
On Column-restricted and Priority Covering Integer Programs

Deeparnab Chakrabarty∗ Elyot Grant∗ Jochen Könemann∗

November 24, 2009

Abstract

In a 0,1-covering integer program (CIP), the goal is to pick a minimum cost subset of columns
of a 0,1-matrix such that for every row, the total number of 1’s in the row among the picked
columns is at least a specified demand of the row. In the capacitated version of the problem,
each column has an associated supply, and in a feasible solution, for every row the total supply
in the row among the picked columns is at least the specified demand. The corresponding cov-
ering integer program is called the column-restricted covering integer program (CCIP) since its
constraint matrix has the special property that all non-zeros in any given column are equal to
the column’s supply.

From an approximation algorithms point of view, CCIPs are not as well understood as their
0,1 counterparts. Our main result connects the approximability of a CCIP with two natural
related 0,1-CIPs. The first is the underlying original 0,1-CIP obtained by setting all supplies of
columns to 1. The second is a priority version of the 0,1-CIP in which every column and row are
assigned priorities. A column now covers a row iff it covers the row in the original 0,1-CIP, and
the column’s priority exceeds that of the row’s. We show that a strengthening of the natural LP
relaxation for the CCIP has integrality gap at most O(γ+ω) if the two 0,1-CIPs have gap O(γ)
and O(ω), respectively.

Priority versions of CIPs naturally capture quality of service type constraints in a covering
problem. We study the priority versions of the line (PLC) and the (rooted) tree cover (PTC)
problems. Apart from being natural objects to study, these problems fall in a class of fundamental
geometric covering problems. We make progress in understanding the integrality gaps of the
corresponding PCIPs. Algorithmically, we give a polytime exact algorithm for PLC, show that
the PTC problem is APX-hard, and give a factor 2-approximation algorithm for it.

∗University of Waterloo. Supported by NSERC grant no. 288340 and by an Early Research Award.
{deepc,egrant,jochen}@uwaterloo.ca



1 Introduction

In a 0,1-covering integer program (0,1-CIP, in short), we are given a constraint matrixA ∈ {0, 1}m×n,
demands b ∈ Zm

+ , non-negative costs c ∈ Zn
+, and upper bounds d ∈ Zn

+, and the goal is to solve the
following integer linear program (which we denote by Cov(A, b, c, d)).

min{cTx : Ax ≥ b, 0 ≤ x ≤ d, x integer}.

Problems that can be expressed as 0,1-CIPs are essentially equivalent to set multi-cover prob-
lems, where sets correspond to columns and elements correspond to rows. This directly implies that
0,1-CIPs are rather well understood in terms of approximability: the class admits efficient O(log n)
approximation algorithms and this is best possible unless NP = P. Nevertheless, in many cases one
can get better approximations by exploiting the structure of matrix A. For example, it is well known
that whenever A is totally unimodular (TU)(see [19] for a definition), the canonical LP relaxation
of a 0,1-CIP is integral, and therefore, 0,1-CIPs with this property trivially have polynomial-time
exact algorithms.

In this paper, we consider the more general class of covering problems that can be modeled
by column-restricted covering integer programs (CCIPs). The constraint matrix of a CCIP arises
from a 0,1-CIP by multiplying each column j of matrix A with a non-negative supply sj . CCIPs
naturally capture capacitated versions of 0,1-covering problems. For example, in the capacitated set
cover problem, each set has an integer supply of capacity and covers each of its elements that many
times. To give one more example, connectivity problems arising in network design applications are
often modelled as covering problems. Here, elements correspond to cut sets in an underlying graph
which need to be covered by edges or paths – the sets in these applications. As edges and paths
correspond to physical links in such applications, supplies naturally model link properties such as
capacity or bandwidth.

While a number of general techniques have been developed for obtaining approximation algo-
rithms for structured 0,1-CIPs, not much is known for the column-restricted versions. For instance,
it is not known whether constant factor (or, in fact, o(log n) factor) approximation algorithms exist
for CCIPs when the constraint matrix of the underlying 0,1-CIP is totally unimodular.

In this paper, we investigate the relationship between CCIPs and their 0,1 counterparts. In
particular, we show that a CCIP has a constant factor approximation if two related 0,1-CIPs have
constant integrality gaps. The first is the underlying original 0,1-CIP. The second is a priority
version of the 0,1-CIP (PCIPs, in short) in which every column and row are assigned priorities. A
column now covers a row iff it covers the row in the original 0,1-CIP, and the column’s priority
exceeds that of the row’s.

Since PCIPs are 0,1 covering integer programs, techniques developed for 0,1-CIPs could be
used to bound their integrality gaps; using our result this would imply better algorithms for the
CCIPs. Furthermore, PCIPs arise naturally when one wants to implement quality of service (QoS)
or priority restrictions on a covering problem. These reasons motivate the study of priority versions
of covering problems.

In this paper, we study the priority version of the tree covering problem. This is a natural 0,1
covering problem; furthermore, the constraint matrix of this 0,1-CIP is TU, and thus the problem
is polynomial time solvable. We show that the problem’s priority version, however, is APX-hard,
and present constant upper bounds for the integrality gap of this PCIP in a number of special
cases. Algorithmically, we show a non-trivial factor 2 approximation for the problem. Besides
being a natural covering problem to study, we show that the priority tree cover problem is a special
case of a classical geometric covering problem: that of finding a minimum cost cover of points by
axis-parallel rectangles in 3 dimensions. Finding a constant factor approximation algorithm for this

1



problem, even when the rectangles have uniform cost, is a long standing open problem. We believe
our methods for the priority tree cover problem could give rise to new attacks on the rectangle cover
problem.

1.1 Preliminaries

Given a 0,1-CIP Cov(A, b, c, d), we obtain its canonical LP relaxation by removing the integrality
constraint. The integrality gap of the CIP is defined as the supremum of the ratio of optimal IP
value to optimal LP value, taken over all demand vectors b, all cost vectors c and all upper-bound
vectors d. The integrality gap of an IP captures how much the integrality constraint affects the
optimum, and is an indicator of the strength of a linear programming formulation.

We now define CCIPs and PCIPs formally. To illustrate these two versions, we use the following
two examples of 0,1-covering problems.

Example 1 (Tree and Line Cover). The input is a tree T = (V,E) rooted at a vertex r ∈ V , a set of
segments S ⊆ {(u, v) : u is a child of v}, non-negative costs cj for all j ∈ S, and demands πe ∈ Z+

for all e ∈ E. An edge e is contained in a segment j = (u, v) if e lies on the unique u, v-path in T .
The goal is to find a minimum-cost subset C of segments such that each edge e ∈ E is contained
in at least πe segments of C. When T is just a line, we call the above problem, the line cover (LC)
problem. In this example, the constraint matrix A has a row for each edge of the tree and a column
for each segment in S. It can be shown that A is a TU matrix and thus both these problems can
be solved exactly in polynomial time.

Column-Restricted Covering IPs (CCIPs) In the above problem, suppose each segment
j ∈ S also has a capacity supply sj associated with it, and call an edge e covered by a collection of
segments C iff the total supply of the segments containing e exceeds the demand of e. This is the
column-restricted tree cover problem. Observe that if one considers the constraint matrix of this
capacitated problem, then in any column corresponding to a segment j each entry is either 0 or sj .

Given a 0,1-covering problem Cov(A, b, c, d) and a supply vector s ∈ Zn
+, the corresponding CCIP

is obtained as follows. Let A[s] be the matrix obtained by replacing all the 1’s in the jth column
by sj ; that is, A[s]ij = Aijsj for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. The column-restricted covering problem
is given by the following integer program.

min{cTx : A[s]x ≥ b, 0 ≤ x ≤ d, x integer}. (Cov(A[s], b, c, d))

Priority versions of Covering IPs (PCIPs) In the above problem, suppose each segment j
has a quality of service (QoS) or priority supply sj associated with it and suppose each edge e has a
QoS or priority demand πe associated with it. We say that a segment j covers e iff j contains e and
the priority supply of j exceeds the priority demand of e. The goal is to find a minimum cost subset
of segments which covers every edge. This is the priority tree cover problem. We remark that the
demand vector for the priority problem is the all 1’s vector; one could modify the definition with a
more general demand vector, but this definition suffices for our purposes.

In general, the PCIP of a covering problem is obtained as follows. Given a 0,1-covering prob-
lem Cov(A, b, c, d), a priority supply vector s ∈ Zn

+, and a priority demand vector π ∈ Zm
+ , the

corresponding PCIP is as follows. Define A[s, π] to be the following 0,1 matrix

A[s, π]ij =
{

1 : Aij = 1 and sj ≥ πi

0 : otherwise,
(1)

2



Thus, a column j covers row i, only if its priority supply is higher than the priority demand of row
i. The priority covering problem is now as follows.

min{cTx : A[s, π]x ≥ 1, 0 ≤ x ≤ d, x integer}. (Cov(A[s, π],1, c))

Note that we do not need the upper bounds here since no xi will be greater than 1 in any minimal
solution. We define the integrality gap of PCIP as the supremum, taken over all choices of s, π and
c, of the ratio of the optimum value of Cov(A[s, π],1, c) to its canonical LP relaxation.

1.2 Related work

There is a rich and long line of work ([10, 12, 18, 20, 21]) on approximation algorithms for CIPs,
of which we state the most relevant to our work. Let α, called the dilation of a CIP, denote
the maximum number of non-zeros in any column. Assuming no upper bounds on the variables,
Srinivasan [20] gave a O(1 + logα)-approximation to the problem. Later on, Kolliopoulos and
Young [16] obtained the same approximation factor, respecting the upper bounds. However, these
algorithms didn’t give any better results when special structure of the constraint matrix was known.
On the hardness side, Trevisan [22] showed that it is NP-hard to obtain a (logα − O(log logα))-
approximation algorithm even for 0,1-CIPs.

The most relevant work to this paper is that of Kolliopoulos [13]. The author shows that for
CCIPs, if one is allowed to violate the upper bounds by a multiplicative constant, then the integrality
gap of the CCIP is within a constant factor of that of the original 0,1-CIP1. As the author notes
such a violation is necessary; otherwise the CCIP has unbounded integrality gap. If one is not
allowed to violated upper bounds, nothing better than the result of [16] is known for the special
case of CCIPs. Furthermore, even for the result violating the upper bounds, [13] makes a rather
strong assumption, called the no bottleneck assumption, of the supply of any column being smaller
than the demand of any row. We show that a slightly modified analysis gives a slightly better factor
and bases on a slightly weaker assumption.

Our work on CCIPs parallels a large body of work on column-restricted packing integer programs
(CPIPs). Assuming the no-bottleneck assumption, Kolliopoulos and Stein [15] show that CPIPs
can be approximated asymptotically as well as the corresponding 0,1-PIPs. Chekuri et al. [7]
subsequently improve the constants in the result from [15]. These results imply constant factor
approximations for the column-restricted tree packing problem under the no-bottleneck assumption.
Without the no-bottleneck assumption, however, only polylogarithmic approximation is known for
the problem [6].

The only work on priority versions of covering problems that we are aware of is due to Charikar,
Naor and Schieber [5] who studied the priority Steiner tree and forest problems in the context
of QoS management in a network multicasting application. Charikar et al. present a O(log n)-
approximation algorithm for the problem, and Chuzhoy et al. [9] later show that no efficient
o(log log n) approximation algorithm can exist unless NP ⊆ DTIME(nlog log log n) (n is the num-
ber of vertices).

To the best of our knowledge, the column-restricted or priority versions of the line and tree
cover problem have not been studied. The best known approximation algorithm known for both is
the O(log n) factor implied by the results of [16] stated above. However, upon completion of our
work, Nitish Korula [17] pointed out to us that a 4-approximation for column-restricted line cover is
implicit in a result of Bar-Noy et al. [2]. We remark that their algorithm is not LP-based, although
our general result on CCIPs is.

1Such a result is implicit in the paper; the author only states a O(logα) integrality gap.

3



1.3 Technical Contributions and Formal Statement of Results

CCIPs Suppose the CCIP is Cov(A[s], b, c, d). We make the following two assumptions about the
integrality gaps of the 0,1 covering programs, both the original 0,1-CIP and the priority version of
the 0,1-CIP.

Assumption 1. The integrality gap of the original 0,1-CIP is γ ≥ 1. Specifically, for any non-
negative integral vectors b ∈ Zm

+ , c ∈ Zn
+, and d ∈ Zm

+ , if the canonical LP relaxation to the CIP has
a fractional solution x, then one can find in polynomial time an integral feasible solution to the CIP
of cost at most γ · cTx. We stress here that the entries of b, c, d could be 0 as well as ∞.

Assumption 2. The integrality gap of the PCIP is ω ≥ 1. Specifically, for any non-negative integral
vectors s, π, c, if the canonical LP relaxation to the PCIP has a fractional solution x, then one can
find in polynomial time, an integral feasible solution to the PCIP of cost at most ω · cTx.

We give an LP-based approximation algorithm for solving CCIPs. Since the canonical LP
relaxation of a CCIP can have unbounded integrality gap, we strengthen it by adding a set of
valid constraints called the knapsack cover constraints. We show that the integrality gap of this
strengthened LP is O(γ + ω), and can be used to give a polynomial time approximation algorithm.

Theorem 1. Under Assumptions 1 and 2, there is a (24γ+8ω)-approximation algorithm for column-
restricted CIPs.

Knapsack cover constraints to strengthen LP relaxations were introduced in [1, 11, 23]; Carr et
al. [4] were the first to use it in the design approximation algorithms. The paper of Kolliopoulos
and Young [16] also use these to get their result on general CIPs.

The main technique used for designing algorithms for column-restricted problems is grouping-
and-scaling developed by Kolliopoulos and Stein [14, 15] for packing problems, and later used by
Kolliopoulos [13] in the covering context. In this technique, the columns of the matrix are divided
into groups of ‘close-by’ supply values; in a single group, the supply values are then scaled to be
the same; for a single group, the integrality gap of the original 0,1-CIP is invoked to get an integral
solution for that group; the final solution is a ‘union’ of the solutions over all groups.

There are two issues in applying the technique to the new strengthened LP relaxation of our
problem. Firstly, although the original constraint matrix is column-restricted, the new constraint
matrix with the knapsack cover constraints is not. Secondly, unless additional assumptions are
made, the current grouping-and-scaling analysis doesn’t give a handle on the degree of violation of
the upper bound constraints. This is the reason why Kolliopoulos [13] needs the strong no-bottleneck
assumption.

We get around the first difficulty by grouping the rows as well, into those which get most of
their coverage from columns not affected by the knapsack constraints, and the remainder. On the
first group of rows, we apply a subtle modification to the vanilla grouping-and-scaling analysis and
obtain a O(γ) approixmatefeasible solution satisfying these rows; we then show that one can treat
the remainder of the rows as a PCIP and get a O(ω) approximate feasible solution satisfying them,
using Assumption 2. Combining the two gives the O(γ + ω) factor. The full details are given in
Section 2.

We stress here that apart from the integrality gap assumptions on the 0,1-CIPs, we do not
make any other assumption (like the no-bottleneck assumption). In fact, we can use the modified
analysis of the grouping-and-scaling technique to get a similar result as [13] for approximating
CCIPs violating the upper-bound constraints, under a weaker assumption than the no-bottleneck
assumption. The no-bottleneck assumption states that the supply of any column is less than the

4



demand of any row. In particular, even though a column has entry 0 on a certain row, its supply
needs to be less than the demand of that row. We show that if we weaken the no-bottleneck
assumption to assuming that the supply of a column j is less than the demand of any row i only
if A[s]ij is positive, a similar result can be obtained via our modified analysis. Our constant 10 in
the following theorem is slightly smaller than the constant 12 in [13].

Theorem 2. Under assumption 1 and assuming Aijsj ≤ bi, for all i, j, given a fractional solution
x to the canonical LP relaxation of Cov(A[s], b, c, d), one can find an integral solution xint whose
cost c · xint ≤ 10γ(c · x) and xint ≤ 10d.

Priority Covering Problems In the following, we use PLC and PTC to refer to the priority
versions of the line cover and tree cover problems, respectively. Recall that the constraint matrices
for line and tree cover problems are totally unimodular, and the integrality of the corresponding
0,1-covering problems is therefore 1 in both case. It is interesting to note that the 0,1-coefficient
matrices for PLC and PTC are not totally unimodular in general. The following integrality gap
bound is obtained via a primal-dual algorithm.

Theorem 3. The canonical LP for priority line cover has an integrality gap of at least 3/2 and at
most 2.

In the case of tree cover, we obtain constant upper bounds on the integrality gap for the case
c = 1, that is, for the minimum cardinality version of the problem. We believe that the PCIP for
the tree cover problem with general costs also has a constant integrality gap. On the negative side,
we can show an integrality gap of at least e

e−1 .

Theorem 4. The canonical LP for unweighted PTC has an integrality gap of at most 6.

We obtain the upper bound by taking a given PTC instance and a fractional solution to its
canonical LP, and decomposing it into a collection of PLC instances with corresponding fractional
solutions, with the following two properties. First, the total cost of the fractional solutions of
the PLC instances is within a constant of the cost of the fractional solution of the PTC instance.
Second, union of integral solutions to the PLC instances gives an integral solution to the PTC
instance. The upper bound follows from Theorem 3. Using Theorem 1, we get the following as an
immediate corollary.

Corollary 1. There are O(1)-approximation algorithms for column-restricted line cover and the
cardinality version of the column-restricted tree cover.

We also obtain the following combinatorial results.

Theorem 5. There is a polynomial-time exact algorithm for PLC.

Theorem 6. PTC is APX-hard, even when all the costs are unit.

Theorem 7. There is an efficient 2-approximation algorithm for PTC.

The algorithm for PLC is a non-trivial dynamic programming approach that makes use of
various structural observations about the optimal solution. The approximation algorithm for PTC
is obtained via a similar decomposition used to prove Theorem 4.

We end by noting some interesting connections between the priority tree covering problem and
set covering problems in computational geometry. The rectangle cover problem in 3-dimensions is
the following: given a collection of points P in R3, and a collection C of axis-parallel rectangles with

5



costs, find a minimum cost collection of rectangles which covers every point. Finding a constant
factor approximation algorithm is a long standing open problem in computational geometry, even
when all costs are unit. We can show the following theorem. We believe, studying the PTC problem
could give new insights into the rectangle cover problem.

Theorem 8. The priority tree covering problem is a special case of the rectangle cover problem in
3-dimensions.

2 General Framework for Column Restricted CIPs

In this section we prove Theorem 1. Our goal is to round a solution to a LP relaxation of
Cov(A[s], b, c, d) into an approximate integral solution. We strengthen the following canonical LP
relaxation of the CCIP

min{cTx : A[s]x ≥ b, 0 ≤ x ≤ d, x ≥ 0}

by adding valid knapsack cover constraints. In the following we use C for the set of columns and R
for the set of rows of A.

2.1 Strengthening the canonical LP Relaxation

Let F ⊂ C be a subset of the columns in the column restricted CIP Cov(A[s], b, c, d). For all rows
i ∈ R, define bFi = max{0, bi −

∑
j∈F A[s]ijdj} to be the residual demand of row i w.r.t. F . Define

matrix AF [s] by letting

AF [s]ij =
{

min{A[s]ij , bFi } : j ∈ C \ F
0 : j ∈ F, (2)

for all i ∈ C and for all j ∈ R. The following Knapsack-Cover (KC) inequality∑
j∈C

AF [s]ijxj ≥ bFi

is valid for the set of all integer solutions x for Cov(A[s], b, c, d). Adding the set of all KC inequalities
yields the following stronger LP formulation CIP. We note that the LP is not column-restricted, in
that, different values appear on the same column of the new constraint matrix.

optP := min
∑
j∈C

cjxj (P)

s.t.
∑
j∈C

AF [s]ijxj ≥ bFi ∀F ⊆ C, ∀i ∈ R (3)

0 ≤ xj ≤ dj ∀j ∈ C

It is not known whether (P) can be solved in polynomial time. For α ∈ (0, 1), call a vector x∗

α-relaxed if its cost is at most optP , and if it satisfies (3) for F = {j ∈ C : x∗j ≥ αdj}. An
α-relaxed solution to (P) can be computed efficiently for any α. To see this note that one can check
whether a candidate solution satisfies (3) for a set F . If a solution satisfies, we are done, otherwise
we have found a inequality of (P) which the solution doesn’t satisfy and we can make progress via
the ellipsoid method. Details can be found in [4] and [16].

6



We fix an α ∈ (0, 1), specifying its precise value later. Compute an α-relaxed solution, x∗, for
(P), and let F = {j ∈ C : x∗j ≥ αdj}. Define x̄ as, x̄j = x∗j if j ∈ C \ F , and x̄j = 0, otherwise.
Since x∗ is an α-relaxed solution, we get that x̄ is a feasible fractional solution to the residual CIP,
Cov(AF [s], bF , c, αd). In the next subsection, our goal will be to obtain an integral feasible solution
to the covering problem Cov(AF [s], bF , c, d) using x̄. The next lemma shows how this implies an
approximation to our original CIP.

Lemma 1. If there exists an integral feasible solution, xint, to Cov(AF [s], bF , c, d) with cTxint ≤
β · cT x̄, then there exists a max{1/α, β}-factor approximation to Cov(A[s], b, c, d).

Proof. Define

zj =
{
dj : j ∈ F
xintj : j ∈ C \ F, (4)

Observe that z ≤ d. z is a feasible integral solution to Cov(A[s], b, c, d) since for any i ∈ R,∑
j∈C

A[s]ijzj =
∑
j∈F

A[s]ijdj +
∑

j∈C\F

A[s]ijxintj ≥ (bi − bFi ) +
∑

j∈C\F

AF [s]ijxintj ≥ bi

where the first inequality follows from the definition of bFi and since A[s]ij ≥ AF [s]ij , the second
inequality follows since xint is a feasible solution to Cov(AF [s], bF , c, d).
Furthermore,

cT z =
∑
j∈F

cjdj +
∑

j∈C\F

cjx
int
j ≤ 1

α

∑
j∈F

cjx
∗
j + β

∑
j∈C\F

cjx
∗
j ≤ max{ 1

α
, β}optP

where the first inequality follows from the definition of F and the second from the assumption in
the theorem statement.

2.2 Solving the Residual Problem

In this section we use a feasible fractional solution x̄ of Cov(AF [s], bF , c, αd), to obtain an inte-
gral feasible solution xint to the covering problem Cov(AF [s], bF , c, d), with cTxint ≤ βcT x̄ for
β = 24γ + 8ω. Fix α = 1/24.

Converting to Powers of 2. For ease of exposition, we first modify the input to the residual
problem Cov(AF [s], bF , c, d) so that all entries of are powers of 2. For every i ∈ R, let b̄i denote the
smallest power of 2 larger than bFi . For every column j ∈ C, let s̄j denote the largest power of 2
smaller than sj .

Lemma 2. y = 4x̄ is feasible for Cov(AF [s̄], b̄, c, 4αd).

Proof. Focus on row i ∈ R. We have∑
j∈C

AF [s̄]ijyj ≥ 2 ·
∑
j∈C

AF [s]ij x̄j ≥ 2bFi ≥ b̄i,

where the first inequality uses the fact that sj ≤ 2s̄j for all j ∈ C, the second inequality uses the
fact that x̄ is feasible for Cov(AF [s], bF , c, αd), and the third follows from the definition of b̄i.

7



Partitioning the rows. We call b̄i the residual demand of row i. For a row i, a column j ∈ C is
i-large if the supply of j is at least the residual demand of row i; it is i-small otherwise. Formally,

Li = {j ∈ C : Aij = 1, s̄j ≥ b̄i} is the set of i-large columns
Si = {j ∈ C : Aij = 1, s̄j < b̄i} is the set of i-small columns

Recall the definition from (2), AF [s̄]ij = min(A[s̄]ij , bFi ). Therefore, AF [s̄]ij = Aijb
F
i for all j ∈ Li

since s̄j ≥ b̄i ≥ bFi ; and AF [s̄]ij = Aij s̄j for all j ∈ Si, since being powers of 2, s̄j < b̄i implies,
s̄j ≤ b̄i/2 ≤ bFi .

We now partition the rows into large and small depending on which columns most of their
coverage comes from. Formally, call a row i ∈ R large if∑

j∈Si

AF [s̄]ijyj ≤
∑
j∈Li

AF [s̄]ijyj ,

and small otherwise. Note that Lemma 2 together with the fact that each column in row i’s support
is either small or large implies,

For a large row i,
∑
j∈Li

AF [s̄]ijyj ≥ b̄i/2, For a small row i,
∑
j∈Si

AF [s̄]ijyj ≥ b̄i/2

Let RL and RS be the set of large and small rows.
In the following, we address small and large rows separately. We compute a pair of integral

solutions xint,S and xint,L which are feasible for the small and large rows, respectively. We then
obtain xint by letting

xintj = max{xint,Sj , xint,Lj }, (5)

for all j ∈ C.

2.2.1 Small rows.

For these rows we use the grouping-and-scaling technique a la [14, 15, 7, 13]. However, as mentioned
in the introduction, we use a modified analysis which bypasses the no-bottleneck assumptions made
by earlier works.

Lemma 3. We can find an integral solution xint,S such that
a) xint,Sj ≤ dj for all j,
b)
∑

j∈C cjx
int,S
j ≤ 24γ

∑
j∈C cj x̄j, and

c) for every small row i ∈ RS,
∑

j∈C A
F [s]ijx

int,S
j ≥ bFi .

Proof. The complete proof is slightly technical and hence we start with a sketch. Since the rows
are small, for any row i, we can zero out the entries which are larger than b̄i, and still 2y will be
a feasible solution. Note that, now in each row, the entries are < b̄i, and thus are at most b̄i/2
(everything being powers of 2). We stress that it could be that b̄i of some row is less than the
entry in some other row, that is, we don’t have the no-bottleneck assumption. However, we have
the weaker assumption and our modified analysis of grouping and scaling will make the proof go
through.

We group the columns into classes which have sj as the same power of 2, and for each row i we
let b̄(t)i be the contribution of the class t columns towards the demand of row i. The columns of
class t, the small rows, and the demands b̄(t)i form a CIP where all non-zero entries of the matrix

8



are the same power of 2. We scale both the constraint matrix and b̄
(t)
i down by that power of 2 to

get a 0,1-CIP, and using assumption 1, we get an integral solution to this 0,1-CIP. Our final integral
solution is obtained by concatenating all these integral solutions over all classes.

Till now the algorithm is the standard grouping-and-scaling algorithm. The difference lies in
our analysis in proving that this integral solution is feasible for the original CCIP. Originally the
no-bottleneck assumption was used to make this go through. However, we show since the column
values in different classes are geometrically decreasing, the weaker assumption can be made to go
through. We have skipped the details, and in fact an extra scaling is necessary to make the argu-
ment go through. We now get into the full proof.

Step 1: Grouping the columns:
Let s̄min and s̄max be the smallest and largest supply among the columns in C \ F . Since all s̄j

are powers of 2, we introduce the shorthand, s̄(t) for the supply s̄max/2t. We say that a column j is
in class t ≥ 0, if s̄j = s̄(t), and we let

C(t) := {j ∈ C \ F : s̄j = s̄(t)}

be the set of class t supplies.

Step 2: Disregarding i-large columns of a small row i
Fix a small row i ∈ RS . We now identify the columns j which are i-small. To do so, define

ti := log(s̄max/b̄i)+1. Observe that any column j in class C(t) for t ≥ ti are i-small. This is because
s̄j = smax/2t ≤ smax/2ti = b̄i/2 < b̄i. Define

b̄
(t)
i =

{
2
∑

j∈C(t) A
F [s̄]ijyj : t ≥ ti

0 : otherwise

as the contribution of the class t, i-small columns to the demand of row i, multiplied by 2. Note
that by definition of small rows, these columns contribute to more than 1/2 of the demand, and so∑

t≥ti

b̄
(t)
i ≥ b̄i. (6)

Henceforth, we will consider only the contributions of the small i-columns of a small row i.

Step 3: Scaling and getting the integral solution
Fix a class t of columns and scale down by s̄(t) to get a {0, 1}-constraint matrix. (Recall entries

of the columns in a class t are all s̄(t).) This will enable us to apply assumption 1 and get a integral
solution corresponding to these columns. The final integral solution will be the concatenation of
the integral solutions over the various classes.

The constants in the next claim are carefully chosen for the calculations to work out later.

Claim 1. For any t ≥ 0 and for all i ∈ RS, 6 ·
∑

j∈C(t) Aijyj ≥ b3b̄(t)i /s̄(t)c.

Proof. The claim is trivially true for rows i with ti > t as b̄(t)i = 0 in this case. Consider a row
i with ti ≤ t. Since any column j ∈ C(t) is i-small, we get AF [s̄]ij = Aij s̄j = Aij s̄

(t). Using the
definition of b̄i, we obtain

6 ·
∑

j∈C(t)
Aij s̄

(t)yj = 3b̄(t)i .

Dividing both sides by s̄(t) and taking the floor on the right-hand side yields the claim.

9



Since α = 1/24 and x̄ is a feasible solution to Cov(AF [s], bF , c, d/24), we get that 6yj = 24 · x̄j ≤
dj for all j ∈ C \ F . Thus, the above claim shows that 6y is a feasible fractional solution for
Cov(A(t), b3b̄(t)/s̄(t)c, c(t), d(t)), where A(t) is the submatrix of A defined by the columns in C(t), and
c(t) and d(t) are the sub-vectors of c and d, respectively, that are induced by C(t). Using Assumption
1, we therefore conclude that there is an integral vector xint,S,t such that

xint,S,t
j ≤ dj for all j ∈ C(t), and (7)∑

j∈C(t)
A

(t)
ij x

int,S,t
j ≥

⌊
3b̄(t)i

s̄(t)

⌋
for all i ∈ RS , and (8)

∑
j∈C(t)

cjx
int,S,t
j ≤ 6γ ·

∑
j∈C(t)

cjyj (9)

We obtain integral solution xint,S by letting xint,Sj = xint,S,t
j if j ∈ C(t). Thus xint,Sj ≤ dj for all

j ∈ C, and we get,∑
j∈C

cjx
int,S
j =

∑
t≥0

∑
j∈C(t)

cjx
int,S,t
j ≤ 6γ ·

∑
t≥0

∑
j∈C(t)

cjyj = 24γ ·
∑
j∈C

cj x̄j . (10)

Thus we have established parts (a) and (b) of the lemma. It remains to show that xint,S is feasible
for the set of small rows.

Step 4: Putting them all together: scaling back
Once again, fix a small row i ∈ RS . The following inequality takes only contribution of the

i-small columns. We later show this suffices.∑
j∈C

AF [s]ijx
int,S
j ≥

∑
j∈C: j is i-small

Aijsjx
int,S
j

=
∑
t≥ti

∑
j∈C(t)

A
(t)
ij sjx

int,S
j =

∑
t≥ti

∑
j∈C(t)

A
(t)
ij s̄

(t)xint,S,t
j (11)

The first inequality follows since AF [s]ij = Aijsj for i-small columns, and the second equality follows
from the definition of ti and s̄(t). The following claim along with (11) proves feasibility of row i.
This is the part where our analysis slightly differs from the standard grouping-and-scaling analysis.

Claim 2. For any small row i ∈ RS,∑
t≥ti

∑
j∈C(t)

A
(t)
ij s̄

(t)xint,S,t
j ≥ bFi .

Proof. In this proof, the choice of the constant 3 will become clear. Let Si = {t ≥ ti : 3b̄(t)i < s̄(t)}
be the set of i-small classes whose supply towards row i is relatively small. We now show that for
any small row i, the columns in the classes not in Si suffice to satisfy its demand. Note that∑

t6∈Si,t≥ti

b̄
(t)
i =

∑
t≥ti

b̄
(t)
i −

∑
t∈Si

b̄
(t)
i ≥

∑
t≥ti

b̄
(t)
i −

1
3

∑
t∈Si

s̄(t) (12)

10



which follows from the definition of Si. Furthermore, from (6) we know that for a small row,∑
t≥ti

b̄
(t)
i ≥ b̄i. Also, since s̄(t) form a geometric series, we get that

∑
t∈Si

s̄(t) ≤
∑

t≥ti
s̄(t) ≤ 2s̄(ti).

Putting this in (12) we get ∑
t6∈Si,t≥ti

b̄
(t)
i ≥ b̄i −

1
3

∑
t≥ti

s̄(t) ≥ b̄i −
2
3
s̄(ti) =

2
3
b̄i, (13)

where the final equality follows from the definition of ti which implies that s̄(ti) = b̄i/2.
Moreover, for t 6∈ Si, we know that b3b̄ti/s̄(t)c ≥ 3

2 b̄
t
i/s̄

(t) since bac ≥ a/2 if a > 1. Therefore,
using inequality (8) in (11), we get∑

j∈C
AF [s]ijx

int,S
j ≥

∑
t≥ti

∑
j∈C(t)

A
(t)
ij s̄

(t)xint,S,t
j ≥

∑
t6∈Si,t≥ti

s̄(t)

⌊
3b̄(t)i

s̄(t)

⌋

≥ 3
2

∑
t6∈Si,t≥ti

b̄
(t)
i

≥ b̄i ≥ bFi ,

where the second-last inequality uses (13), and the last uses the definition of b̄i. This completes the
proof of the lemma.

2.2.2 Large rows.

The large rows can be showed to be a PCIP problem and thus Assumption 2 can be invoked to get
an analogous lemma to Lemma 3.

Lemma 4. We can find an integral solution xint,L such that
a) xint,Lj ≤ 1 for all j,
b)
∑

j∈C cjx
int,S
j ≤ 8ω

∑
j∈C cj x̄j, and

c) for every large row i ∈ RL,
∑

j∈C A
F [s]ijx

int,S
j ≥ bFi .

Proof. Let i ∈ RL be a large row, and recall that Li is the set of i-large columns in C. We have∑
j∈Li

AF [s]ijyj =
∑
j∈Li

Aij b̄iyj ≥ b̄i/2,

and hence
2
∑
j∈Li

Aijyj ≥ 1. (14)

Let AR be the minor of A induced by the large rows. Consider the priority cover problem
Cov(AR[s̄, b̄],1, c). From the definition of Li, it follows 2y is a feasible fractional solution to the
priority cover problem.

Using Assumption 2, we conclude that there is an integral solution xint,L such that
∑

j∈C cjx
int,L
j ≤

2ω
∑

j∈C cjyj = 8ω
∑

j∈C cj x̄j , and
∑

j∈C A
R
ijx

int,L
j ≥ 1, for all large rows i ∈ RL.

Fix a large row i. Since AF [s]ij = bFi for all i-large columns Li, we get∑
j∈C

AF [s]ijx
int,L
j ≥

∑
j∈Li

Aijb
F
i x

int,L
j = bFi

∑
j∈C

ARijx
int,L
j ≥ bFi

This completes the proof of the lemma.

11



Proof of Theorem 1 Let xint,S and xint,L be as satisfying the conditions of Lemma 3 and 4,
respectively. Define xint as xintj = max{xint,Sj , xint,Lj }. We have

a) xintj ≤ dj since both xint,Sj ≤ dj and xint,Lj ≤ 1 ≤ dj .

b) For any row i,
∑

j∈C A
F [s]ijxintj ≥ bFi since the inequality is true with xint replaced by xint,S

for small rows, and xint by xint,L for large rows.

c)
∑

j∈C cjx
int
j ≤

∑
j∈C cjx

int,S
j +

∑
j∈C cjx

int,L
j ≤ (24γ + 8ω)

∑
j∈C cj x̄j .

Thus, xint is a feasible integral solution to Cov(AF [s], bF , c, d) with cost bounded as
∑

j∈C cjx
int
j ≤

(24γ + 8ω)
∑

j∈C cj x̄j . Noting that α = 1/24, the proof of the theorem follows from Lemma 1. �.

2.3 CCIPs with violation of upper-bounds: Proof of Theorem 2

In this section we prove Theorem 2 which we restate here. In the proof, we will indicate how we
modify the analysis of grouping-and-scaling which allows us to replace the no-bottleneck assumption
with a weaker one.

Theorem 9. (Theorem 2) Under assumption 1 and assuming Aijsj ≤ bi, for all i, j, given a
fractional solution x to the canonical LP relaxation of Cov(A[s], b, c, d), one can find an integral
solution xint whose cost c · xint ≤ 10γ(c · x) and xint ≤ 10d.

Proof. Let x be a feasible solution to A[s]x ≥ b, x ≥ 0. We construct an integral solution xint such
that A[s]xint ≥ b and cTxint ≤ 10γcTx. Let smax and smin be the largest and smallest sj ’s.

Grouping: Let C(t) := {j : 2−(t+1)smax < sj ≤ 2−tsmax} for t = 0, 1, . . . T where T = log( smax
smin

).
Let bti :=

∑n
j=1Aijsjxj . Note that

∑T
t=0 b

t
i ≥ bi. Let mt

i := minj∈C(t):Aij 6=0 sjAij , that is, mt
i is the

smallest non-zero entry of the ith row of A in the columns of C(t). Note that mt
i ≥ 2−(t+1)smax. Let

mi be the largest entry of row i. The assumption Aijsj ≤ bi implies mi ≤ bi.

Scaling: Let yt be a vector with yt
j = 10xj for j ∈ C(t), 0 elsewhere. Note that

∑
t c

T yt = 10cTx
and yt

i ≤ 10di for any i. Let ŝt be a vector with ŝt
j = 2−(t+1)smax for j ∈ C(t), 0 otherwise. Since

for all j ∈ C(t), ŝt
j ≥ sj/2, for all rows i we have∑

j∈C(t)
Aij ŝ

t
jy

t
j ≥ 5

∑
j∈C(t)

Aijsjxj = 5bti

Therefore since mt
i ≥ 2−(t+1)smax, we get

∑
j∈C(t)

Aijy
t
j ≥

5bti
2−(t+1)smax

≥ 5bti
mt

i

≥ b5b
t
i

mt
i

c

If we define an integral vector at to be at
i := b5bt

i

mt
i
c, we see that Ayt ≥ at.

Using assumption 1, there exists an integral solution zt such that Azt ≥ at, and cT zt ≤ γ(cT yt),
and zt

i ≤ 10di.

12



Scaling back: Now fix a row i, and look at∑
j∈C(t)

Aijsjz
t
j ≥

∑
j∈C(t)

Aijm
t
iz

t
j = mt

i

∑
j∈C(t)

Aijz
t
j ≥ mt

ib
5bti
mt

i

c

where the first inequality follows since mt
i is the minimum entry in the ith row in the columns of

C(t). This is where our analysis slightly differs from the previous analyses of grouping and scaling,
where instead of multiplying the RHS by mt

i, the RHS was multiplied by 2−tsmax. This subtle
observation leads us to make a weaker assumption than the no-bottleneck assumption.

Getting the final integral solution:
Define xint :=

∑T
t=0 z

t. Note that cTxint =
∑

t c
T zt ≤ γ

∑
t c

T yt = 10γ(cTx) and xint ≤ 10d.

Fix a row i and look at the ith entry of A[s]xint.

T∑
t=0

∑
j∈C(t)

Aijsjz
t
j ≥

T∑
t=0

b5b
t
i

mt
i

cmt
i (15)

Let Si := {t : 5bti < mt
i}. Note that ∑

t∈Si

bti <
1
5

∑
t∈Si

mt
i ≤ 3mi/5

the second inequality following from Claim 3 below. This gives us

∑
t/∈Si

bti >

T∑
t=0

bti − 3mi/5 ≥ bi − 3mi/5

For t /∈ Si, we have the floor in the inequality (15) at least 1. So we can use the relation
bxc ≥ x/2 for x ≥ 1. Thus, using mi ≤ bi, we have

Axint ≥
∑
t/∈Si

5bti
2
≥ 5bi/2− 3mi/2 ≥ bi

Claim 3.
∑T

t=0m
t
i ≤ 3mi.

Proof. Note that the non-zero mt
i decreases as t goes from 0 to T . Also, for any t < t′, we have

mt
i > 2−(t+1)smax and mt′

i ≤ 2−t′smax. Thus, mt′
i ≤ mt

i · 2−(t′−t−1). Since the largest mt
i can be at

most mi,
∑T

t=0m
t
i ≤ mi +mi +mi/2 +mi/4 + .... ≤ 3mi.

3 Priority line cover

Recall the PLC problem where a segment j covers an edge e iff it contains it and sj ≥ πe. We first
show that the integrality gap of the canonical linear programming relaxation of PLC is at least 3/2
and at most 2. Subsequently, we present an exact combinatorial algorithm for the problem.

13



min
{∑

j∈S
cjxj : x ∈ RS+ (Primal)

∑
j∈S:jcovers e

xj ≥ 1, ∀e ∈ E
} max

{∑
e∈E

ye : y ∈ RE
+ (Dual)

∑
e∈E:jcovers e

ye ≤ cj , ∀j ∈ S
}

Figure 1: The PLC canonical LP relaxation and its dual.

3.1 Canonical LP relaxation: Integrality gap

We start with the canonical LP relaxation for PLC and its dual in Figure 1.
The following example shows that the integrality gap of (Primal) is at least 3/2.

Example 2. Figure 2 shows a line of odd length k; odd numbered edges have demand 1, and even
numbered edges have a demand of 2. Paths are shown as lines above the line graph, and are also
numbered. Odd numbered paths have a supply of 2, and even numbered ones have a supply of 1.
Dashed lines indicate edges spanned but not covered. All paths have cost 1. Note that a fractional
solution is obtained by letting xp = 2/3 for paths 2 and k, and xp = 1/3 otherwise. The cost of this
solution is (k + 3)/3, while the best integral solutions takes all odd-numbered paths, and has cost
(k + 1)/2. As k tends to ∞, the ratio between the integral and fractional optimum tends to 3/2.
As an aside, we found the above integrality gap instance by translating a known integrality-gap
instance of the tree-augmentation problem in caterpillar graphs; see [8].

1 2 3 4 5 6 7 8 k-2 k-1 k

1

2

3

4

5

6

7

8

k

k+1

Figure 2: Integrality Gap for PLC

We now show that the integrality gap of the canonical LP for PLC is bounded by 2. We describe
a simple primal-dual algorithm which constructs a feasible line cover solution and a feasible dual
solution, and the cost of the former is at most twice the value of the dual solution.

The algorithm maintains a set of segments Q. Call an edge e unsatisfied if no segment in Q
covers e. Let U be the set of unsatisfied edges. Initially Q is the empty set and U = E. We grow
duals ye on certain edges, as specified below. We let E+ denote the edges with positive ye; we call
such edges, positive edges. Initially E+ is empty. Call a segment j tight if

∑
e∈j:j covers e ye = cj .

We use the terminology an edge e is larger than f , if πe ≥ πf .

14



Primal-Dual Algorithm

1. While U is not empty do

• Breaking ties arbitrarily, pick the largest edge e in U .

• Increase ye till some segment becomes tight. Note that each such segment must contain
e. Let jl(e) and jr(e) be the tight segments which have the smallest left-end-point and
the largest right-end-point, respectively. Since e is chosen to be the largest uncovered
edge, any unsatisfied edge contained in the two segments jl(e) or jr(e) is also covered.
We say e is responsible for jl(e) and jr(e).
Add jl(e), jr(e) to Q. Add e to E+. Remove all the unsatisfied edges contained in
either jl(e) or jr(e) from U .

2. Reverse Delete: Scan the segments j in Q in the reverse order in which they were added,
and delete j if its deletion doesn’t lead to uncovered edges.

It is clear that the final set Q is feasible. It is also clear that y forms a feasible dual. The factor
2-approximation follows from the following lemma by a standard relaxed complementary slackness
argument, and this finishes the proof of Theorem 3.

Lemma 5. Any edge e ∈ E+ is covered by at most two segments in Q.

Proof. Suppose there is an edge e ∈ E+ covered by three segments j1, j2 and j3. Observe that one
of the segments, say j2, must be completely contained in j1 ∪ j3. Since j2 is not deleted from Q,
there must be an edge f ∈ j2 such that j2 is the only segment in Q covering f . Since j1 and j3
don’t cover f , but one of them, say j1 contains it, this implies πf > supj1 ≥ πe. That is, f is larger
than e.

If f is the edge responsible for j2, then since j2 contains e, e wouldn’t be in E+. Since f is
larger than e, there must be a segment j in Q added before j2 which covers f . In the reverse delete
order, j2 is processed before j. This contradicts that j2 is the only segment in Q covering f .

Lemma 6.
∑

j∈Q cj ≤ 2
∑

e∈E ye.

Proof. Since each s ∈ Q satisfies
∑

e∈j:j covers e ye = cj , we get∑
j∈Q

cj =
∑
j∈Q

∑
e∈j:j covers e

ye =
∑
e∈E

ye · |{j ∈ Q : j covers e}| ≤ 2
∑
e∈E

ye

3.2 An Exact Algorithm for PLC

We first describe the sketch of the algorithm; the full proof starts from Section 3.2.1. A segment
j covers only a subset of edges it contains. We call a contiguous interval of edges covered by j, a
valley of j. The uncovered edges form mountains. Thus a segment can be thought of as forming a
series of valleys and mountains.

Given a solution S ⊆ S to the PLC (or even a PTC) instance, we say that segment j ∈ S is
needed for edge e if j is the unique segment in S which covers e. The set of needed edges is denoted
as ES,j . We say a solution is valley-minimal if it satisfies the following two properties: (a) If a
segment j is needed for edge e which lies in the valley v of j, then no higher supply segment of S
intersects this valley v, and (b) every segment j is needed for its last and first edges. We show that

15



an optimum solution can be assumed to be valley-minimal, and thus it suffices to find the minimum
cost valley-minimal solution.

The crucial observation is the following. Let segment j be the one in the optimum solution
which covers the first edge of the line. This decomposes the solution into two parts. Every other
segment of the solution lies completely in one of two regions. Either it lies in the strict interior of
the segment j, or it lies in the region from the right end-point of j to the right end-point of the
line. This allows us to obtain the optimal substructure for PLCs. The second region’s solution is
a smaller PLC instance, and we show that the solution to the first region can be cast as a shortest
path in a network whose arcs correspond to various smaller subproblems of PLC. The algorithm
follows by dynamic programming.

3.2.1 Valley-Minimal Solutions

As mentioned above, it helps to think of supplies and demands as heights. In the case of PLC, the
demands of the edges in E form a terrain, and each segment j ∈ S corresponds to a straight line at
height sj . Segment j then covers edge e if e lies in the segment’s shadow, that is, the height of e is
smaller than the height of the segment.

j

l re e’
P

0

1

2

3

4

5

6

7

Figure 3: The figure shows a segment j, and the terrain induced by the edges of E that it contains.
The terrain partitions j into valleys and mountains. Valleys are indicated by solid parts of j, and
mountains are shown as dashed lines.

Figure 3 illustrates this with path P and its edges. The light gray terrain indicates the demands
of the edges. The segment j shown in the picture covers the edges in [l, r] that lie in its shadow; e.g.,
j covers edge e but not e′. The terrain partitions j naturally into valleys – contiguous sub-intervals
of [l, r] that are in the shadow of j, and mountains – those sub-intervals that are contained in [l, r]
and consist entirely of edges that are not covered by j. The parts of j that correspond to mountains
are indicated by dashed lines, and valleys are depicted by solid lines. In the following, we let [ljk, r

j
k]

be the interval corresponding to the kth valley of j.
In the following, we will assume that the set of segments S in the given PLC/PTC instance is

segment-complete; i.e., if S contains the segment j then it also contains all proper sub-segments.
For example, if a PLC instance contains segment j corresponding to interval [lj , rj ], then it also
contains segments corresponding to intervals [l, r] for all lj ≤ l ≤ r ≤ rj . This assumption is w.l.o.g.
as we can always add a dummy sub-segment j′ for any such interval [l, r] with the same supply and
cost as j. Any minimal solution clearly uses at most one of j and j′, and if j′ is used, then replacing

16



it with j does not affect feasibility.
Let S ⊂ S be an inclusion-wise minimal solution for the given instance, and let j ∈ S be any

one of its segments. We say that j is needed for edge e ∈ E if j covers e, and if there is no other
segment in S that covers e; let ES,j be the set of edges that need j, and hence ES,j 6= ∅ for all
j ∈ S. Thus, if j is needed for e, then e is in one of j’s valleys; we let valje be that valley.

A solution S ⊆ S is valley-minimal if

[M1] for all j ∈ S and for all e ∈ ES,j , no segment of higher supply in S covers any of the edges in
valje, and

[M2] each segment is needed for its first and last edge.

For a solution S ⊆ S, we say that (j, j′, e) is a violating triple if j, j′ ∈ S, j′ has higher supply
than j, j is needed for e, and j′ covers some edge in valje. We obtain the following observation.

Lemma 7. Given a feasible instance of PLC/PTC, there exists an optimum feasible solution that
is valley-minimal.

Proof. First, it is not too hard to see that we can always obtain an optimal solution that satisfies
[M2]. If S is an optimum solution with a segment j, and j is not needed for its first or last edge e,
then we may clearly replace j by the sub-segment j − e. This does not increase the solutions cost,
using the segment-completeness.

Assume, for the sake of contradiction that S violates [M1], and choose a solution S with the
smallest number of violating triples. Let (j, j′, e) be one such triple. Since j is needed for e, edge e
is not contained in j′, and hence j′ is either fully contained in the interval (e, n] or fully contained
in the interval [1, e). Using the segment-completeness assumption, we may replace j′ by the sub-
segment j′′ obtained by removing the prefix consisting of edges in valje; remove j′′ if it is empty. The
resulting set of segments has cost at most that of S, and the number of violating triples is smaller;
a contradiction.

In the next subsection, we show how we can compute the minimum cost valley-minimal solution
for PLC instances in polynomial time using dynamic programming.

3.2.2 Computing valley-minimal solutions

For 1 ≤ l ≤ r ≤ n, let OPTl,r be the minimum cost valley-minimal feasible solution for the sub-
instance induced by interval [l, r] (i.e., this is the instance obtained by keeping only the segments
that are entirely contained in [l, r]), and let optl,r be its cost. Note that the segment-completeness
assumption implies that any such sub-instance is feasible. Clearly, optn,n is the minimum cost of
any segment in S that covers edge n, and OPT1,n is the optimum solution we want to obtain.

The following observation allows us to prove the optimal substructure in the problem for PLC
instances. Let S be a valley-minimal solution for the sub-interval [l, r], and let j ∈ S be the unique
(by valley-minimality) segment covering the first edge (l, l + 1). Let

ES,j = valj1 ∪ . . . ∪ valjk (16)

be the set of edges in E that need j. Let valji = [lji , r
j
i ] be the ith valley in the above list. In the

following observation, we let ljk+1 = r.

Observation 1. We may assume, for all 1 ≤ i ≤ k, if j′ ∈ S contains e ∈ (rj
i , l

j
i+1), then j′ is fully

contained in (rj
i , l

j
i+1).

17



j

Figure 4: The part of digraph Gl corresponding to segment j ∈ Sl.

Proof. If segment j′ has higher supply than j, then the above follows from the first condition of
valley-minimality. If segment j′ has lower supply, then since j′ must be needed for some edge e,
j must not contain e implying j′ must have its right end-point in (rj

k, r). Replacing j′ by the
sub-segment (rj

k, r) completes the observation.

Now we show how to compute OPTl,r given OPTl′r′ for all l ≤ l′ ≤ r′ ≤ r. The high level
idea is the following. The algorithm guesses the first segment j in OPTl,r. Given j = (l, r′) say,
from the above observation the problem decomposes into two parts. One part is the interval (r′, r]
which are covered by segments completely lying in sub-interval (r′, r]), the other are the uncovered
edges in (l, r′) which are covered by segments completely lying in sub-interval (l, r′). The first part’s
solution is obtained since it is a smaller subproblem, the second part is computed by a shortest-path
computation. We now elaborate and give the complete algorithm.

Let Sl be the segments in S with leftmost endpoint l. We construct a digraph G` as follows.
Consider a segment j ∈ Sl, and let

[lj1, r
j
1], . . . , [ljk, r

j
k]

be the set of its valleys. We add a node vj
q for each valley 1 ≤ q ≤ k of j to G`. We also add an arc

for all 1 ≤ q < q′ ≤ k.
A shortest path corresponding to the solution OPTl,r will use arc (vj

q , v
j
q′) if

(i) j is the leftmost segment in OPTl,r, and

(ii) valjq and valjq′ are two consecutive valleys of j for which j is needed. Note that j might not be
needed for all of its valleys. However, by valley minimality, it is needed for its first and last
valleys.

Observation 1 then states that OPTl,r uses segments that are entirely contained in (rj
q, l

j
q′) to cover

(rj
q, l

j
q′). An optimum set of such segments is given by OPT

rj
q+1,lj

q′−1
, and we therefore give arc

(vj
q , v

j
q′) cost opt

rj
q+1,lj

q′−1
. Figure 4 shows the part of G` for the segment s from Figure 3.

We add a source node v̄j and arcs (v̄j , v
j
1) of cost cj for each of the segments j ∈ Sl. A shortest

path uses such an arc if j is the unique segment starting at l in the corresponding optimum solution.
We also add a sink node t̄r and add an arc (vj

k, t̄r) for all j ∈ Sl of cost opt
rj
k+1,r

indicating the

optimum PLC for the sub-interval [rj
k + 1, r]. Note that if rj

k = r, then this arc is a loop of cost 0
and can be discarded.

It follows from the above construction that optl,r is equal to the cost of a shortest s̄, t̄r-path in Gl.
Each of the shortest-path computations can clearly be done in polynomial time, and we therefore

18



optl,r can be obtained via dynamic programming, in polynomial time. We get the following theorem
which is a restatement of Theorem 5.

Theorem 10. The cost opt1,n of an optimum solution for a given PLC instance can be computed
in polynomial time.

4 Priority tree cover

We first give a proof of Theorem 6, and show that rooted PTC is APX-hard, even if all segments
have unit cost. Subsequently, we present a 2-approximation algorithm for the problem, by reducing
it to an auxiliary instance of the tree augmentation problem. Then, we prove Theorem 4, and
show that the integrality gap of the canonical LP formulation of unweighted PTC is bounded by 6.
Finally, we prove the connection between PTC and the rectangle cover problem.

4.1 APX-hardness

We prove APX-hardness of PTC via a reduction from vertex cover in bounded degree graphs. The
latter problem is known to be APX-hard. Given a bounded degree graph G(V,E), with n vertices
and m = O(n) edges, let the edges be arbitrarily numbered {1, 2, . . . ,m}.

The tree in our instance has a broom structure: it has a handle, a path of m edges (e1, . . . , em)
given by vertices {x0, x1, . . . , xm}, and it has n bristles, one bristle corresponding to each vertex
v ∈ V . The edge ei in the handle for 1 ≤ i ≤ m, corresponds to the edge numbered i in the graph
G. The bristle corresponding to vertex v is a path (fv

1 , f
v
2 , . . . , f

v
deg(v)) of length deg(v) given by the

vertices {xm, y
v
1 , y

v
2 , . . . , y

v
deg(v)}. The root of the tree is x0, the end point of the handle. Thus the

tree has m+
∑

v deg(v) = 3m edges.
We now describe the priority demands of these tree edges. The demand of edge ei is i. Consider

the edges in G incident on v in the decreasing order of their numbers. Suppose they are (i1 > i2 >
· · · > ideg(v)). The demands of the edge fv

j is ij . Thus, for a particular bristle corresponding to a
vertex v, the demands decrease as we go from fv

1 to fv
deg(v), and these demands correspond to the

numbers of edges incident on v.
Now we describe the segments. All segments have unit cost. We have two kinds of segments:

edge segments and vertex segments. For every edge i = (v, w) in E, there are two edge segments
si
v and si

w. Segments si
v contains all edges ei to em and edges fv

1 to fv
j , where edge i is the jth

edge in the descending order of neighbors of v in G. The supply of segment si
v is i, and thus by

construction, we see that si
v only spans edge ei and fv

j . That completes the description of edge
segments. For every vertex v, there is a vertex segment tv which covers all the edges in the bristle
corresponding to vertex v. That completes the description of the PTC instance. Look at figure 5
for an illustration of the reduction.

The following lemma along with the APX-hardness of the vertex cover problem in bounded
degree graphs, and the fact that in the latter any vertex cover is of size Ω(n), leads to the APX-
hardness of the PTC problem.

Lemma 8. The optimum PTC of the above instance is m+ k, where k is the size of the optimum
vertex cover of G.

Proof. Firstly note that we may assume that in any optimal PTC, for any edge i = (v, w), we will
have exactly one of si

v or si
w in the solution. We need to have one since these are the only two

segments which cover edge ei in the tree. Instead of picking both, we can remove one, say si
w, from

19



a

b

c

d

1

2

3
4

5

a

c

b

d

1 2 3 4 5
4

1

5

2

4

3

2

5

3

1

a

c

b

d

Figure 5: The graph on the left is the instance of the vertex cover problem, the tree on the right is
the corresponding PTC instance. The numbers on the edges are the priority demands corresponding
to the edge numbers in the graph. In the second figure to the right, we illustrate two segments: s1a
and s3d, having supplies 1 and 3 respectively. Dashed line means that these segments do not have
enough supply to cover the edges.

the solution and pick the corresponding vertex segment tw instead, at no increase of cost. Therefore,
there are exactly m edge segments picked in any optimal PTC solution.

Now note that these m edge segments uniquely correspond to an orientation of the edges in
G; if for edge i = (v, w), si

v is chosen in the solution, the edge (v, w) is oriented from w to v.
In this orientation, if there is a sink (a vertex with all edges incident to it) v, then note that all
the edges in the bristle corresponding to v have also been covered. Thus, the number of vertex
segments required to cover the remaining edges of the tree, is precisely the number of non-sinks in
this orientation. In particular, the optimal PTC corresponds to the orientation which minimizes
the number of non-sinks.

The proof is complete by noting that non-sinks form a vertex cover; this is because each edge
is oriented away from some non-sink, and is thus incident to it. Furthermore, given a vertex cover,
there exists an orientation with precisely these vertices as non-sinks. Orient the edges towards the
complement of the vertex cover (the independent set) - the complement is precisely the set of sinks,
and thus the vertex cover is precisely the set of non-sinks.

Proof of Theorem 6 Suppose the degrees of G are all B, a constant. Note that the vertex cover
of this graph is at least m/B = n/2. The APX-hardness implies that it is NP-hard to distinguish
between the case when the vertex cover is c1n or c2n where c2 > c1 ≥ 1/2 are certain constants.

The above lemma therefore implies it is NP-hard to distinguish between the cases when the
optimum of a PTC is m + c1n = (c1 + B/2)n and when the optimum is m + c2n = (c2 + B/2)n.
Since B, c1, c2 are constants, we get the APX-hardness.

(For the interested reader: the APX-hardness of vertex cover of bounded degree graphs by
Berman and Karpinski [3] gives B = 4, c1 = 78/152 and c2 = 79/152, showing it is NP-hard to
approximate to a factor better than 1.002.) �

4.2 An approximation algorithm for PTC

The crucial idea is the following. Given an optimum solution S∗ ⊆ S, we can partition the edge-set
E of T into disjoint sets E1, . . . , Ep, and partition two copies of S∗ into S1, . . . , Sp, such that Ei is
a path in T for each i, and Si is a priority line cover for the path Ei.

20



In particular, we prove the following lemma. Let ÊS∗,j be the set of edges e such that j is the
segment with the highest supply, among all segments in S∗ which cover e. Note that the union of
all ÊS∗,j , over all j ∈ S∗, partitions E. Also note that for each edge e, there is a unique segment j
such that e ∈ ÊS∗,j . We call the segment j responsible for e.

Lemma 9. Given a valley-minimal solution S∗ ⊆ S to a PTC instance with tree T = (V,E), there
is a partition

E1 ∪ . . . ∪ Ep = E,

where each Ei is the edge set of a path in T such that ÊS∗,j ∩Ei 6= ∅ for at most two i ∈ {1, . . . , p},
for all j ∈ S∗.

Using this, we describe the 2-approximation algorithm which proves Theorem 7.

Proof of Theorem 7 For any two vertices t (top) and b (bottom) of the tree T , such that t is an
ancestor of b, let Ptb be the unique path from b to t. Note that Ptb, together with the restrictions of
the segments in Sto Ptb, defines an instance of PLC. Therefore, for each pair t and b, we can compute
the optimal solution to the corresponding PLC instance; let the cost of this solution be c′tb. Create
an instance of the 0,1-tree cover problem with T and segments S ′ := {(t, b) : t is an ancestor of b}
with costs c′tb. Solve the 0,1-tree cover instance exactly (recall we are in the rooted version) and for
the segments (t, b) in S ′ returned, return the solution of the corresponding PLC instance of cost c′tb.

We now use Lemma 9 to obtain a solution to the 0,1-tree cover problem (T,S ′) of cost at most 2
times the cost of S∗. The segments in S ′ picked are precisely the segments corresponding to paths
Ei, i = 1, . . . , p. We now use the lemma to find S1, . . . , Sp such that each Si is a PLC for Ei, Si ⊆ S∗
and each segment in S∗ is in at most two Si. Since the cost of each of these Si will be more than
the cost of the optimum PLC which our algorithm finds, this will complete the proof.

Define Si := {j ∈ S∗ : e ∈ Ei ∩ ÊS∗,j} to be the set of segments responsible for the edges in Ei.
By definition, Si is a PLC for Ei. By the lemma, a segment j ∈ S∗ lies in at most two Si. �

Proof. (Lemma 9) We give an algorithm to compute the decomposition. Let e be any of the edges
incident to the root of T , and let j1 ∈ S∗ be the highest-supply segment covering e. We then let E1

be the edges of the path in T corresponding to j1. Removing E1 from T yields sub-trees T1, . . . , Tq.
For each tree Ti we repeat the above steps, and let

E1, . . . , Ep

be the final partition; let ji ∈ S∗ be the segment corresponding to edge-set Ei.
Consider a segment j ∈ S, and let 1 ≤ i ≤ p be smallest such that ES∗,j ∩ Ei 6= ∅, and assume

that ES∗,j ∩Eq 6= ∅ for some i < q ≤ p; choose q smallest with this property. We claim that jq = j,
and hence there cannot be a q < q′ ≤ p with ES∗,j ∩ Eq′ 6= ∅.

Let e ∈ ES∗,j∩Ei, and let f ∈ ES∗,j∩Eq be two edges in different parts of the partition that need
segment j. As both e and f are edges on j, and since i < q, it follows that f is a descendant of e in
tree T . Let g be the topmost edge of Eq; clearly, g is on the e, f -path in T . By the decomposition
algorithm, segment jq is the highest-supply segment covering edge g. As j contains g, this means
that the supply of jq is at least that of j. Finally, since f is on jq, jq covers f as well. But this
means that jq = j as j is needed by f .

21



4.3 Canonical LP relaxation of PTC: Integrality Gap

In this section, we prove Theorem 4, by showing that the canonical LP relaxation of unweighted
PTC is at most 6. Recall the PTC LP.

min

{∑
s∈S

csxs : ∀e ∈ E :
∑

s:s covers e

xs ≥ 1; xs ≥ 0,∀s ∈ S

}
(17)

Proof of Theorem 4. The idea of the proof is the following: as in the factor 2-approximation for
PTC, we decompose the edge set of the tree into disjoint sets E1, · · · , Ep, such that each Ei induces
a path. We will abuse notation and refer to the Ei’s as paths. Furthermore, we take any feasible
solution x of (17) and obtain p fractional solutions x(1), . . . , x(p) such that x(i) is a feasible fractional
solution to (Primal) for the PLC instance on the path Ei. We will guarantee that

p∑
i=1

∑
j∈S

x
(i)
j ≤ 3

∑
j∈S

xj .

The theorem then follows from Theorem 3.

E
i E

s

E
r

E
t

j
1

j
3

j
2

j
4

Figure 6: The figure shows a fragment Ei, its parent Er, and two children Es and Et. The segments
j1, j2, and j3 are local, and segment j4 is global. In particular, j4 is an i, t-global segment.

Unlike in the argument used in the previous section where the decomposition into paths depended
on S∗, the decomposition into disjoint paths that we use here is universal. Each path Ei will end
at a unique leaf; that is p is the number of leaves of T . Let E1 be any path from the root to a leaf.
Delete E1 from the tree to get a series of sub-trees. Recursively, obtain E2 to Ep. We call a path
Ei a child of Eq, if the starting point of Ei lies on Eq.

Let x be any feasible fractional solution of (17) and let S∗ be the support of x, that is, S∗ =
{j : xj > 0}. Fix a path Ei and say that a segment j ∈ S∗ intersects Ei if j covers an edge in Ei

A segment j which intersects Ei is called local for Ei if either the first or the last edge covered by
j lies in Ei. A segment j which intersects Ei is called global for Ei, otherwise. Figure 6 illustrates
this.

Let j be a global segment for Ei, and let e be the first edge contained in j after Ei. If e ∈ Eq,
we call s an iq-global segment. Observe that Eq is a child of Ei. Thus an iq-global segment enters

22



Ei and exits via Eq. Note that iq-global segments, over all q, partition all global segments for Ei.
Also note that an iq-global segment could also be a i′q′-global segment for some other i′, q′.

Now we are ready to define the fractional solution x(i) which will be feasible for (Primal) for the
PLC instance on Ei. Firstly for all segments j which are local for Ei, let x(i)

j = xj . Next, we take
care of segments which are global for Ei. Order all the iq-global segments in non-decreasing order
of supply: {j1, . . . , jr}. Let l be such that

xj1 + · · ·+ xjl
≤ 1 and xj1 + · · ·+ xjl

+ xjl+1
> 1

If no such l exists, then l = r. Define x(i)
jk

= xjk
for 1 ≤ k ≤ l. If l < r, then let x(i)

jl+1
= 1−

∑l
k=1 x

(i)
jk

.

Claim 4. x(i) is feasible for (Primal) for the PLC instance on Ei.

Proof. Pick any edge e ∈ Ei. Look at all segments j ∈ S∗ which cover e. These segments are either
local for e or global for e. If j is local, there is a corresponding segment in the support x(i) of the
same value. Furthermore for any q,∑

j:j is iq-global,j covers e

x
(i)
j ≥ min{1,

∑
j:j is iq-global,j covers e

xj}

In any case, e is covered by x(i) at least to the extent it is covered by x, which implies x(i) is
feasible.

Lemma 10.
∑p

i=1

∑
j∈S x

(i)
j ≤ 3

∑
j∈S xj

Proof. Each segment j ∈ S∗ is local for at most two paths Ei and Eq. Thus the contribution to the
LHS by local segments for some path Ei is exactly 2

∑
j∈S xj .

Furthermore, for every parent-child pair Ei and Eq which induces an iq-global segment for Ei,
we increase the LHS by at most 1. The number of such pairs is at most the number of leaves in T .
The proof is complete by noting that

∑
j∈S xj is at least the number of leaves in T .

To complete the proof of the theorem, note that from Theorem 3 we know there exists for each
Ei, a set of segments Si such that |Si| ≤ 2

∑
j∈S x

(i)
j . The union of all such Si forms a valid PTC

of cardinality at most 6
∑

j∈S xj .

4.4 Priority Tree Cover and Geometric Covering Problems

In this section, we show that the PTC problem is a special case of covering a set of points in
3-dimension by axis-parallel rectangles (cuboids). In particular we prove Theorem 8. We go in
two steps. We first define a problem, which we call 2-Priority Line Cover and show that the PTC
problem is a special case of 2-PLC. Subsequently, we show 2-PLC is a special case of 3-dimensional
rectangle cover. We start with a definition of 2-PLC.

2-Priority Line Cover (2-PLC) The input is a line T = (V,E), and a collection of segments
S ⊆ V ×V with costs cj for each j ∈ S. Furthermore, each segment j has a priority supply vector in
two dimensions, denoted as (s1j , s

2
j ), and each edge e has a priority demand vector in two dimensions,

denoted as (π1
e , π

2
e). A segment j covers e iff j contains e and si

j ≥ πi
e for both i = 1, 2. The goal is

to find the minimum cost collection of segments which cover every edge.

It is easy to see that PLC is a special case of 2-PLC. Somewhat surprisingly, PTC is a special case
of 2-PLC as well.

23



Lemma 11. Any instance of PTC can be encoded as an instance of 2-PLC with the same solution
set.

Proof. Given a rooted tree T = (V,E), we perform two different depth first traversals to get two
different orderings on the edges E. One such ordering will define the line of the 2-PLC instance,
the other will define the first coordinates of the priority demand vectors of the edges.

In a depth first traversal of a tree, at every step we move from a vertex to one of its children,
if any. Our two different traversals will be defined by two different choices of moving to a children
vertex. For every vertex v of the tree, consider a total order σv on its children. One such order
which is convenient to keep in mind is the following; given a drawing of the tree, the total order of
the children is from left to right. Let σR

v be the opposite total order. The two depth first traversals
are obtained by running with σv’s and σR

v ’s, respectively. Figure 7 illustrates the two orders with
the ordering σv at every vertex v being from left-to-right, and σR

v being from right-to-left.

1

2 3

4

5

6 7

9 10

8 8

10 9

4

5

7 6

3 2

1a

d e

b

f

i j

g h

c

a d e b f i j c g h

(8,π(a)) (10,π(d)) (9,π(e)) (4,π(b)) (5,π(f)) (7,π(i)) (6,π(j)) (1,π(c)) (3,π(g)) (2,π(h))

Figure 7: The left most tree is the original tree, the second and third are the two depth first
traversals. The line below shows the line in the 2-PLC instance.

Let the two traversals return orderings µ and µR on the edges of the tree. The crucial observation
is the following: for any vertex v, let (v1, . . . , vk) be the children in the σv order; then µ(v, v1) <
µ(v, v2) < · · · < µ(v, vk), and thus, µR(v, v1) > · · · > µR(v, vk).

Now we are ready to describe the 2-PLC instance. The line is defined by the edges of the tree
ordered w.r.t. µ. That is, the order of the edges is (e1, . . . , em) such that µ(e1) < µ(e2) < · · · <
µ(em). The priority demand vector of an edge e of the tree is (µR(e), πe). Consider a segment
j = (u, v) such that u is a child of v in the PTC instance. Let (u, u′) and (v, v′) be the unique edges
incident to u and v respectively contained in j (in particular, u′ is the parent of u and v′ is the
unique child of v which is an ancestor of u). By the depth-first property, we get µ(v, v′) < µ(u, u′).
The corresponding segment in the 2-PLC instance, also denoted as j, contains all the edges from
µ(v, v′) to µ(u, u′). The priority supply vector of j is (µR(u, u′), sj).

Claim 5. For any segment j, the set of edges covered by j in the 2-PLC instance is precisely the
set of edges covered in the PTC instance.

Proof. Let e be an edge covered by j in the PTC instance. Since e is contained in the path
from u to v in the tree, by property of depth first traversals we get, µ(v, v′) < µ(e) < µ(u, u′) and
µR(e) < µR(u, u′). The first pair of inequalities implies e lies in the segment j in the 2-PLC instance,

24



the second implies that π1
e < s1j . Since e is covered by j in the PTC, we also get π2

e = πe ≤ sj = s2j .
Thus, e is covered by j in the 2-PLC instance.

Let e be an edge covered by j in the 2-PLC instance. Since e lies in j, we conclude µ(v, v′) <
µ(e) < µ(u, u′). This implies either (a) e lies on the path from u to v in the tree, or, (b) there is
a node w on the u′, v′-path in the tree, and a child z of w that is not on this path such that e is
contained in the subtree defined by edge (w, z).

Note, that in case (b) the depth-first traversal for order σ visits edge (z, w) before edge (u, u′).
This implies that the second dfs traversal for order σR visits (z, w) after (u, u′). Since (z, w) is
visited before e in both traversals, we must therefore have µR(e) > µR(u, u′), and this implies
s1j < π1(e) which is impossible since j covers e. Thus, case (b) is not possible, and e lies on the
path fro u to v on the tree. Furthermore, we have sj = s2j ≥ π2

e = πe, and so j covers e in the PTC
instance as well.

Now we show that 2-PLC is a special case of 3-dimensional rectangle cover. This is not to hard
to see. We assume the edges of the line are numbered (1, 2, . . . ,m). For edge e numbered ei, we
associate a point in 3 dimensions with coordinates (ei, π1

e , π
2
e). For each segment j = (a, b), we

have a rectangle associated. In fact, these rectangles have are unbounded in the negative y and z
coordinates. The other 4 bounding half-spaces are x ≥ a, x ≤ b, y ≤ s1(j) and z ≤ s2(j). It is not
too hard to see a rectangle corresponding to a segment j contains a point corresponding to an edge
e iff j covers e in the 2-PLC instance. This completes the proof of Theorem 8.

5 Concluding Remarks

In this paper we studied column restricted covering integer programs. In particular, we studied the
relationship between CCIPs and the underlying 0,1-CIPs. We conjecture that the approximability
of a CCIP should be asymptotically within a constant factor of the integrality gap of the original
0,1-CIP. We couldn’t show this; however, if the integrality gap of a PCIP is shown to be within a
constant of the integrality gap of the 0,1-CIP, then we will be done. At this point, we don’t even
know how to prove that PCIPs of special 0,1-CIPS, those whose constraint matrices are totally
unimodular, have constant integrality gap. Resolving the case of PTC is an important step in this
direction, and hopefully in resolving our conjecture regarding CCIPs.

References

[1] E. Balas. Facets of the knapsack polytope. Math. Programming, 8:146–164, 1975.

[2] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A unified
approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090, 2001.

[3] P. Berman and M. Karpinski. On some tighter inapproximability results. In Proceedings,
International Colloquium on Automata, Languages and Processing, pages 200–209, 1999.

[4] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips. Strengthening integrality gaps for
capacitated network design and covering problems. In Proceedings, ACM-SIAM Symposium
on Discrete Algorithms, pages 106–115, 2000.

[5] M. Charikar, J. Naor, and B. Schieber. Resource optimization in qos multicast routing of
real-time multimedia. IEEE/ACM Trans. Netw., 12(2):340–348, 2004.

25



[6] C. Chekuri, A. Ene, and N. Korula. Unsplittable flow in paths and trees and column-restricted
packing integer programs. In Proceedings, International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, page (to appear), 2009.

[7] C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity demand flow in a tree and
packing integer programs. ACM Trans. Alg., 3(3), 2007.

[8] J. Cheriyan, H. Karloff, R. Khandekar, and J. Könemann. On the integrality ratio for tree
augmentation. Operations Research Letters, 36(4):399–401, 2008.

[9] J. Chuzhoy, A. Gupta, J. Naor, and A. Sinha. On the approximability of some network design
problems. ACM Trans. Alg., 4(2), 2008.

[10] G. Dobson. Worst-case analysis of greedy heuristics for integer programming with non-negative
data. Math. Oper. Res., 7(4):515–531, 1982.

[11] P. Hammer, E. Johnson, and U. Peled. Facets of regular 0-1 polytopes. Math. Programming,
8:179–206, 1975.

[12] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM Journal on Computing, 11(3):555–556, 1982.

[13] S. G. Kolliopoulos. Approximating covering integer programs with multiplicity constraints.
Discrete Appl. Math., 129(2-3):461–473, 2003.

[14] S. G. Kolliopoulos and C. Stein. Approximation algorithms for single-source unsplittable flow.
SIAM Journal on Computing, 31(3):919–946, 2001.

[15] S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using packing integer
programs. Math. Programming, 99(1):63–87, 2004.

[16] S. G. Kolliopoulos and N. E. Young. Approximation algorithms for covering/packing integer
programs. J. Comput. System Sci., 71(4):495–505, 2005.

[17] Nitish Korula. private communication, 2009.

[18] S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation algorithms for (multi)set
(multi)cover and covering integer programs. In Proceedings, IEEE Symposium on Foundations
of Computer Science, 1993.

[19] A. Schrijver. Combinatorial optimization. Springer, New York, 2003.

[20] A. Srinivasan. Improved approximation guarantees for packing and covering integer programs.
SIAM Journal on Computing, 29(2):648–670, 1999.

[21] A. Srinivasan. An extension of the lovász local lemma, and its applications to integer program-
ming. SIAM Journal on Computing, 36(3):609–634, 2006.

[22] L. Trevisan. Non-approximability results for optimization problems on bounded degree in-
stances. In Proceedings, ACM Symposium on Theory of Computing, pages 453–461, 2001.

[23] L. Wolsey. Facets for a linear inequality in 0-1 variables. Math. Programming, 8:168–175, 1975.

26


