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Abstract

We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the par-
tition LP relaxation introduced by Könemann et al. [Math. Programming, 2009]. Specifically,
we are interested in proving upper bounds on the integrality gap of this LP, and studying its
relation to other linear relaxations. First, we show uncrossing techniques apply to the LP. This
implies structural properties, e.g. for any basic feasible solution, the number of positive vari-
ables is at most the number of terminals. Second, we show the equivalence of the partition LP
relaxation with other known hypergraphic relaxations. We also show that these hypergraphic
relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is qua-
sibipartite. Third, we give integrality gap upper bounds: an online algorithm gives an upper
bound of

√
3

.
= 1.729; and in uniformly quasibipartite instances, a greedy algorithm gives an

improved upper bound of 73/60
.
= 1.216.

1 Introduction

In the Steiner tree problem, we are given an undirected graph G = (V,E), non-negative costs ce

for all edges e ∈ E, and a set of terminal vertices R ⊆ V . The goal is to find a minimum-cost tree
T spanning R, and possibly some Steiner vertices from V \ R. We can assume that the graph is
complete and that the costs induce a metric. The problem takes a central place in the theory of
combinatorial optimization and has numerous practical applications. Since the Steiner tree problem
is NP-hard1 we are interested in approximation algorithms for it. The best approximation algorithm
for the Steiner tree problem is a recent result of Byrka, Grandoni, Rothvoß and Sanità [3], which
for any fixed ǫ > 0, achieves a performance ratio of ln(4) + ǫ

.
= 1.39 in polynomial time. Their

result is based on one of the linear programming (LP) relaxations we will later discuss.
Numerous LP formulations are known for the Steiner tree problem (e.g., see [1, 9, 10, 12, 13, 20,

26, 27, 37, 38]), and they have led to impressive running time improvements for integer programming
based methods. The integrality gap of a relaxation — a common measure of its strength — is the
maximum ratio of the cost of integral and fractional optima, over all instances. Byrka et al. [3]
prove an integrality gap bound of 1.55 (see also a short proof in [6]), breaking a barrier of 2− o(1)
which had previously stood for long time2. A small modification to the proof gives an integrality
gap of 1.28 on so-called quasibipartite instances (where Steiner vertices form an independent set).

∗Supported by NSERC grant no. 288340 and by an Early Research Award. Email: (deepc, jochen, dagpritc
@uwaterloo.ca)

1Chleb́ık and Chleb́ıková show that no (96/95 − ǫ)-approximation algorithm can exist for any positive ǫ unless
P=NP [7].

2Achieving an integrality gap of 2 is relatively easy for most relaxations by showing that the minimum spanning
tree restricted on the terminals is within a factor 2 of the LP.
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A Steiner tree relaxation of particular interest is the bidirected cut relaxation [13, 38] (precise
definitions will follow in Section 1.2). This relaxation has a flow formulation using O(|E||R|)
variables and constraints, which is much more compact than the other relaxations we study. It is
widely believed to have an integrality gap significantly smaller than 2 (e.g., see [4, 30, 36]) but this
remains an open question. The largest lower bound on the integrality gap known is 8/7 (by Martin
Skutella, reported in [25]), and Chakrabarty et al. [4] prove an upper bound of 4/3 in the special
case of quasi-bipartite instances.

Another class of formulations are the so called hypergraphic LP relaxations for the Steiner tree
problem. These relaxations are inspired by the observation that the minimum Steiner tree problem
can be encoded as a minimum cost hyper-spanning tree (see Section 1.2.2) of a certain hypergraph
on the terminals. They are known to be stronger than the bidirected cut relaxation [28].

1.1 Our Results and Techniques

There are three classes of results in this paper: structural results, equivalence results, and integrality
gap upper bounds.

Structural results, Section 2: We show that the uncrossing technique applies to the partition
formulation [25] of the hypergraphic LP, and we use it to prove structural properties. For example,
we show that any basic feasible solution to the partition LP has at most (|R|−1) positive variables
(even though it can have an exponentially large number of variables and constraints).

Equivalence results, Section 3: In addition to the partition LP, two other hypergraphic LPs have
been studied before: one based on subtour elimination due to Warme [37], and a directed hypergraph
relaxation of Polzin and Vahdati Daneshmand [28]; these two are known to be equivalent [28]. We
give two proofs showing each one is equivalent to the partition LP (that is, they have the same
objective value for any Steiner tree instance). We give this formally redundant pair of proofs for
completeness and to highlight their techniques, one using partition uncrossing techniques, the other
using hypergraph orientation results of Frank et al. [16].

We also show that, on quasibipartite instances, the hypergraphic and the bidirected cut LP
relaxations are equivalent. Note, by the 1.28 integrality gap bound [3, 6] mentioned earlier, this
improves the integrality gap of bidirected cut on quasibipartite instances from 4/3 to 1.28. We find
this equivalence surprising for the following reasons. Firstly, some instances are known where the
hypergraph relaxations is strictly stronger than the bidirected cut relaxation [28]. Secondly, the
bidirected cut relaxations seems to resist uncrossing techniques; e.g. even in quasi-bipartite graphs
extreme points for bidirected cut can have as many as Ω(|V |2) positive variables [29, Sec. 4.9].
Thirdly, the known approaches to exploiting the bidirected cut relaxation (mostly primal-dual and
local search algorithms [30, 4]) are very different from the combinatorial hypergraphic algorithms
for the Steiner tree problem (almost all of them employ greedy strategies). In short, there is no
qualitative similarity to suggest why the two relaxations should be equivalent! We believe a better
understanding of the bidirected cut relaxation is important because it is central in theory and
practical for implementation.

Improved integrality gap upper bounds, Section 4: For uniformly quasibipartite instances
(quasibipartite instances where for each Steiner vertex, all incident edges have the same cost), we
show that the integrality gap of the hypergraphic LP relaxations is upper bounded by 73/60

.
= 1.216.

Our proof uses the approximation algorithm of Gröpl et al. [22] which achieves the same ratio with
respect to the (integral) optimum. We show, via a simple dual fitting argument, that this ratio is
also valid with respect to the LP value. To the best of our knowledge this is the only nontrivial
class of instances where the best currently known approximation ratio and integrality gap upper
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bound are the same.
For general graphs, we give simple upper bounds of 2

√
2 − 1

.
= 1.83 and

√
3

.
= 1.729 on the

integrality gap of the hypergraph relaxation. Compared to the stronger 1.55 bound of Byrka et
al. [3], we use a different collection of techniques, and we show the result holds even if the full
components are revealed in an online manner. Call a graph gainless if the minimum spanning tree
of the terminals is the optimal Steiner tree. To obtain these integrality gap upper bounds, we use
the following key property of the hypergraphic relaxation which was implicit in [25]: on gainless
instances (instances where the optimum terminal spanning tree is the optimal Steiner tree), the LP
value equals the minimum spanning tree and the integrality gap is 1. Such a theorem was known
for quasibipartite instances and the bidirected cut relaxation (implicitly in [30], explicitly in [4]);
we extend techniques of [4] to obtain improved integrality gaps on all instances.

1.2 Bidirected Cut and Hypergraphic Relaxations

1.2.1 The Bidirected Cut Relaxation

The first bidirected LP was given by Edmonds [13] as an exact formulation for the spanning tree
problem. Wong [38] later extended this to obtain the bidirected cut relaxation for the Steiner tree
problem, and gave a dual ascent heuristic based on the relaxation. For this relaxation, introduce
two arcs (u, v) and (v, u) for each edge uv ∈ E, and let both of their costs be cuv. Fix an arbitrary
terminal r ∈ R as the root. Call a subset U ⊆ V valid if it contains a terminal but not the root,
and let valid(V ) be the family of all valid sets. Clearly, the in-tree rooted at r (the directed tree
with all vertices but the root having out-degree exactly 1) of a Steiner tree T must have at least one
arc with tail in U and head outside U , for all valid U . This leads to the bidirected cut relaxation
(B) (shown in Figure 1 with dual) which has a variable for each arc a ∈ A, and a constraint for
every valid set U . Here and later, δout(U) denotes the set of arcs in A whose tail is in U and whose
head lies in V \U . When there are no Steiner vertices, Edmonds’ work [13] implies this relaxation
is exact.

min
∑

a∈A

caxa : x ∈ RA
≥0 (B)

∑

a∈δout(U)

xa ≥ 1, ∀U ∈ valid(V ) (1)

max
∑

U

zU : z ∈ R
valid(V )
≥0 (BD)

∑

U :a∈δout(U)

zU ≤ ca, ∀a ∈ A (2)

Figure 1: The bidirected cut relaxation (B) and its dual (BD).

Goemans & Myung [20] made significant progress in understanding the LP, by showing that
the bidirected cut LP has the same value independent of which terminal is chosen as the root, and
by showing that a whole “catalogue” of very different-looking LPs also has the same value; later
Goemans [19] showed that if the graph is series-parallel, the relaxation is exact. Rajagopalan and
Vazirani [30] were the first to show a non-trivial integrality gap upper bound of 3/2 on quasibipartite
graphs; this was subsequently improved to 4/3 by Chakrabarty et al. [4], who gave another alternate
formulation for (B).

1.2.2 Hypergraphic Relaxations

Given a Steiner tree T , a full component of T is a maximal subtree of T all of whose leaves are
terminals and all of whose internal nodes are Steiner nodes. The edge set of any Steiner tree can
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be partitioned in a unique way into full components by splitting at internal terminals; see Figure 2
for an example.

Figure 2: Black nodes are terminals and white nodes are Steiner nodes. Left: a Steiner tree for this instance.
Middle: the Steiner tree’s edges are partitioned into full components; there are four full components. Right:
the hyperedges corresponding to these full components.

Let K be the set of all nonempty subsets of terminals (hyperedges). We associate with each
K ∈ K a fixed full component spanning the terminals in K, and let CK be its cost3. The problem
of finding a minimum-cost Steiner tree spanning R now reduces to that of finding a minimum-cost
hyper-spanning tree in the hypergraph (R,K).

Spanning trees in (normal) graphs are well understood and there are many different exact LP
relaxations for this problem. These exact LP relaxations for spanning trees in graphs inspire the
hypergraphic relaxations for the Steiner tree problem. Such relaxations have a variable xK for every4

K ∈ K, and the different relaxations are based on the constraints used to capture a hyper-spanning
tree, just as constraints on edges are used to capture a spanning tree in a graph.

The oldest hypergraphic LP relaxation is the subtour LP introduced by Warme [37] which is
inspired by Edmonds’ subtour elimination LP relaxation [14] for the spanning tree polytope. This
LP relaxation uses the fact that there are no hypercycles in a hyper-spanning tree, and that it is
spanning. More formally, let ρ(X) := max(0, |X|−1) be the rank of a set X of vertices. Then a sub-
hypergraph (R,K′) is a hyper-spanning tree iff

∑

K∈K′ ρ(K) = ρ(R) and
∑

K∈K′ ρ(K ∩ S) ≤ ρ(S)
for every subset S of R. The corresponding LP relaxation, denoted below as (S), is called the
subtour elimination LP relaxation.

min
{

∑

K∈K
CKxK : x ∈ RK

≥0,
∑

K∈K
xKρ(K) = ρ(R), (S)

∑

K∈K
xKρ(K ∩ S) ≤ ρ(S), ∀S ⊂ R

}

Warme showed that if the maximum hyperedge size r is bounded by a constant, the LP can be
solved in polynomial time.

The next hypergraphic LP introduced for Steiner tree was a directed hypergraph formulation
(D), introduced by Polzin and Vahdati Daneshmand [28], and inspired by the bidirected cut relax-
ation. It was independently rediscovered in the work of Byrka et al. [3], where they use it to give
a 1.39-approximation algorithm based on iterated randomized rounding. Given a full component
K and a terminal i ∈ K, let Ki denote the arborescence obtained by directing all the edges of

3We choose the minimum cost full component if there are many. If there is no full component spanning K, we let
CK be infinity. Such a minimum cost component can be found in polynomial time, if |K| is a constant.

4Observe that there could be exponentially many hyperedges. This computational issue is circumvented by
considering hyperedges of size at most r, for some constant r. By a result of Borchers and Du [2], this leads to only
a (1 + Θ(1/ log r)) factor increase in the optimal Steiner tree cost.
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K towards i. Think of this as directing the hyperedge K towards i to get the directed hyperedge
Ki. Vertex i is called the head of Ki while the terminals in K \ i are the tails of K. The cost
of each directed hyperedge Ki is the cost of the corresponding undirected hyperedge K. In the
directed hypergraph formulation, there is a variable xKi for every directed hyperedge Ki. As in
the bidirected cut relaxation, there is a vertex r ∈ R which is a root, and as described above, a
subset U ⊆ R of terminals is valid if it does not contain the root but contains at least one vertex
in R. We let ∆out(U) be the set of directed full components coming out of U , that is all Ki such

that U ∩ K 6= ∅ but i /∈ U . Let
−→K be the set of all directed hyperedges. We show the directed

hypergraph relaxation and its dual in Figure 3.

min
{

∑

K∈K,i∈K

CKxKi : x ∈ R
−→K
≥0 (D)

∑

Ki∈∆out(U)

xKi ≥ 1, ∀ valid U ⊆ R
}

(3)

max
{

∑

U

zU : z ∈ R
valid(R)
≥0 (DD)

∑

U :K∩U 6=∅,i/∈U

zU ≤ CK , ∀K ∈ K,∀i ∈ K
}

(4)

Figure 3: The directed hypergraph relaxation (D) and its dual (DD).

Polzin & Vahdati Daneshmand [28] showed that OPT(D) = OPT(S). Moreover they observed
that this directed hypergraphic relaxation strengthens the bidirected cut relaxation.

Lemma 1.1 ([28]). For any instance, OPT(D) ≥ OPT(B).

Proof sketch. It suffices to show that any solution x of (D) can be converted to a feasible solution
x′ of (B) of the same cost. For each arc a, let x′

a be the sum of xKi over all directed full components
Ki that (when viewed as an arborescence) contain a. Now for any valid subset U of V , it is not
hard to see that every directed full component leaving R ∩U has at least one arc leaving U , hence
∑

a∈δout(U) x′
a ≥

∑

Ki∈∆out(R∩U) xKi ≥ 1 and x′ is feasible as needed.

See [28] for an example where the strict inequality OPT(D) > OPT(B) holds.
Könemann et al. [25], inspired by the work of Chopra [8], described a partition-based relax-

ation which captures that given any partition of the terminals, any hyper-spanning tree must
have sufficiently many “cross hyperedges”. More formally, a partition, π, is a collection of pair-
wise disjoint nonempty terminal sets (π1, . . . , πq) whose union equals R. The number of parts q
of π is referred to as the partition’s rank and denoted as r(π). Let ΠR be the set of all parti-
tions of R. Given a partition π = {π1, . . . , πq}, define the rank contribution rcπ

K of hyperedge
K ∈ K for π as the rank reduction of π obtained by merging the parts of π that are touched
by K; i.e., rcπ

K := |{i : K ∩ πi 6= ∅}| − 1. Then a hyper-spanning tree (R,K′) must satisfy
∑

K∈K′ rc
π
K ≥ r(π) − 1. The partition based LP of [25] and its dual are given in Figure 4.

min
{

∑

K∈K
CKxK : x ∈ RK

≥0 (P)

∑

K∈K
xKrcπ

K ≥ r(π) − 1, ∀π ∈ ΠR

}

(5)

max
{

∑

π

(r(π) − 1) · yπ : y ∈ R
ΠR

≥0 (PD)

∑

π∈ΠR

yπrc
π
K ≤ CK , ∀K ∈ K

}

(6)

Figure 4: The unbounded partition relaxation (P) and its dual (PD).

The feasible region of (P) is unbounded, since if x is a feasible solution for (P) then so is any
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x′ ≥ x. We obtain a bounded partition LP relaxation, denoted by (P ′) and shown below, by adding
a valid equality constraint to the LP.

min
{

∑

K∈K
CKxK : x ∈ (P),

∑

K∈K
xK(|K| − 1) = |R| − 1

}

(P ′)

1.2.3 Discussion of Computational Issues

The bidirected cut relaxation is very attractive from a perspective of computational implementation.
Although the formulation given in Section 1.2.1 has an exponential number of constraints, an
equivalent compact flow formulation with O(|E||R|) variables and constraints is well-known.

What is known regarding solving the hypergraphic LPs? They are good enough to get theo-
retical results but less attractive in practice, as we now explain. Using a separation oracle, Warme
showed [37] that for any chosen family K of full components, the subtour LP can be optimized in
time poly(|V |, |K|). For the common r-restricted setting of K to be all possible full components
of size at most r for constant r, we have K ≤

(|R|
r

)

. This is polynomial for any fixed r, and the
relative error caused by this choice of r is at most the r-Steiner ratio ρr = 1 + Θ(1/ log r) [2]. But
this is not so practical: to get relative error 1 + ǫ, we apply the ellipsoid algorithm to an LP with
|R|exp(Θ(1/ǫ)) variables!

In the unrestricted setting where K contains all possible full components without regard to size,
it is an open problem to optimize any of the hypergraphic LPs exactly in polynomial time. We make
some progress here: in quasibipartite instances, the proof method of our hypergraphic-bidirected
equivalence theorem (Section 3.4) implies that one can exactly compute the LP optimal value, and
a dual optimal solution. Regarding this open problem, we note that the r-restricted LP optimum
is at most ρr times the unrestricted optimum, and wonder whether there might be some advantage
gained by using the fact that the hypergraphic LPs have sparse optima.

We reiterate our feeling that it is important to obtain practical algorithms and understand the
bidirected cut relaxation as well as possible, e.g. a direct proof that it has an integrality gap of at
most 1.28 on quasi-bipartite instances could give new insights.

1.2.4 Other Related Work

In the special case of r-restricted instances for r = 3, the partition hypergraphic LP is essentially
a special case of an LP introduced by Vande Vate [35] for matroid matching, which is totally dual
half-integral [18]. Additional facts about the hypergraphic relaxations appear in the thesis of the
third author [29], e.g. a combinatorial “gainless tree formulation” for the LPs similar in flavour to
the “1-tree bound” for the Held-Karp TSP relaxation.

2 Uncrossing Partitions

In this section we are interested in uncrossing a minimal set of tight partitions that uniquely define
a basic feasible solution to (P). We start with a few preliminaries from combinatorial lattice
theory [34].

2.1 Preliminaries

Definition 2.1. We say that a partition π′ refines another partition π if each part of π′ is contained
in some part of π. We also say π coarsens π′. Two partitions cross if neither refines the other.
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A family of partitions forms a chain if no pair of them cross. Equivalently, a chain is any family
π1, π2, . . . , πt such that πi refines πi−1 for each 1 < i ≤ t.

The family ΠR of all partitions of R forms a lattice with a meet operator ∧ : Π2
R → ΠR and a

join operator ∨ : Π2
R → ΠR. The meet π ∧ π′ is the coarsest partition that refines both π and π′,

and the join π ∨ π′ is the most refined partition that coarsens both π and π′. See Figure 5 for an
illustration.

Definition 2.2 (Meet of partitions). Let the parts of π be π1, . . . , πt and let the parts of π′ be
π′

1, . . . , π
′
u. Then the parts of the meet π∧π′ are the nonempty intersections of parts of π with parts

of π′,
π ∧ π′ = {πi ∩ π′

j | 1 ≤ i ≤ t, 1 ≤ j ≤ u and πi ∩ π′
j 6= ∅}.

Given a graph G and a partition π of V (G), we say that G induces π if the parts of π are the vertex
sets of the connected components of G.

Definition 2.3 (Join of partitions). Let (R,E) be a graph that induces π, and let (R,E′) be a
graph that induces π′. Then the graph (R,E ∪ E′) induces π ∨ π′.

(a) (b) (c)

Figure 5: Illustrations of some partitions. The black dots are the terminal set R. (a): two partitions;
neither refines the other. (b): the meet of the partitions from (a). (c): the join of the partitions from (a).

Given a feasible solution x to (P), a partition π is tight if
∑

K∈K xKrcπ
K = r(π) − 1. Let

tight(x) be the set of all tight partitions. We are interested in uncrossing this set of partitions.
More precisely, we wish to find a cross-free set of partitions (chain) which uniquely defines x. One
way would be to prove the following.

Property 2.4. If two crossing partitions π and π′ are in tight(x), then so are π ∧ π′ and π ∨ π′.

This type of property is already well-used [11, 15, 23, 33] for sets (with meets and joins replaced
by unions and intersections respectively), and the standard approach is the following. The typical
proof considers the constraints in (P) corresponding to π and π′ and uses the “supermodularity”
of the RHS and the “submodularity” of the coefficients in the LHS. In particular, if the following
is true,

∀π, π′ : r(π ∨ π′) + r(π ∧ π′) ≥ r(π) + r(π′) (7)

∀K,π, π′ : rcπ
K + rcπ′

K ≥ rcπ∨π′

K + rcπ∧π′

K (8)

then Property 2.4 can be proved easily by writing a string of inequalities.5

5In this hypothetical scenario we get r(π) + r(π′) − 2 =
P

K
xK(rcπ

K + rc
π′

K ) ≥
P

K
xK(rcπ∧π′

K + rc
π∨π′

K ) ≥
r(π ∧ π′) + r(π ∨ π′)− 2 ≥ r(π) + r(π′)− 2; thus the inequalities hold with equality, and the middle one shows π ∧ π′

and π ∨ π′ are tight.
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Inequality (7) is indeed true (see, for example, [34]), but unfortunately inequality (8) is not true
in general, as the following example shows.

Example 2.5. Let R = {1, 2, 3, 4}, π = {{1, 2}, {3, 4}} and π′ = {{1, 3}, {2, 4}}. Let K denote the
full component {1, 2, 3, 4}. Then rcπ

K + rcπ′

K = 1 + 1 < 0 + 3 = rcπ∨π′

K + rcπ∧π′

K .

Nevertheless, Property 2.4 is true; its correct proof is given in Section 2.2. Given tight partitions
π and π′, we describe a procedure to obtain two other tight partitions. Applying this procedure
iteratively leads us to deduce that the joins and meets are tight. We let π denote {R}, the unique
partition with (minimal) rank 1; later we use π to denote {{r} | r ∈ R}, the unique partition with
(maximal) rank |R|.

Theorem 1. Let x∗ be a basic feasible solution of (P), and let C be an inclusion-wise maximal
chain in tight(x∗)\π. Then x∗ is uniquely defined by

∑

K∈K
rcπ

Kx∗
K = r(π) − 1 ∀π ∈ C. (9)

Any chain of distinct partitions of R that does not contain π has size at most |R| − 1, and
this is an upper bound on the rank of the system in (9). Elementary linear programming theory
immediately yields the following corollary.

Corollary 2.6. Any basic solution x∗ of (P) has at most |R| − 1 non-zero coordinates.

2.2 Partition Uncrossing

In this section we prove Property 2.4. In the original version of this work [5] we used an interesting
extension of typical uncrossing methods: rather than combining/uncrossing just two inequalities
at a time, we used several. Here, we give a shorter view of the same results, expressed using a type
of uncrossing from Schrijver [32, §48.2,49.6]. We need the following lemma that relates the rank of
sets and the rank contribution of partitions. Recall ρ(X) := max(0, |X| − 1).

Lemma 2.7. For a partition π = {π1, . . . , πt} of R, where t = r(π), and for any K ⊆ R, we have

rcπ
K = ρ(K) −

t
∑

i=1

ρ(K ∩ πi).

Proof. By definition, K ∩ πi 6= ∅ for exactly 1 + rcπ
K values of i. Also, ρ(K ∩ πi) = 0 for all other

i. Hence

t
∑

i=1

ρ(K ∩ πi) =
∑

i:K∩πi 6=∅

(|K ∩ πi| − 1) =





∑

i:K∩πi 6=∅

|K ∩ πi|



 − (rcπ
K + 1). (10)

Observe that
∑

i:K∩πi 6=∅
|K ∩πi| = |K| = ρ(K)+ 1; using this fact together with Equation (10) we

obtain
t

∑

i=1

ρ(K ∩ πi) =





∑

i:K∩πi 6=∅

|K ∩ πi|



 − (rcπ
K + 1) = ρ(K) − 1 + (rcπ

K + 1).

Rearranging, the proof of Lemma 2.7 is complete.
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Now we give a procedure which maps two tight partitions to two other tight partitions. Say
two sets A and B cross if A ∩ B,Ac ∩ Bc, A ∩ Bc, Ac ∩ B are all nonempty. A family of sets (with
possible repetition of the same set) is k-regular if every element lies in exactly k sets. We need
that a regular family with no two crossing sets is the disjoint union of k partitions (e.g. see [16]).
In the following algorithm, we view each partition as a set family on R, take their disjoint union
to get a 2-regular family on R, convert it to a family without crossing sets, and then decompose it
back into partitions.

Procedure Uncross-and-Decompose(π, π′)

1: Create a 2-regular family F := π ⊎ π′.
2: As long as F has two crossing sets S and T , replace them with S ∩ T and S ∪ T .
3: Decompose the 2-regular F into two partitions φ, γ with φ refining γ. (I.e., for any x, of the

two sets of F containing x, φ gets the smaller and γ the larger.)
4: Output φ and γ.

Note the output depends on the choice of sets to uncross. Here is an example of one execution;
use abc · · · as an abbreviation for {a, b, c, . . . }. Consider input partitions {12, 34} and {13, 24}.
Initially F = {12, 34, 13, 24}. Uncrossing of 12 and 13 yields {123, 1, 34, 24}. Now, if we uncross
123 and 34, we get {1234, 1, 3, 24}, which implies φ = {1, 24, 3} and γ = {1234}. On the other
hand, we could’ve uncrossed 34 and 24 to get {123, 1, 234, 4}, and then uncrossing 123 and 234
would lead to {1234, 1, 23, 4} implying φ = {1, 23, 4} and γ = {1234}. Regardless of which sets are
chosen, we show now that the following statements hold.

(i) The algorithm terminates. To see this observe that
∑

S∈F |S|2 increases each iteration.

(ii) Both φ and γ coarsen π ∧ π′. To see this, suppose u, v are in the same part of π and also in
the same part of π′; then all sets of F containing u also contain v throughout the algorithm.

(iii) We have γ equals π∨π′. First, consider u and v which are in the same part of π, and observe
that F always has some set containing both u and v; the same holds for π′. Second, note
that all sets in F always are subsets of some part of π ∨ π′.

(iv) We have r(π) + r(π′) = r(φ) + r(γ). To see this, note that the first is the initial cardinality
of F and the last is the final cardinality of F , and that this cardinality is invariant.

(v) For any K, rcπ
K + +rcπ′

K ≥ rc
φ
K + rc

γ
K . To see this, it suffices from Lemma 2.7 to show

∑

P∈φ⊎γ ρ(K ∩ P ) ≥
∑

P∈π⊎π′ ρ(K ∩ P ), which follows from the supermodularity of the ρ()
function.

Proposition 2.8. Let x be feasible for (P) and let π, π′ be tight for x. Then the outputs φ, γ of
Uncross-and-Decompose(π, π′) are tight for x.

Proof.

r(π) + r(π′) − 2 =
∑

K

xK(rcπ
K + rcπ′

K) ≥
∑

K

xK(rcφ
K + rc

γ
K) ≥ r(φ) + r(γ) − 2 (11)

where the inequality follows from (v). By (iv) we have equality throughout, so φ and γ are tight.

Now we prove that tight partitions are closed under meet and join.
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Proof of Property 2.4. Proposition 2.8 and (iii) immediately give that tight partitions are closed
under the join ∨. Suppose for the sake of contradiction there exist tight partitions π and π′ such
that their meet π∧π′ is not tight; pick such a pair with r(π)+r(π′) maximal. Let φ be the partition
obtained via the above procedure. Note that r(φ) > max{r(π), r(π′)} since π and π′ cross. By our
choice of π, π′ of maximal sum of ranks, we then have π∧φ is tight (since φ is tight), and (π∧φ)∧π′

is tight. However, this is π ∧ π′ since φ coarsens π ∧ π′ (due to (ii)).

2.3 Sparsity of Basic Feasible Solutions: Proof of Theorem 1

Proof. Let supp(x∗) be the full components K with x∗
K > 0. Consider the constraint submatrix

with rows corresponding to the tight partitions and columns corresponding to the full components
in supp(x∗). Since x∗ is a basic feasible solution, any full-rank subset of rows uniquely defines x∗.
We now show that any maximal chain C in tight(x∗) corresponds to such a subset.

Let row(π) ∈ Rsupp(x∗) denote the row corresponding to partition π of this matrix, i.e., row(π)K =
rcπ

K , and given a collection R of partitions (rows), let span(R) denote the linear span of the rows in
R. We now prove that for any tight partition π /∈ C, we have row(π) ∈ span(C); this will complete
the proof of the theorem.

For sake of contradiction, suppose row(π) 6∈ span(C) and choose such a tight π with r(π)
maximal. Then, since C is inclusion-maximal, π must cross some partition σ in C; let σ be a partition
in C which crosses π, with r(σ) minimal. Run Uncross-and-Decompose(π, σ), obtaining outputs
φ, γ where γ = π ∨ σ.

Claim 2.9. We have row(π) + row(σ) = row(φ) + row(γ).

Proof. This follows by a more detailed look at the proof of Proposition 2.8. Due to (v), the only

problem would be that rcπ
K + rcσ

K > rc
φ
K + rc

γ
K for some K with xK > 0. But this contradicts

the fact that (11) holds with equality.

Since row(π) /∈ span(C) and row(σ) ∈ span(C), Claim 2.9 puts us in one of the following two cases.

Case 1: row(φ) /∈ span(C). This contradicts our choice of π since we could have picked the tight
partition φ instead and r(φ) > r(π).

Case 2: row(γ) 6∈ span(C). By the maximality of C, there is a partition σ′ ∈ C which crosses
γ = π∨σ. Note that σ refines σ′ (otherwise σ coarsens σ′ and thus π∨σ coarsens σ′, but the
latter pair cross). Moreover since σ 6= σ′, r(σ′) < r(σ). Note that π and σ′ cross (on the one
hand, if π coarsens σ′ then π coarsens σ; on the other hand, if π refines σ′ then π ∨ σ refines
σ′). Thus σ′ contradicts our choice of σ.

This completes the proof of Theorem 1.

3 Equivalence of Formulations

In this section we describe our equivalence results. A summary of the known and new results is
given in Figure 6.
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OPT(S)

OPT(P)

OPT(P ′) OPT(D) OPT(B)

= [Sec. 3.1]

= [Sec. 3.2] = [28]

= [Sec. 3.3] ≥ [Lemma 1.1],[28]

≤ in quasi-bipartite [Sec. 3.4]

Figure 6: Summary of relations among various LP relaxations

3.1 Bounded and Unbounded Partition Relaxations

Theorem 2. The LPs (P ′) and (P) have the same optimal value.

We actually prove a stronger statement.

Definition 3.1. The collection K of hyperedges is down-closed if whenever S ∈ K and ∅ 6= T ⊂ S,
then T ∈ K. For down-closed K, the cost function C : K → R+ is non-decreasing if CS ≤ CT

whenever S ⊂ T .

Theorem 3. If the set of hyperedges is down-closed and the cost function is non-decreasing, then
(P ′) and (P) have the same optimal value.

Theorem 3 implies Theorem 2 since the hypergraph and cost function derived from instances
of the Steiner tree problem are down-closed and non-decreasing (e.g. C{k} = 0 for every k ∈ R;
we remark that the variables x{k} act just as placeholders). Our proof of Theorem 2 relies on the
following operation which we call shrinking.

Definition 3.2. Given an assignment x : K → R+ to the full components, suppose xK > 0 for
some K. The operation Shrink(x,K,K ′, δ), where K ′ ⊆ K, |K ′| = |K| − 1 and 0 < δ ≤ xK ,
changes x to x′ by decreasing x′

K := xK − δ and increasing x′
K ′ := xK ′ + δ.

Note that shrinking is defined only for down-closed hypergraphs. Also note that on perform-
ing a shrinking operation, the cost of the solution cannot increase, if the cost function is non-
decreasing. The theorem is proved by taking the optimum solution to (P) which minimizes the
sum

∑

K∈K xK |K|, and then showing that this must satisfy the equality in (P ′), or a shrinking
operation can be performed. Now we give the details.

Proof of Theorem 3. It suffices to exhibit an optimum solution of (P) which satisfies the equality
in (P ′). Let x be an optimal solution to (P) which minimizes the sum

∑

K∈K xK |K|.
Claim 3.3. For every K with xK > 0 and for every r ∈ K, there exists a tight partition (w.r.t. x)
π such that the part of π containing r contains no other vertex of K.

Proof. Let K ′ = K \ {r}. If the above is not true, then this implies that for every tight par-
tition π, we have rcπ

K = rcπ
K ′ . We now claim that there is a δ > 0 such that we can perform

Shrink(x,K,K ′, δ) while retaining feasibility in (P). This is a contradiction since the shrink oper-
ation strictly reduces

∑

K |K|xK and doesn’t increase cost. Specifically, take

11



δ := min{xK ,minπ:rcπ
K′

6=rc
π
K

∑

K rcπ
KxK − r(π) + 1}

which is positive since for tight partitions we have rcπ
K = rcπ

K ′ .

Let tight(x) be the set of tight partitions, and π∗ :=
∧

{π | π ∈ tight(x)} the meet of all
tight partitions. By Property 2.4, π∗ is tight. By Claim 3.3, for any K with xK > 0, we have
rcπ∗

K = |K| − 1. Thus, r(π∗)− 1 =
∑

K∈K xKrcπ∗

K =
∑

K∈K xK(|K| − 1) ≥ r(π)− 1. But since π is
the unique maximal-rank partition, this implies π∗ = π. Thus π is tight. This implies x ∈ (P ′).

3.2 Partition and Subtour Elimination Relaxations

Theorem 4. The feasible regions of (P ′) and (S) are the same.

Proof. Let x be any feasible solution to the LP (S). Note that the equality constraint of (P ′) is
the same as that of (S). We now show that x satisfies (5). Fix a partition π = {π1, . . . , πt}, so
t = r(π). For each 1 ≤ i ≤ t, subtract the inequality constraint in (S) with S = πi, from the
equality constraint in (S) to obtain

∑

K∈K
xK

(

ρ(K) −
t

∑

i=1

ρ(K ∩ πi)
)

≥ ρ(R) −
t

∑

i=1

ρ(πi). (12)

From Lemma 2.7, ρ(K) − ∑t
i=1 ρ(K ∩ πi) = rcπ

K . We also have ρ(R) − ∑t
i=1 ρ(πi) = |R| − 1 −

(|R| − r(π)) = r(π) − 1. Thus x is a feasible solution to the LP (P ′).

Now, let x be a feasible solution to (P ′) and it suffices to show that it satisfies the inequality
constraints of (S). Fix a set S ⊂ R. Note when S = ∅ that inequality constraint is vacuously true
so we may assume S 6= ∅. Let R\S = {r1, . . . , ru}. Consider the partition π = {{r1}, . . . , {ru}, S}.
Subtract (5) for this π from the equality constraint in (P ′), to obtain

∑

K∈K
xK(ρ(K) − rcπ

K) ≤ ρ(R) − r(π) + 1. (13)

Using Lemma 2.7 and the fact that ρ(K ∩ {rj}) = 0 (the set is either empty or a singleton), we
get ρ(K) − rcπ

K = ρ(K ∩ S). Finally, as ρ(R) − r(π) + 1 = |R| − 1 − (|R\S| + 1) + 1 = ρ(S), the
inequality (13) is the same as the constraint needed. Thus x is a feasible solution to (S), proving
the theorem.

3.3 Directed Hypergraph LP Relaxation

Theorem 5. For any Steiner tree instance, OPT (P) = OPT (D).

Proof. First, we show OPT (P) ≤ OPT (D). Consider a feasible solution x to (D), and define a
solution x′ to (P) by x′

K =
∑

i∈K xKi ; informally, x′ is obtained from x by ignoring the orientation
of the hyperedges. Clearly x′ and x have the same objective value. Further, x′ is feasible for
(P); to see this, for any partition π, note that (5) is implied by the sum of constraints (3) over U
set to those parts of π not containing the root — any orientation of a full component with rank
contribution t must leave at least t parts.

To obtain the reverse direction OPT (D) ≤ OPT (P), we use a similar strategy. We require
some notation and a hypergraph orientation theorem of Frank et al. [16]. For any U ⊂ R we say
that a directed hyperedge Ki lies in ∆in(U) if i ∈ U and K\U 6= ∅, i.e. if Ki ∈ ∆out(R\U). Two
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subsets U and W of R are called crossing if all four sets U \ W , W \ U , U ∩ W , and R \ (U ∪ W )
are non-empty. A set-function p : 2R → Z is a crossing supermodular function if

p(U) + p(W ) ≤ p(U ∩ W ) + p(U ∪ W )

for all crossing sets U and W . A directed hypergraph is said to cover p if |∆in(U)| ≥ p(U) for all
U ⊂ R. Here is the needed result.

Theorem 6 (Frank, Király & Király [16]). Given a hypergraph H = (R,X ), and a crossing
supermodular function p, the hypergraph has an orientation covering p if and only if for every
partition π of R,

(a)
∑

K∈X min{1, rcπ
K} ≥ ∑

πi∈π p(πi), and, (b)
∑

K∈X rcπ
K ≥ ∑

πi∈π p(R \ πi).

We will show every rational solution x to (P) can be fractionally oriented to get a feasible
solution for (D), which will complete the proof of Theorem 5. Let M be the smallest integer such
that the vector Mx is integral. Let X be a multi-set of hyperedges which contains MxK copies of
each K. Define the function p by p(U) = M if r ∈ U 6= R, and p(U) = 0 otherwise; i.e. p(U) = M
iff R\U is valid.

Claim 3.4. H = (R,X ) satisfies conditions (a) and (b).

Proof. Note
∑

πi∈π p(R \πi) = M(r(π)−1) since all parts of π are valid except the part containing

the root r. Thus condition (b), upon scaling by 1
M , is a restatement of constraint (5), which holds

since x is feasible for (P).
For this p, condition (a) follows from (b) in the following sense. Fix a partition π, and let π1

be the part of π containing r. If π1 = R then (a) is vacuously true, so assume π1 6= R. Let σ be
the rank-2 partition {π1, R \ π1}. Then it is easy to check that min{1, rcπ

K} ≥ rcσ
K for all K, and

consequently
∑

K∈X min{1, rcπ
K} ≥ ∑

K∈X rcσ
K and

∑

πi∈σ p(R \ πi) = M =
∑

πi∈π p(πi). Thus,
(a) for π follows from (b) for σ.

It is not hard to check that p is crossing supermodular. Now using Theorem 6, take an orien-
tation of X that covers p.

For each K ∈ K and each i ∈ K, let nKi denote the number of the MxK copies of K that are
oriented as Ki, i.e. directed towards i. So,

∑

i∈K nKi = MxK . Let x′
Ki :=

n
Ki

M for all Ki. Hence
∑

i x
′
Ki = xK and x′ has the same objective value as x.

To complete the proof, we show x′ is feasible for (D). Fix a valid subset U and consider condition
(3) for a valid set U . Note that p(R\U) = M . Therefore, since the orientation covers p, we get

∑

Ki∈∆out(U)

x′
Ki =

1

M

∑

Ki∈∆out(U)

nKi =
1

M

∑

Ki∈∆in(R\U)

nKi ≥ 1

M
p(R\U) =

1

M
M = 1

as needed.

3.4 Partition and Bidirected Cut Relaxations in Quasibipartite Instances

Theorem 7. On quasibipartite Steiner tree instances, OPT(B) ≥ OPT(D).

To prove Theorem 7, we look at the duals of the two LPs and we show OPT(BD) ≥ OPT(DD)
in quasibipartite instances. Recall that the support of a solution to (DD) is the family of sets with
positive zU . A family of sets is called laminar if for any two of its sets A,B we have A ⊆ B,B ⊆ A,
or A ∩ B = ∅.
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Lemma 3.5. There exists an optimal solution to (DD) whose support is a laminar family of sets.

Proof. Choose an optimal solution z to (DD) which maximizes
∑

U zU |U |2 among all optimal so-
lutions. We claim that the support of this solution is laminar. Suppose not and there exists U and
U ′ with U ∩ U ′ 6= ∅ and zU > 0 and zU ′ > 0. Define z′ to be the same as z except z′U = zU − δ,
z′U ′ = zU ′ − δ, z′U∪U ′ = zU∪U ′ + δ and z′U∩U ′ = zU∩U ′ + δ; we will show for small δ > 0, z′ is feasible.
Note that U ∩ U ′ is not empty and U ∪ U ′ doesn’t contain r, and the objective value remains
unchanged. Also note that for any K and i ∈ K, if zU∪U ′ or zU∩U ′ appears in the summand of a
constraint, then at least one of zU or zU ′ also appears. If both zU∪U ′ and zU∩U ′ appears, then both
zU and zU ′ appears. Thus z′ is an optimal solution and

∑

U z′U |U |2 >
∑

U zU |U |2, contradicting
the choice of z.

Lemma 3.6. For quasibipartite instances, given a solution of (DD) with laminar support, we can
get a feasible solution to (BD) of the same value.

Proof. This lemma is the heart of the theorem, and is a little technical to prove. We first give a
sketch of how we convert a feasible solution z of (DD) into a feasible solution to (BD) of the same
value.

Comparing (DD) and (BD) one first notes that the former has a variable for every valid subset
of the terminals, while the latter assigns values to all valid subsets of the entire vertex set. We
say that an edge uv is satisfied for a candidate solution z, if both a)

∑

U :u∈U,v/∈U zU ≤ cuv and b)
∑

U :v∈U,u/∈U zU ≤ cuv hold; z is then feasible for (BD) if all edges are satisfied.
Let z be a feasible solution to (DD). One easily verifies that all terminal-terminal edges are

satisfied. On the other hand, terminal-Steiner edges may initially not be satisfied. To see this
consider the Steiner vertex v and its neighbours depicted in Figure 7 below. Initially, none of the
sets in z’s support contains v, and the load on the edges incident to v is quite skewed: the left-hand
side of condition a) above may be large, while the left-hand side of condition b) is initially 0.

To construct a valid solution for (BD), we therefore lift the initial value zS of each terminal
subset S to supersets of S, by adding Steiner vertices. The lifting procedure processes each Steiner
vertex v one at a time; when processing v, we change z by moving dual from some sets U to
U ∪{v}. Such a dual transfer decreases the left-hand side of condition a) for edge uv, and increases
the (initially 0) left-hand sides of condition b) for edges connecting v to neighbours other than v.

We will soon see that there is a way of carefully lifting duals around v that ensures that all
edges incident to v become satisfied. The definition of our procedure will ensure that these edges
remain satisfied for the rest of the lifting procedure. Since there are no Steiner-Steiner edges, all
edges will be satisfied once all Steiner vertices are processed.

U

v

u

U’ u’

Figure 7: Lifting variable zU .

Throughout the lifting procedure, we will maintain that z
remains unchanged, when projected to the terminals. Formally,
we maintain the following crucial projection invariant:

The quantity
∑

U :S⊆U⊆S∪(V \R) zU

remains constant, for all terminal sets S.
(PI)

This invariant leads to two observations: first, the constraint (4)
is satisfied by z at all times, even when it is defined on subsets
of all vertices; second,

∑

U⊆V zU is constant throughout, and
the objective value of z in (BD) is not affected by the lifting.
The existence of a lifting of duals around Steiner vertex v such
that (PI) is maintained, and such that all edges incident to v are satisfied can be phrased as a
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feasibility problem for a linear system of inequalities. We will use Farkas’ lemma and the feasibility
of z for (4) to complete the proof.

We now fill in the proof details. Let Γ(v) denote the set of neighbours of vertex v in the given
graph G. In each iteration, where we process Steiner node v, let

Uv := {U : zU > 0 and U ∩ Γ(v) 6= ∅}

be the sets in z’s support that contain neighbours of v. Note that U ∈ Uv could contain Steiner
vertices on which the lifting procedure has already taken place. However, by (PI) and by Lemma
3.5 the multi-family {U ∩ R : U ∈ Uv} is laminar. In the lifting process, we will transfer xU units
of the zU units of dual of each set U ∈ Uv to the set U ′ = U ∪ {v}; this decreases the dual load
(LHS of (2)) on arcs from U ∩ Γ(v) to v (e.g. uv in Figure 7) and increases the dual load on arcs
from v to Γ(v)\U (e.g. vu′ in the figure). The following system of inequalities describes the set of
feasible liftings.

∀U ∈ Uv : xU ≤ zU (L1)

∀u ∈ Γ(v) :
∑

U :u∈U

(zU − xU ) ≤ cuv (L2)

∀u ∈ Γ(v) :
∑

U :u/∈U

xU ≤ cuv (L3)

Claim 3.7. If (L1), (L2), (L3) have a feasible solution x ≥ 0, then the lifting procedure can be
performed at Steiner vertex v, while maintaining the projection invariant property.

Proof. Define the new solution to be zU := zU − xU , and, z(U∪v) := xU , for all U ∈ Uv, and zU

remains unchanged for all other U . It is easy to check that all edges which were satisfied remain
satisfied, and (L2) and (L3) imply that all edges incident to v are satisfied. Also note that the
projection invariant property is maintained.

By Farkas’ lemma, if (L1), (L2), (L3) do not have a feasible solution x ≥ 0, then there exist
non-negative multipliers — λU for all U ∈ Uv, and αu, βu for all u ∈ Γ(v) — satisfying the following
dual set of linear inequalities:

∑

U∈Uv

λUzU +
∑

u∈Γ(v)

αu

(

cuv −
∑

U :u∈U

zU

)

+
∑

u∈Γ(v)

βucuv < 0 (D1)

∀U ∈ Uv : λU −
∑

u∈U

αu +
∑

u/∈U

βu ≥ 0 (D2)

As a technicality, note that the sub-system {(L1), (L2), x ≥ 0} is feasible — take x = z. Thus
any α, β, λ satisfying (D1) and (D2) has

∑

u βu > 0, so by dividing all α, β, λ by
∑

i βi, we may
assume without loss of generality that

∑

u∈Γ(v)

βu = 1. (D3)

Subtracting (D3) from (D2) allows us to rewrite the latter set of constraints conveniently as

∀U ∈ Uv : λU −
∑

u∈U

(αu + βu) + 1 ≥ 0. (D2’)

The following claim shows that (L1), (L2), (L3) does have a feasible solution, and thus by Claim
3.7, lifting can be done, which completes the proof of Lemma 3.6.
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Claim 3.8. There exists no feasible solution to {α, β, λ ≥ 0 : (D1), (D2’), and (D3)}.

Proof. Consider the linear program which minimizes the LHS of (D1) subject to the constraints
(D2’) and (D3). We show that the LP has value at least 0, which will complete the proof.

Let (λ∗, α∗, β∗) be an optimal solution to the LP. In Lemma 3.9 we will show that the constraint
matrix of the LP is totally unimodular; hence, since the right-hand side of the given system is
integral, we may assume that λ∗, α∗, and β∗ are non-negative and integral. From (D3) we infer

There is a unique ū ∈ Γ(v) for which β∗
ū = 1; for all u 6= ū, β∗

u = 0. (14)

Moreover, since each λU appears only in the two constraints (D2’) and λU ≥ 0, and since λU has
nonnegative coefficient in the objective, we may assume

λ∗
U = λ∗

U (α∗, β∗) := max{
∑

u∈U

(α∗
u + β∗

u) − 1, 0} (15)

for all U .
Next, we establish the following:

α∗
u + β∗

u ∈ {0, 1} for all u ∈ Γ(v). (16)

Suppose for the sake of contradiction that property (16) does not hold for our solution. Let u be
such that α∗

u +β∗
u ≥ 2. By (14), α∗

u ≥ 1. We propose the following update to our solution: decrease
α∗

u by 1 (which by (15) will decrease λ∗
U by 1 for all U ∈ Uv). This maintains the feasibility of

(D2’), and the objective value decreases by

∑

U∈Uv:u∈U

zU + (cuv −
∑

u∈U

zU )

which is non-negative as c ≥ 0. By repeating this operation, we may clearly ensure property (16).
Let K ⊆ Γ(v) be the set {u | α∗

u + β∗
u = 1} and recall ū is the unique terminal with β∗

ū = 1; ū
is clearly a member of K. At (α∗, β∗, λ∗), we evaluate the objective and collect like terms to get
value

∑

U∈Uv

zUρ(U ∩ K) +
∑

u∈K\ū
(cuv −

∑

U :u∈U

zU ) + cūv =
∑

u∈K

cuv +
∑

U∈Uv

zU (ρ(U ∩ K) − |(K\ū) ∩ U |)

=
∑

u∈K

cuv −
∑

U∈Uv:U∩K 6=∅,ū6∈U

zU

where the last equality follows by considering cases. Finally, combining the fact that
∑

u∈K cuv ≥
CK (since these edges form one possible full component on terminal set K) together with (4) for
the pair (K, ū), it follows that the LP’s optimal value is non-negative as needed.

Lemma 3.9. The incidence matrix defined by (D2’) and (D3) is totally unimodular.

Proof. The incidence matrix has |Uv|+ 1 rows (|Uv | corresponding to (D2’) and one last row corre-
sponding to (D3)) and |Uv|+2|Γ(v)| columns. Furthermore, the columns corresponding to αu’s are
same as those corresponding to βu’s, except for the last row, where there are 0’s in the α-columns
and 1’s in the β-columns.

To show that this matrix is totally unimodular we use Ghouila-Houri’s characterization of total
unimodularity (e.g. see [31, Thm. 19.3]):
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Theorem 8 (Ghouila-Houri 1962). A matrix is totally unimodular iff the following holds for every
subset R of rows: we can assign weights wr ∈ {−1,+1} to each row r ∈ R such that

∑

r∈R wrr is
a {0,±1}-vector.

Note that we can safely ignore the columns corresponding to variables λU for sets U ∈ Uv, since
each of them contains a single 1 occurring in constraint (D2’) for set U .

The row subset R corresponds to a subset of Uv — which we will denote R ∩ Uv — plus
possibly the single row corresponding to (D3). Each row in R ∩ Uv has its values determined by
the characteristic vector of U ∩Γ(v). So long as any set appears more than once in {U ∩Γ(v) | U ∈
R ∩ Uv} we can assign one copy weight +1 and the other copy weight −1; these rows cancel out.
Thus, henceforth we assume {U ∩ Γ(v) | U ∈ R ∩ Uv} has no duplicate sets.

There is a standard representation of a laminar family as a forest of rooted trees, where there
is a node corresponding to each set, with containment in the family corresponding to ancestry in
the forest. Given the forest for the laminar family {U ∩ Γ(v) | U ∈ R ∩ Uv}, the assignment of
weights to the rows of the matrix is as follows. Let the root nodes of all trees be at height 0 with
height increasing as one goes to children nodes. Give weight −1 to rows corresponding to nodes at
even height, and weight +1 to rows corresponding to nodes at odd height. If R contains the row
corresponding to (D3), give it weight +1.

Finally, let us argue that these weights have the needed property. Consider first a column
corresponding to αu for any u. The rows of R with 1 in this column form a path, from the largest
set containing u (which is a root node) to the smallest set containing u. The weighted sum in this
column is an alternating sum −1+1−1+1 · · · , which is either −1 or 0, which is in {0,±1} as needed.
Second, in a column for some βu, if R doesn’t contain (resp. contains) the row corresponding to
(D3), the weighted sum is the same as for αu (resp. plus 1); in either case its weighted sum is in
{0,±1} as needed.

This finishes the proof of Lemma 3.6, and hence also that of Theorem 7.

4 Improved Integrality Gap Upper Bounds

We first show the improved bound of 73/60 for uniformly quasibipartite graphs. We then show the
(2
√

2−1)
.
= 1.828 upper bound on general graphs, which contains the main ideas, and subsequently

we give the
√

3
.
= 1.729 upper bound.

4.1 Uniformly Quasibipartite Instances

Uniformly quasibipartite instances of the Steiner tree problem are quasibipartite graphs where the
cost of edges incident on a Steiner vertex are the same. They were first studied by Gröpl et al. [22],
who gave a 73/60 factor approximation algorithm. In the following, we show that the cost of the
returned tree is no more than than 73

60 OPT (P), which upper-bounds the integrality gap by 73
60 .

We start by describing the algorithm of Gröpl et al. [22] in terms of full components. A collection
K′ of full components is acyclic if there is no list of t > 1 distinct terminals and hyperedges in K′

of the form r1 ∈ K1 ∋ r2 ∈ K2 · · · ∋ rt ∈ Kt ∋ r1 — i.e. there are no hypercycles.

17



Procedure RatioGreedy

1: Initialize the set of acyclic components L to ∅.
2: Let L∗ be a minimizer of CL

|L|−1 over all full components L such that |L| ≥ 2 and L ∪ L is
acyclic.

3: Add L∗ to L.
4: Continue until (R,L) is a hyper-spanning tree and return L.

Theorem 9. On a uniformly quasibipartite instance RatioGreedy returns a Steiner tree of cost
at most 73

60 OPT(P).

Proof. Let t denote the number of iterations and L := {L1, . . . , Lt} be the ordered sequence of
full components obtained. We now define a dual solution to (PD). Let π(i) denote the partition
induced by the connected components of {L1, . . . , Li}. Let θ(i) denote CLi

/(|Li|−1) and note that
θ is nondecreasing. Define θ(0) = 0 for convenience. We define a dual solution y with

yπ(i) = θ(i + 1) − θ(i)

for 0 ≤ i < t, and all other coordinates of y set to zero; y is not generally feasible, but we
will scale it down to make it so. By evaluating a telescoping sum, it is not hard to find that
∑

i yπ(i)(r(π(i))− 1) = C(L). In the rest of the proof we will show for any K ∈ K,
∑

i yπ(i)rc
π(i)
K ≤

73/60 ·CK — by scaling, this also proves that 60
73y is a feasible dual solution, and hence completes

the proof.
Fix any K ∈ K and let |K| = k. Since the instance in question is uniformly quasi-bipartite,

the full component K is a star with a Steiner centre and edges of a fixed cost c to each terminal in

K. For 1 ≤ i < k, let τ(i) denote the last iteration j in which rc
π(j)
K ≥ k − i. Let Ki denote any

subset of K of size k − i + 1 such that Ki contains at most one element from each part of π(τ(i));

i.e., |Ki| = k − i + 1 and rc
π(τ(i))
Ki

= k − i.
Our analysis hinges on the fact that Ki was a valid choice for Lτ(i)+1. More specifically, note

that {L1, . . . , Lτ(i),Ki} is acyclic, hence by the greedy nature of the algorithm, for any 1 ≤ i < k,

θ(τ(i) + 1) = CLτ(i)+1
/(|Lτ(i)+1| − 1) ≤ CKi

/(|Ki| − 1) ≤ c · (k − i + 1)

k − i
.

Moreover, using the definition of τ and telescoping we compute

∑

π

yπrc
π
K =

t−1
∑

i=0

(θ(i+1)−θ(i))rc
π(i)
K =

k−1
∑

i=1

θ(τ(i)+1) ≤
k−1
∑

i=1

c · (k − i + 1)

k − i
= c · (k−1+H(k−1)),

where H(·) denotes the harmonic series. Finally, note that (k − 1 + H(k − 1)) ≤ 73
60k for all k ≥ 2

(achieved at k = 5). Therefore, 60
73y is a valid solution to (PD).

4.2 General graphs

We start with a few definitions and notations in order to prove the 2
√

2 − 1 and
√

3 integrality
gap bounds on (P). Both results use similar algorithms, and the latter is a more complex version
of the former. For conciseness we let a “graph” be a triple G = (V,E,R) where R ⊂ V are G’s
terminals. In the following, we let mtst(G; c) denote the minimum terminal spanning tree, i.e. the
minimum spanning tree of the terminal-induced subgraph G[R] under edge-costs c : E → R. We
will abuse notation and let mtst(G; c) mean both the tree and its cost under c.
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When contracting an edge uv in a graph, the new merged node resulting from contraction is
defined to be a terminal iff at least one of u or v was a terminal; this is natural since a Steiner tree
in the new graph is a minimal set of edges which, together with uv, connects all terminals in the
old graph. Our algorithm performs contraction, which may introduce parallel edges, but one may
delete all but the cheapest edge from each parallel class without affecting the analysis.

Our first algorithm proceeds in stages. In each stage we apply the operation G 7→ G/K
which denotes contracting all edges in some full component K. To describe and analyze the
algorithm we introduce some notation. For a minimum terminal spanning tree T = mtst(G; c)
define dropT (K; c) := c(T ) − mtst(G/K; c). We also define gainT (K; c) := dropT (K) − c(K),
where c(K) is the cost of full component K. A tree T is called gainless if for every full component
K we have gainT (K; c) ≤ 0. The following useful fact is implicit in [25]; we give a full proof in
Section 4.3.

Theorem 10 (Implicit in [25]). If mtst(G; c) is gainless, then OPT (P) equals the cost of mtst(G; c).

We now give the first algorithm and its analysis, which uses a reduced cost trick introduced by
Chakrabarty et al.[4].

Procedure Reduced One-Pass Heuristic

1: Define costs c′e by c′e := ce/
√

2 for all terminal-terminal edges e, and c′e = ce for all other
edges. Let G1 := G, Ti := mtst(Gi; c

′), and i := 1.
2: The algorithm considers the full components in any order. When we examine a full component

K, if gainTi
(K; c′) > 0, let Ki := K, Gi+1 := Gi/Ki, Ti+1 := mtst(Gi+1; c

′), and i := i + 1.

3: Let f be the final value of i. Return the tree Talg := Tf ∪ ⋃f−1
i=1 Ki.

Note that the full components are scanned in any order and they are not examined a priori. Hence
the algorithm works just as well if the full components arrive “online,” which might be useful for
some applications.

Theorem 11. c(Talg) ≤ (2
√

2 − 1)OPT (P).

Proof. First we claim that gainTf
(K; c′) ≤ 0 for all K. To see this there are two cases. If K = Ki

for some i, then we immediately see that dropTj
(K) = 0 for all j > i so gainTf

(K) = −c(K) ≤ 0.

Otherwise (if for all i, K 6= Ki) K had nonpositive gain when examined by the algorithm; and
the well-known contraction lemma (e.g., see [21, §1.5]) immediately implies that gainTi

(K) is
nonincreasing in i, so gainTf

(K) ≤ 0.

By Theorem 10, c′(Tf ) equals the value of (P) on the graph Gf with costs c′. Since c′ ≤ c, and
since at each step we only contract terminals, the value of this optimum must be at most OPT(P).
Using the fact that c(Tf ) =

√
2c′(Tf ), we get

c(Tf ) =
√

2c′(Tf ) ≤
√

2 OPT(P) (17)

Furthermore, for every i we have gainTi
(Ki; c

′) > 0, that is, dropTi
(Ki; c

′) > c′(K) = c(K).
The equality follows since K contains no terminal-terminal edges. However, dropTi

(Ki; c
′) =

1√
2
dropTi

(Ki; c) because all edges of Ti are terminal-terminal. Thus, we get for every i = 1 to

f , dropTi
(Ki; c) >

√
2 · c(Ki).

Since dropTi
(Ki; c) := mtst(Gi; c) − mtst(Gi+1; c), we have

f−1
∑

i=1

dropTi
(Ki; c) = mtst(G; c) − c(Tf ).
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Thus, we have

f−1
∑

i=1

c(Ki) ≤
1√
2

f
∑

i=1

dropTi
(Ki; c) =

1√
2
(mtst(G; c) − c(Tf )) ≤ 1√

2
(2OPT (P) − c(Tf ))

where we use the fact that mtst(G, c) is at most twice OPT(P)6. Therefore

c(Talg) = c(Tf ) +

f−1
∑

i=1

c(Ki) ≤
(

1 − 1√
2

)

c(Tf ) +
√

2OPT (P).

Finally, using c(Tf ) ≤
√

2 OPT(P) from (17), the proof of Theorem 11 is complete.

4.2.1 Improving to
√

3

To get the improved factor of
√

3, we use a more refined iterated contraction approach. The
crucial new concept is that of the loss of a full component, introduced by Karpinski and Zelikovsky
[24]. The intuition is as follows. In each iteration, the (2

√
2 − 1)-factor algorithm contracts a full

component K, and thus commits to include K in the final solution; the new algorithm makes a
smaller commitment, by contracting a subset of K’s edges, which allows for a possibility of better
recovery later.

Given a full component K (viewed as a tree with leaf set K and internal Steiner nodes),
loss(K) is defined to be the minimum-cost subset of E(K) such that (V (K), loss(K)) has at
least one terminal per connected component — i.e. the cheapest way in K to connect each Steiner
node to the terminal set. We also use loss(K) to denote the total cost of these edges. Note that
no two terminals are connected by loss(K). A very useful theorem of Karpinski and Zelikovsky
[24] is that for any full component K, loss(K) ≤ c(K)/2.

Now we have the ingredients to give our new algorithm. In the description below, α > 1 is a
parameter (which will be set to

√
3). In each iteration, the algorithm contracts the loss of a single

full component K (we note it follows that the terminal set has constant size over all iterations).

Procedure Reduced One-Pass Loss-Contracting Heuristic

1: Initially G1 := G, T1 := mtst(G; c), and i := 1.
2: The algorithm considers the full components in any order. When we examine a full component

K, if
gainTi

(K; c) > (α − 1)loss(K),

let Ki := K, Gi+1 := Gi/loss(Ki), Ti+1 := mtst(Gi+1; c), and i := i + 1.

3: Let f be the final value of i. Return the tree Talg := Tf ∪ ⋃f−1
i=1 loss(Ki).

We now analyze the algorithm.

Claim 4.1. c(Tf ) ≤ (1+α
2 )OPT (P).

Proof. Using the contraction lemma again, gainTf
(K; c) ≤ (α − 1)loss(K) for all K, so

dropTf
(K; c) ≤ c(K) + (α − 1)loss(K) = c(K) + (α − 1)loss(K) ≤

(1 + α

2

)

c(K) (18)

6This follows using standard arguments, and can be seen, for instance, by applying Theorem 10 to the cost-function
with all terminal-terminal costs divided by 2, and using short-cutting.
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since loss(K) ≤ c(K)/2.
To finish the proof of Claim 4.1, we proceed as in the proof of Equation (17). Define c′e :=

ce/(
1+α

2 ) for all edges e which join two vertices of the original terminal set R, and c′e = ce for all
other edges. Note that (18) implies that Tf is gainless with respect to c′. Thus, by Theorem 10,
the value of LP (P) on (Gf , c′) equals c′(Tf ). Since we only reduce costs (as α ≥ 1), this optimum
is no more than the original OPT(P) giving us c′(Tf ) ≤ OPT(P). Now using the definition of c′,
the proof of the claim is complete.

Claim 4.2. For any i ≥ 1, we have c(Ti) − c(Ti+1) ≥ gainTi
(Ki; c) + loss(Ki).

Proof. Recall that Ti+1 is a minimum terminal spanning tree of Gi+1 under c. Consider the following
other terminal spanning tree T of Gi+1: take T to be the union of Ki/loss(Ki) with mtst(Gi/Ki; c).
Hence c(Ti+1) ≤ c(T ) = mtst(Gi/Ki; c) + c(Ki)− loss(Ki). Rearranging, and using the definition
of gain, we obtain:

c(Ti) − c(Ti+1) ≥ c(Ti) − mtst(Gi/Ki; c) − c(Ki) + loss(Ki) = gainTi
(Ki; c) + loss(Ki),

and this completes the proof.

Now we are ready to prove the integrality gap upper bound of
√

3.

Theorem 12. c(Talg) ≤
√

3OPT (P).

Proof. By the algorithm, we have for all i that gainTi
(Ki) ≥ (α−1)loss(Ki), and thus gainTi

(Ki; c)+
loss(Ki) ≥ αloss(Ki). Thus, from Claim 4.2, we get

f−1
∑

i=1

loss(Ki) ≤
1

α

f−1
∑

i=1

(

c(Ti) − c(Ti+1)
)

The right-hand sum telescopes to give us c(T1) − c(Tf ) = mtst(G; c) − c(Tf ). Thus,

c(Talg) = c(Tf ) +

f−1
∑

i=1

loss(Ki) ≤ c(Tf ) +
1

α
(mtst(G; c) − c(Tf )) =

1

α
mtst(G; c) +

α − 1

α
c(Tf )

≤
( 2

α
+

(α − 1)(1 + α)

2α

)

OPT (P) =
(α2 + 3

2α

)

OPT (P)

which follows from mtst(G; c) ≤ 2OPT (P) and Claim 4.1. Setting α =
√

3, the proof of the
theorem is complete.

4.3 Gainless MSTs and Hypergraphic Relaxations

Theorem 10 (Implicit in [25]). If the MST induced by the terminals is gainless, then OPT (P)
equals the cost of that MST.

Proof. Let Π be the set of all partitions of the terminal set. As before, we let r(π) be the rank of
a partition π ∈ Π, and we use Eπ for the set of edges in our graph that cross the partition; i.e., Eπ

contains all edges whose endpoints lie in different parts of π. Fulkerson’s [17] formulation of the
spanning tree polyhedron and its dual are as follows.

The high-level overview of the proof is as follows. We first give a brief sketch of a folklore primal-
dual interpretation of Kruskal’s minimum-spanning tree algorithm with respect to Fulkerson’s LP
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min
{

∑

e∈E

cexe : x ∈ RE
≥0 (M)

∑

e∈Eπ

xe ≥ r(π) − 1 ∀π ∈ Π
}

(19)

max
{

∑

π

(r(π) − 1) · yπ : y ∈ RΠ
≥0 (MD)

∑

π:e∈Eπ

yπ ≤ ce, ∀e ∈ E
}

(20)

(for more information see, e.g., [25]). Running Kruskal’s algorithm on the terminal set then returns
a minimum spanning tree T and a feasible dual y to Equation (MD) such that

c(T ) =
∑

π

(r(π) − 1)yπ.

The final step will be to show that, if the returned MST is gainless, then the spanning tree dual y
is feasible for (PD), and its value is c(T ) as well. Weak duality and the fact that the optimal value
of (P) is at most c(T ) imply the theorem.

Kruskal’s algorithm can be viewed as a process over time. For each time τ ≥ 0, the algorithm
keeps a forest T τ , and a feasible dual solution yτ ; initially T 0 = (V, ∅) and y0 = 0. Let πτ be the
partition induced by the connected components of T τ . If T τ is not a spanning tree, Kruskal’s algo-
rithm grows the dual variable yπτ corresponding to the current partition until constraint Equation
(MD)e: for some edge e prevents any further increase. The algorithm then adds e to the partial
tree and continues. The algorithm stops at the first time τ∗ where T τ∗

is a spanning tree.
Let T be the gainless spanning tree returned by Kruskal, and let y be the corresponding dual.

We claim that y is feasible for (PD). To see this, consider a full component K. Clearly, the rank
contribution rcπ0

K of K to the initial partition π0 is |K| − 1; similarly, the final rank contribution

rcπτ∗

K is 0. Every edge that is added during the algorithm’s run either leaves the rank contribution
of K unchanged, or it decreases it by 1. Let e1, . . . , e|K|−1 be the edges of the final tree T whose
addition to T decreases K’s rank contribution. Also let

0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τ|K|−1 ≤ τ∗

be the times where these edges are added. Note that, by definition, we must have cei
= τi for all i.

We therefore have
|K|−1
∑

i=1

cei
=

|K|−1
∑

i=1

τi. (21)

The right-hand side of this equality is easily checked to be equal to

∫ τ∗

0
rcπτ

K dτ,

which in turn is equal to
∑

π rc
π
Kyπ, by the definition of Kruskal’s algorithm. It is not hard to see

that the left-hand side of (21) is the drop dropT (K) induced by K. Together with the fact that T
is gainless, we obtain

cK ≥ dropT (K) =
∑

π

rcπ
Kyπ.

Now observe that the right-hand side of this equation is the left-hand side of (6). It follows that y
is feasible for (PD).

22



5 Conclusion

In this paper we looked at several hypergraphic LP relaxations for the Steiner tree problem, and
showed they all have the same objective value. Furthermore, we noted some connections to the
bidirected cut relaxation for Steiner trees: although hypergraphic relaxations are stronger than the
bidirected cut relaxation in general, in quasibipartite graphs all these relaxations are equivalent. We
obtained structural results about the hypergraphic relaxations showing that basic feasible solutions
have sparse support. We also showed good upper bounds on the integrality gaps on the hypergraphic
relaxations via simple algorithms.

Reiterating the comments in Section 1.2.3, the hypergraphic LPs are powerful (e.g. as evidenced
by Byrka et al. [3]) but may not be manageable for computational implementation. Some interesting
areas for future work include: non-ellipsoid-based algorithms to solve the hypergraphic LPs in
the r-restricted setting; resolving the complexity of optimizing them in the unrestricted setting;
and directly using the bidirected cut relaxation to achieve good results (e.g. in quasi-bipartite
instances).
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