” of the submodular
functions of MBA to get a better bound. (Feige and Vondrák get a factor strictly bigger than
1 − 1/e). We leave the question of pinning down the exact integrality gap of this LP as an open
question and believe the resolution might require some new techniques.
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[ST93] D. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment
problem. Math. Programming, 62:461–474, 1993.

[Vaz02] Vijay V. Vazirani. Approximation Algorithms. Springer, 2002.
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Figure 2: For some ε > 0 let k = 1/ε. In the instance, there are k+1 agents with budgets 1 denoted
by black squares and 2k items with bids as shown on the figure in the left. The LP value of this is
k + 1: the ε edges have x = 1, the 1 edges forming a matching have x = 1 − ε and the rest have
x = ε. After the first iteration, the leaf items are assigned and the value obtained is kε = 1. The
budgets of the k agents at the bottom reduce to 1− ε and so do their modified bids, as shown on
the figure in the right. The LP solution for this instance is k − 1 + ε (k − 1 items going to bottom
k − 1 agents and the remaining item to the top guy). The LP drop is 2 − ε and thus is twice the
value obtained as ε→ 0.
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Figure 3: The hardness gadget for reduction of MBA to Max-3-Lin(2). Dotted lines are a bid of 1 and
the solid lines are a bid equalling the budget, 4deg(xi).
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