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ABSTRACT
We study two problems, that of computing social optimum
and that of finding fair allocations, in the congestion game
model of Milchtaich[8] Although we show that the general
problem is hard to approximate to any factor, we give sim-
ple algorithms for natural simplifications. We also consider
these problems in the symmetric network congestion game
model [11, 4], and show hardness results and approximate
solutions.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Fairness, Congestion games, Nash equilibrium

1. INTRODUCTION
Congestion games are a special class of non-cooperative

games first introduced by Rosenthal [10]. In this setting, the
cost faced by a player employing a certain strategy is deter-
mined only by the number of other players who employ the
same or overlapping strategies. Rosenthal showed that if the
cost function is same for all the players, then these games
possess a rich structure, in particular they always have a
Nash equilibrium in pure strategies. In [8] Milchtaich ex-
tended the definition to allow player-specific cost functions,
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i.e. when different players have different costs at the same
congestion, and showed that even these games have a pure
Nash equilibrium, if the strategies are not allowed to over-
lap.

Many real life problems like that of load balancing, band-
width allocation, network routing etc. can be modelled as
congestion games of some sort. In such settings, there may
be a central authority who decides the allocations in order
to optimize certain global costs. This is the motivation for
our paper.

Remark: In this paper, we shall denote strategies as bins.

When we say a player is in a bin, we imply that the player is

employing the corresponding strategy. We call this the bin-player

model

In this paper, we look at these games (in Milchtaich’s
setting) from a centralized viewpoint. One of the problems
that we study is of social optimality. In this, we wish to
assign strategies to players such that the total cost of all the
players is minimized. The other problem is that of finding
fair allocations. We consider the standard model of minmax
fairness model [5, 7]. We call an allocation of strategies
to players minmax fair if the cost of any player cannot be
decreased without increasing the cost of a player who was
facing an already higher cost. Its easily seen that such an
allocation minimizes the maximum cost faced by a player in
an allocation, and hence the name.

We observe that in these settings, the problems of social
optimum and fairness are harder than that of finding Nash
equilibria. While Milchtaich [8] gave a polytime algorithm
for finding pure Nash equilibria in the bin-player model, we
show that its hard to approximate both the social optimum
and the minmax cost to any factor (Theorem 4.1).

A congestion game model that has recently come under
study is the network congestion game ([11, 4]). In the single
commodity model the congestion game is on a single source-
sink network with all players assumed to be at the source.
The paths from source to sink are strategies, and number of
players using an edge denotes the congestion on that edge.
The cost faced by a player in this case is the sum of the
costs of edges in his path. Fabrikant etal. [4] gave a polyno-
mial time algorithm to compute the Nash equilibrium. We
investigate the problem of finding social optimum and fair
allocations when the costs are linear.

Our Results
The results of this paper are

• We show that the problem of computing fairness and
social optimum, is NP-hard in the general model. Our



reduction also shows that the problem is hard to ap-
proximate to any factor. However, we note that if the
number of bins is a constant, then there is a polynomial
time algorithm to solve both the problems of fairness
and social optimal. (Section 4)

• If all the strategies/bins are similar, which we call the
Symmetric Bins case, then we give an algorithm to find
the fair allocation under certain restrictions. However,
the social optimality problem appears hard, although
we were not able to prove a hardness. Nevertheless,
we show that if the cost functions satisfy certain prop-
erties (e.g. if they are linear) then again, there is an
algorithm to find the social optimal (Section 2).

• We show that if all the users are similar, facing same
costs at same congestions, then its very simple to find
both the social optimal and fair allocations. We shall
call this case as the Symmetric Players case. We show
that the problem of finding fair allocations is hard in
the Symmetric Network Congestion games, even when
the costs are linear. We then go on to give approxi-
mate solutions. In particular, we show that the social
optimum, which can be found efficiently by a simple
modification of the [4] algorithm, is a 3-prefix-sum ap-
proximation to the fair solution, when the costs are
linear (Section 3).

Related Work
Congestion games were first studied by Rosenthal [10] where
he showed that if all players faced similar costs (symmetric
players case), then there exists a pure Nash equilibrium.
Milchtaich [8] extended the result to the case with general
cost functions but non-overlapping strategies. In fact, the
Nash Equilibrium can be found in polynomial time from
any given allocation. There has also been some recent work
on computing the equilibrium in the incomplete information
model [2].

In computer science, the most common congestion games
to be studied are the network routing problem [6, 12, 4] and
the load balancing problem [5, 1]. There has also been some
research on modelling bandwidth allocation in P2P systems
as congestion games [13]. The social optimal in congestion
games was also studied by Milchtaich [9], who showed that
under certain constraints on the congestion function, there
is a socially optimal Nash equilibrium.

Notations and Problem Statement
We are given k bins (strategies) and n players who are to be
assosciated with these bins. Each player i has a cost ci,j(l)
when he is in the jth bin with l players (including himself) in
that bin. The function ci,j is non decreasing in the conges-
tion. In its whole generality, the input to this problem can
be represented as a three dimensional n × k × n matrix A,
where A[i, j, l] = ci,j(l). An allocation is an assignment of
players to bins. Given an allocation, the congestion vector is
a k-dimensional vector where the jth coordinate represents
the number of players in bin j. The cost allocation vector
C is an n-dimensional vector with each coordinate repre-
senting the cost faced by that player in the allocation. We
will assume, by renaming players, that this vector is non-
increasing in its coordinates.

An allocation is called social optimal if it minimizes the
objective function

P
i C[i] over all allocations. We denote

the value achieved by the social optimum as OPT . A allo-
cation is is the fair, if its cost allocation vector is the lexico-
graphically smallest one. That is its first coordinate, which
is also the largest cost, is as small as possible; given that,
the second largest cost is as small as possible, and so on.
We call the largest cost faced by a player in a fair allocation
the minmax cost and denote it as OPT ′.

2. SYMMETRIC BINS
When all the bins are alike, then the input can be repre-

sented as an n × n matrix, Q[l, i] giving the cost faced by
the ith player when he faces congestion l. We also call this
matrix the congestion matrix. We first show an efficient al-
gorithm to compute the fair allocation, when all the entries
of Q are distinct. To do this we shall first show how to find
the minmax cost, which is the first coordinate of the cost
allocation vector of the fair allocation. Then we show how
to iterate the same procedure to get the fair allocation. In
the next subsection we shall describe an algorithm to get
the social optimum under certain restrictions.

2.1 Fair Allocations
We make a few observations about the congestion matrix

Q. Firstly note that all its columns are nondecreasing (since
the congestion function is nondecreasing). Secondly, since
all entries of Q are distinct, the fair allocation is unique.
Thus to get the minmax cost, we look at the entries of the
congestion matrix in increasing order, and check if there ex-
ists a feasible allocation with minmax cost as that entry, and
we stop once we get a feasible allocation. We now describe
the algorithm and the feasibility subroutine in a little de-
tail.

Sort the entries of Q in ascending order: M1 → Mn2 .
For each M in this range, let cMi be the maximum con-
gestion the player i can face with its cost being less than
M . That is Q[cMi , i] ≤ M but Q[cMi + 1, i] > M . Let
feasibility(c1, · · · , cn) be a function which returns an allo-
cation of n players in the minimum number of bins with the
constraint that i faces congestion atmost ci. Thus
OPT ′ = min{M |feasibility(cM1 , · · · , cM

n ) returns an alloca-
tion in less than k bins. }
What remains is the description of feasibility.

We show that a simple greedy strategy works for feasibility:
allocate players to bins of as high congestion as possible.
Firstly note that we may assume c1 ≥ c2 ≥ · · · ≥ cn, by
renumbering players. The algorithm first places player 1 in
bin 1. It then continues placing each player i according to
the rule: If ci is greater than the number of players in the
current bin, add i to the current bin; otherwise open a new
bin to contain player i, and this becomes the current bin.
Thus the allocation satisfies the property that each i faces
congestion atmost ci. Let r be the number of bins used by
this algorithm, and ALG be the allocation obtained. Let the
bins be numbered in the order in which they were opened.
Let Nj be the set of players in bin j, and nj = |Nj | its con-
gestion. We show that r is the minimum number of bins in
which all the players can be accommodated, which proves
the correctness of feasibility. The following claims follow
from the algorithm.
Claim 1: If player l ∈ Nj , then nj−1 ≥ cl ≥ nj

Claim 2: n1 ≥ n2 · · · ≥ nr



Lemma 2.1. The minimum number of bins required to al-
locate the players given their maximum congestions is r.

Proof: Suppose the allocation with the minimum number
of bins, OPT has r′ < r bins. Let the bins in OPT be
numbered in decreasing order of congestion. Let the set of
players in the bins be M1, · · · ,Mr′ , and mj = |Mj |. Since
the number of players in both OPT and ALG is the same,
and the number of bins in OPT is less than in ALG, there
must be some i such that

Pi
j=1mj >

Pi
j=1 nj . That is,

number of players in the first i bins in ALG is less than the
number of players in the first i bins in OPT . Choose the
first such i; note that mi > ni. Now consider any player
l ∈Mi′ where i′ ≤ i. Since in OPT , l faces congestion mi′ ,
cl ≥ mi′ ≥ mi > ni. Thus from Claims 1 & 2 we have that
l must be in one of the first i bins of ALG. Thus all the
players in the first i bins in OPT must be in the first i bins
of ALG, which contradicts the choice of i. �

Our algorithm to compute the fair allocation runs in n
rounds. In the first round, we compute the smallest entry
M1 in Q such that there is an allocation with each player
facing cost at most M1 (note M1 = OPT ′), by running the
above algorithm. Since all entries in Q are distinct, this
cost is faced by a unique player p at a unique congestion c.
We freeze p at congestion c. In the next round, we find the
smallest entry M2 ≤ M1 in Q such that there is an allo-
cation with p facing M1, and all other players (non frozen)
facing cost at most M2. We know that such an allocation
exists because the allocation obtained in round 1 is one such.
Computing the allocation in round 2 is similar to computing
the minmax allocation (round 1); the difference being that
now in all calls to feasibility, cp is always fixed at c. Again
there is a unique player (and his congestion) who faces cost
M2, and we freeze this player at his congestion. Now we
proceed to the next round. This way at the end of n rounds
we would have frozen all the players. It is not hard to see
that the allocation returned by our algorithm minimizes the
maximum cost, conditioned on that minimizes the second
maximum, and so on. By a careful implementation of this,
we get

Theorem 2.2. In the case of Symmetric Bins when all
the costs are distinct, the fair allocation can be found in
time Õ(n2)

We point out that this algorithm does not generalize to the
case when the costs are non distinct. This is because with
non distinct costs, the algorithm is unable to decide which
entry corresponds to the minmax cost.

However, we note that this problem can be reduced to
finding the social optimal allocation of a different conges-
tion game. Firstly note that, to get the fair allocation we
don’t need the exact matrix entries but just the relative or-
der between them. Thus these can be assumed to be from
{1, 2, · · · , n2}. We create a new congestion matrix Q′ such

that Q′[i, j] = (n + 1)Q[i,j]. Note that the entries in Q′ are
polynomial in n. Its easy to check that the social optimal
allocation for Q′ is a fair allocation for Q. As we shall see
in the next subsection, the social optimal allocation can be
found in special cases. Thus even with non distinct entries,
the fair allocation can be found in some special cases (eg:
when the costs are linear with congestion).

2.2 Social Optimum in Symmetric Bins

In this section we shall look at the problem of finding the
social optimum in the case of symmetric bins. We leave open
the question of hardness in this setting. Here we present a
polynomial time algorithm for a special case of this problem.
An n× n matrix Q is anti-Monge if:

∀r1 < r2,∀c1 < c2 : Q[r1, c2]+Q[r2, c1] ≤ Q[r1, c1]+Q[r2, c2]

We present a dynamic programming based algorithm to com-
pute the social optimum in polynomial time if the congestion
matrix Q is anti-Monge. Since there are efficient algorithms
to rearrange the columns of a matrix to make it anti-Monge
(if possible) [3], this algorithm is applicable to a fairly large
class of matrices. For example, if the cost faced by each
player is a linear function of his congestion, its easy to see
that Q is anti-Monge and thus social optimum is computable
in polynomial time. A limited class of polynomial functions
can also be represented by anti-Monge matrices.

Monge and anti-Monge matrices have very rich structures,
and many hard problems (e.g. TSP) have efficient algo-
rithms if the underlying input matrix is Monge or anti-
Monge. [3] is an excellent survey, and indeed the follow-
ing lemma can be easily derived from the result about the
Northwest corner rule for Monge matrices. (Theorem 3.1,
[3]).

Lemma 2.3. If the congestion matrix Q is anti-Monge,
and the number of players in each bin is n1 ≥ n2 ≥ · · · ≥ nk

s.t.
Pk

j=1 nj = n, the cheapest allocation assigns players as
follows - players 1 to n1 to bin 1, players n1 + 1 to n1 + n2

to bin 2, and so on.

Proof: We associate any allocation with an n dimensional
vector, where the ith entry is the congestion faced by player
i under this allocation. Let α be the allocation stated in the
lemma : players 1 to n1 at congestion n1, players n1 + 1 to
n1 + n2 at congestion n2, and so on. Let β be the cheapest
allocation under the specified bin congestions. Note that by
fixing the congestion of each bin, the number of players at
each congestion level is also fixed. So allocations α and β
have the same number of players at each congestion level.

Suppose α 6= β. Let i1 be the last player that has different
congestions in α and β. i.e. α[i] = β[i] for all i > i1.
Choose β among all the cheapest allocations such that i1
is as small as possible. If there is no such player, α = β
and the lemma is true. Otherwise, let c1 = α[i1] (c2 =
β[i1]) be the congestion level of player i1 in allocation α
(β). Note that c2 > c1 : if c2 < c1, the number of players at
congestion c2 in allocation β is greater than in α. Among
players i1 · · ·n, allocation β has one less player at congestion
c1 than allocation α. So there is a player i2 < i1 such that
β[i2] = c1. Now consider the allocation β′ obtained from β
by interchanging the places of players i1 and i2.

β′[i] =

8<: β[i2] i = i1
β[i1] i = i2
β[i] otherwise

The difference in the total cost of β′ and β is cost(β′) −
cost(β) = Q[c2, i2]+Q[c1, i1]−(Q[c1, i2]+Q[c2, i1]) ≤ 0, from
the anti-monge property. But the last point of difference
between allocations β′ and α is a player smaller than i1,
contradicting the choice of β. �

We will now see how this lemma implies a dynamic pro-
gramming algorithm to compute OPT . Let us define the



table T [i, nmax, r] as the cheapest allocation of players i
through n, into r bins such that the congestion in any bin
is at most nmax. Here i ∈ [1, n + 1], nmax ∈ [1, n], and
r ∈ [0, k]; so this table has size O(n2k). We want to obtain
OPT = T [1, n, k].

From the lemma above, if we wish to optimally assign
players i through n to r bins such that the maximum con-
gestion is exactly c, players i to i+c−1 occupy one bin, and
the remaining players (i+ c to n) are optimally assigned to
r − 1 bins with congestion at most c in each bin. Thus we
have :

T [i, nmax, r] = min
c
{

X
i≤p≤i+c−1

Q[c, p] + T [i+ c, c, r − 1]}

where the minimum is over all c : 1 ≤ c ≤ min(nmax, n− i+
1). Note

T [i, nmax, 0] =


0 i = n + 1
∞ otherwise

An implementation of these recurrences would take O(n2)
time at each step, and O(n4k) time overall, to compute
OPT . Thus we have

Theorem 2.4. If the congestion matrix is anti-Monge,
then the social optimum can be computed in O(n4k) time.

3. SYMMETRIC PLAYERS AND NETWORK
CONGESTION GAMES

In the bin-player model, when all players are symmetric,
then both the problems of finding social optimum and fair
allocations become simple and can be solved by dynamic
programming. Firstly note that now the input is represented
by a n×k matrix P , where P [l, j] is the cost for using the jth

bin with (any, since now they are all similar) l people. Let
the (distinct) bins be {a1, · · · , ak} Let S be an n×k matrix
such that S[l, r] be the optimal allocation for l players in
bins ar to ak. Note that S[l, k] = P [l, k] for all l and

S[m, j] = min
l
{S[m− l, j + 1] + P [l, j]}

Noting that the social optimum is S[n, 1], we see that the
social optimum for symmetric people can be solved in time
O(n2k) by dynamic programming. The fair allocation is
similar, where we are interested in the lexicographic order
rather than the sum.

As noted in the introduction, the symmetric network con-
gestion game is a generalization of the symmetric player
congestion game in the bin-player model. In the network
model, players wish to travel from the source to the sink on
paths (which correspond to strategies), and each edge has
a cost function associated with it, which is increasing with
congestion. Note that this is a much more succinct way
of representing the strategies, and this makes the problem
more interesting. We describe the model in brief.

In the symmetric case, there is a network G with a single
source and destination, and n identical players that need to
be routed from the source to destination. Every arc e in
G has a cost function ce(l), in terms of the congestion l on
arc e. We restrict ourselves to the case when the edge costs
ce(l) = ael are linear in l.

A modification of the [4] 1 algorithm gives us the social

1[4] show that the Nash Equilibria for these games can be
calculated efficiently

optimum in polynomial time for single commodity network
congestion games when the congestion functions are lin-
ear (actually convex). As in [4], we replace each edge e
in the network by n parallel edges, where n is the num-
ber of players. The costs on these edges are ce(1), 2ce(2) −
ce(1), · · · , nce(n) − (n − 1)ce(n − 1) and the capacity is 1.
Note that since ce is convex, the above sequence is increas-
ing. Thus if k players use this ensemble of edges, the min-
imum total cost paid will be kce(k) which is the cost paid
if k players use the edge e in the original network. Thus a
min-cost flow of this new network would give us the social
optimum.

In contrast, as we show below, the problem of finding the
minmax cost, and thus the fair allocation, is NP-hard, even
when the cost functions are linear functions of the conges-
tion.

Theorem 3.1. Calculating the minmax cost in single com-
modity symmetric network congestion games with linear costs
is NP-hard

Proof Sketch: We reduce 3-partition to computing the
minmax cost. In 3-partition, we are given a set of positive
integers A = {a1, · · · , a3m} and an integer B. We want to
determine if we can partition A into m parts of 3 elements
each, such that the total of each part is exactly B. We may
assume that the ai’s satisfy

P3m
i=1 ai = mB and B

4
< ai <

B
2

.
The instance G that we construct has a path from the

source s to destination t with one arc for each ai ∈ A - the
arc ei corresponding to ai has a cost function cei(l) = ai · l.
In addition each arc ei has another arc parallel to it with
cost function c(l) = a·l, where a is chosen appropriately (call
this the zero arc). There are m players to be routed from s
to t. Let λ = B+ 3(m− 1)2a. We show that 3-partition has
a solution iff there is a routing in G where each player faces
cost at most λ.

If 3-partition has a solution, player p[1 · · ·m] uses arc ei

iff the partition p contains element ai; and the zero arc oth-
erwise. This is clearly a routing where each player faces cost
λ.

Suppose there is a routing with each player facing cost at
most λ. We first show that the social optimal routing sends
exactly one unit of flow on each ei and m− 1 units on each
zero arc. Note that we can account for the cost of each link
i, that is, arc ei and its corresponding zero arc, separately.
If ai

2m−1
< a < 3ai

2m−3
, the cost of this link is minimized

precisely when one unit of flow is sent on ei and m−1 units
are sent on the zero arc. Since B

4
< ai <

B
2

there is a non
empty interval of possible values of a.
Now the social optimum value OPT=mλ. Any routing with
each player facing cost ≤ λ has total cost at most mλ=OPT.
By the preceding observation such a routing must sent one
unit of flow on each ei and m − 1 units on each zero arc.
Each player in this routing must face cost exactly λ - the
cost of any player is the sum of some subset of A and some
zero arcs (each of cost a(m − 1)). If we choose a to be a
rational with sufficiently large reduced form, each player is
restricted to take exactly 3 eis and 3m − 3 zero arcs. This
in turn implies a solution to 3-partition. �

Claim 1. In a network congestion game with linear costs,
maximum cost faced by a player in the social optimum is at
most 3 times the minmax cost. 2

2A similar result for the nash routing in the nonatomic set-
ting is implicit in [11].



Proof: Let O = {O1 ≥ · · · ≥ On} denote the cost alloca-
tion vector of the social optimum. Let P denote the path of
the player with maximum cost O1, and P ′ the path of the
player with minimum cost On. Also let le be the conges-
tion on edge e in the social optimal routing. We show that
On ≥ O1

3
. If not, consider a different routing by shifting one

unit of flow (the player facing maximum cost) from the path
P to the path P ′. The resulting increase in total cost is

P
e∈P ′\P ae[(le + 1)2 − l2e ] +

P
e∈P\P ′ ae[(le − 1)2 − l2e ]

≤
P

e∈P ′ ae[(le + 1)2 − l2e ] +
P

e∈P ae[(le − 1)2 − l2e ]
=

P
e∈P ′ ae(2le + 1)−

P
e∈P ae(2le − 1)

≤
P

e∈P ′ 3aele −
P

e∈P aele
= 3On −O1

< 0

where the third inequality follows since le ≥ 1 for e ∈
P

S
P ′.

Now if M denotes the minmax cost, the total cost of such
a routing is at most nM . Thus we have nM ≥

Pn
i=1Oi ≥Pn

i=1
O1
3

= nO1
3

. Thus we have the claim. �
We now show that the social optimum is also a good ap-

proximation to the fair solution. We use the notion of prefix-
sum approximation used commonly in settings of approxi-
mate fairness [5, 7]. An nondecreasing vector X is an α-
prefix-sum approximation to another nondecreasing vector
Y , if each of prefix sums of X is within an α multiplicative
factor of that of Y .

Theorem 3.2. In a network congestion game with linear
costs, the social optimum is a 3-prefix-sum approximation to
the fair allocation.

Proof: Let F = {F1 ≥ · · · ≥ Fn} and O = {O1 ≥ · · · ≥
On} denote the cost allocation vectors of the minmax fair
allocation and the social optimum respectively. We have to
show that for all i = 1 to n :

Pi
j=1Oj ≤ 3

Pi
j=1 Fj .

Let 1 ≤ h ≤ n be the first coordinate (if any) where Oh >
3Fh. If there is no such h, O is clearly a 3-approximation
(in fact, coordinate-wise). We have the following cases:

• 1 ≤ i < h. Here
Pi

j=1Oj ≤ 3
Pi

j=1 Fj , coordinate-
wise.

• h ≤ i ≤ n. Here Fi ≤ Fh <
Oh
3
≤ O1

3
, so

Pn
j=i+1 Fj <

(n − i) O1
3

. Also, On ≥ O1
3

, hence
Pn

j=i+1Oj ≥ (n −
i) O1

3
. So,Pi

j=1Oj =
Pn

j=1Oj −
Pn

j=i+1Oj

≤
Pn

j=1Oj − (n− i) O1
3

<
Pn

j=1Oj −
Pn

j=i+1 Fj

≤
Pn

j=1 Fj −
Pn

j=i+1 Fj

=
Pi

j=1 Fj

where the second last inequality follows from the fact
that O corresponds to the social optimum.

Remark: In a similar fashion it can be shown that the Nash

equilibrium, which can be found using [4], is a 4-prefix sum ap-

proximation to the fair allocation.

4. GENERAL CASE : COMPUTATIONAL
COMPLEXITY

We shall show that even if the values of the matrix are
restricted to {1,∞}, the general problem is NP-hard. The
corresponding decision problems for the given optimization
problems can be stated thus:
Input: A n× k×n {1,∞}-matrix A which corresponds to a
congestion game , t ∈ N .
OPT : Is there an allocation of the n-players to the k-bins
such that the total cost OPT ≤ t ?
OPT ′:Is there an allocation of the n-players to the k-bins
such that the maximum cost faced by any player, ≤ t ?
(Note that there are only two values possible)

Theorem 4.1. OPT is NP-hard

Proof Sketch: Reduction from 3-SAT.
Given an instance of 3SAT consists of m clauses of 3 literals
each, and a total of r variables, we construct the following
instance of a congestion game. Let there be k = 2r bins,
corresponding to the variables and their negations. Call the
bins {x1, · · · , xr, x1, · · · , xr}.
For each variable xi, we have 2m dummy players. These
players are all identical and have cost 1 (at every conges-
tion) in the bins xi and xi. In bins of other variables, these
dummy players face infinite cost irrespective of congestion.
(Thus in any allocation, the dummy players are restricted
to their two bins)
We also have clause players corresponding to each clause in
3SAT. The clause player pc for c = xi ∨ xj ∨ xk has infinite
cost in all bins except xi, xj and xk, irrespective of con-
gestion. In these three bins, player pc has a cost of 1 upto
congestion m and ∞ for higher congestions. Thus the total
number of players is n = 2m · r +m. We then set t = n.

If the formula is satisfiable, for true variables xi place its
dummy players in the bin xi, and similarly for false variables
put the dummies in bin xi. Since the formula is satisfiable,
each clause has a true variable, place the clause player in
the true variable’s bin. It is not hard to see that all players,
dummies and clause, all pay cost 1, thus making the total
cost n.

On the other hand, if the total cost is n (note it can’t be
less), then each player must pay cost 1. This implies clause
players face congestion at most m. Choose all bins which
contain clause players, and set the corresponding variables
true. To see that a bin and its “complement” bin, both
cannot contain clause players, note that of the 2m dummy
players atleast one of them would contain atleat m. To
see that the assignment is satisfying, note that each clause
player is assigned a bin, implying that variable is true. �
Corollary 1 OPT ′ is NP-hard.
Corollary 2 OPT , OPT ′ are hard to approximate to any
finite factor, unless P =NP.
Proof: Note that in this reduction, we only generate con-
gestion game instances where the players face costs of 1 or
∞. So any approximation algorithm will also serve as an ex-
act algorithm - if the approximate solution has a finite cost
then OPT = n, otherwise OPT =∞. So this reduction also
proves that we cannot have an approximation algorithm of
any factor unless P =NP.
Remark: A Polytime Algorithm for the Constant k case

We would like to show that even the general problem becomes

easy if the number of bins is constant. In particular, we show



that there is an efficient algorithm if we are given the congestion

vector. To remind, the congestion vector is a k-dimensional vec-

tor, where the i-th coordinate denotes the number of players in

that bin. Note that if the number of bins is constant, then the

number of possible congestion vectors is polynomial in n.

Once given the congestion vector, we reduce the problem of

finding the OPT to finding the minimum weight perfect b-matching

in a bipartite graph as follows. Consider the complete bipartite

graph, G(U, V, E) where U = {1, · · · , n} denotes the n players

while V = {1, · · · , k} denotes the k bins. The requirements (b-

values ) of u ∈ U is 1. For a vector j ∈ V , b(j) = nj , the jth

coordinate of the congestion vector. The weights on each edge are

w(i, j) = A[i, j, nj ], where A is the input matrix. The optimal

allocation with cost OPT is obtained from the minimum weight

perfect b-matching, as each player is allocated one bin, and each

bin gets the number of players as given by the congestion vector.

To get the minmax cost note that the number of possibilities

for it are only polynomially many (n2k). Thus as in the sym-

metric bins case we start from the smallest value M , and each

time check the feasibility by checking the existence of a perfect

b-matching in the above graph, with all values greater than M

replaced by ∞.

5. CONCLUSIONS
In this paper we introduced the study of congestion games

from a centralized viewpoint, where the players might not
be free to make their own decisions. We have looked at
two problems, one in which we try to find an allocation
minimizing the total cost, and the other where we search
for a fair allocation. We show that both these problems are
very hard in the general case.

We consider natural restrictions of this problem, and give
simple algortihms for these. In particular, both the problems
are easy when all players are symmetric. We also study
the same problems in the network congestion model, and
show that social optimum can be found efficiently, while the
minmax cost is hard to compute. We then show that the
social optimum itself is a 3-prefix-sum approximation of the
fair allocation. An interesting question is whether a better
factor, or a coordinate wise approximation can be obtained
by a totally different algorithm.

When the bins are symmetric, we give a simple algorithm
to get the fair allocation. When the underlying congestion
matrix is anti-Monge, we give an algorithm for finding the
social optimum. We do not resolve the hardness in the case
of general congestion matrices, although we believe that it
is indeed hard, and approximation algorithms for the same
might be an avenue for further research.
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