
Design is as Easy as Optimization

Deeparnab Chakrabarty1, Aranyak Mehta2, and Vijay V. Vazirani1?

1 Georgia Institute of Technology, Atlanta, USA
2 IBM Almaden Research Center, San Jose, USA

Abstract. We identify a new genre of algorithmic problems – design
problems – and study them from an algorithmic and complexity-theoretic
view point. We use the learning techniques of Freund-Schapire [FS99] and
its generalizations to show that for a large class of problems, the design
version is as easy as the optimization version.

1 Introduction

Over the last four decades, theoreticians have identified several fundamental gen-
res of algorithmic problems and have studied their computational complexity and
the inter-relationships among them. These include decision, search, optimization,
counting, enumeration, random generation, and approximate counting problems.
In this paper, we define and study the complexity of design problems.

This new genre of algorithmic problems should come as no surprise. In the
past, several researchers have studied natural design problems – we provide some
prominent examples below. Moreover, practitioners have always been faced with
such problems and have sought intelligent solutions to them. However, to the best
of our knowledge, this genre has not been formally defined before and subjected
to a systematic complexity-theoretic study.

Every optimization problem leads to a natural design problem. This process
is formally defined in Section 2. Let us illustrate it in the context of the sparsest
cut problem. We are given an undirected graph G(V,E) and a bound B on the
total weight. The problem is to find a way to distribute weight B on the edges
of G so that the weight of the sparsest cut is maximized. Note that this design
problem is a maxmin problem.

Three examples of natural design problems considered in the past are: Boyd,
Diaconis and Xiao [BDX04] study the design of the Fastest Mixing Markov Chain
on a graph with a budget constraint on the weights of the edges of a fixed graph.
Elson, Karp, Papadimitriou and Shenker [EKPS04] study the Synchronization
Design Problem in sensornets. Baiou and Barahona [BB05] and Frederickson and
Solis-Oba [FSO99] study a cost-based design version of maximizing the minimum
weight spanning tree. A closely related problem of budgeted optimization was
studied by Juttner [J0̈3]

The main result in this paper is that for a large class of optimization prob-
lems, the design version of a problem is as easy as the optimization version. We
provide several different techniques to show this:
? Work supported by NSF grants 0311541, 0220343 and 0515186.

– In Section 3.1, we observe that if the objective functions in the minimization
(maximization) problem Π are concave (convex), then the maxmin (min-
max) design problem D(Π) can be set up as a convex optimization problem.
Moreover, Π itself appears as the separation oracle required in the ellipsoid
method. Thus D(Π) is no harder than Π in terms of complexity. Further, we
show using techniques of [JMS03] that if Π has an α-factor approximation
algorithm, then D(Π) also has an α-factor approximation.

– Since the ellipsoid method takes a long time in practice, we seek more effi-
cient methods. In Section 3.2 we observe that if the optimization problem
Π can be set up as a linear program, then the design problem D(Π) can be
set up as another linear program. If Π has an LP-relaxation which gives a
factor of α, then D(Π) also has an LP-based solution which gives factor α. In
Section 3.3 we show that if the optimization problem possesses certain struc-
tural (packing) properties, then we can use these to solve the design problem
more efficiently. We give examples to illustrate these specific methods.

– In Section 4, we give what is perhaps the central algorithmic result of this
paper – we provide a second general method for solving the design problem.
This method is much more efficient than the ellipsoid method of Section 3.1.
We set up the design problem as a two player zero-sum game and show
that the design problem seeks the minmax value of the game. We apply
the techniques of Freund-Schapire [FS99] in the additive case and that of
Zinkevich [Zin03] and Flaxman et.al [FKM05] in the convex/concave cases
to solve the game. This technique also requires an (approximation) algorithm
for the optimization problem. If this algorithm has a worst case factor of α,
then we will be able to solve the design problem upto a factor of α with an
additional additive error of an arbitrarily small ε.

– In Section 5 we ask how hard is the design version of a problem if the op-
timization version is NP-hard. We provide an example in which the design
version is in P and another in which the design version is NP-hard. In Sec-
tion 3.1 we have established that if the optimization version is in P then so
is the design version.

– In Section 6, we observe the close relationship between maxmin design prob-
lems and fractional packing of the corresponding combinatorial structures.
We use this to prove some results about fractional packings of spanning and
Steiner trees.

2 Problem Definition

We present a general framework to define the design version of optimization
problems. An optimization problem Π consists of a set of valid instances
IΠ . Each instance I is a triple (EI ,SI ,wI). EI is a universe of elements, and
each element e ∈ EI has an associated weight we, a rational number, giving
the vector wI . Each instance also has a set of feasible solutions SI , where each
S ∈ SI is a subset of E. The number of feasible solutions may be exponential
in |EI |. For an instance I = (EI ,SI ,wI), and a feasible solution S ∈ SI , the

objective function value for S is given as some function of the solution and
the weight vector obj(S) = fS(wI). In most optimization problems like the
Travelling Salesman problem, Sparsest Cut problem, etc., the function fS is just
the sum of weights of elements in S. These class of problems are called additive
optimization problems. A more general class of problems is the one in which
the functions fS are a convex or concave function of the weight vector. In a
minimization (maximization) problem one wishes to find a feasible solution of
minimum (maximum) objective function value.

The maxmin design version D(Π) of a minimization problem Π is defined
as follows: For every collection of valid instances of Π of the form I = (EI ,SI , ·),
there is one valid instance of D(Π): J = (EJ ,SJ , BJ), where EJ = EI , SJ = SI ,
and BJ is a rational number, called the weight budget. A feasible solution to J is
a weight vector w = (we)e∈EJ

, which satisfies the budget constraint
∑
e∈EJ

we ≤
BJ . Every feasible solution w to J leads to an instance I = (EI ,SI ,w) of the
optimization problem Π.

The goal of the maxmin design problem is to find a feasible solution w
so that the minimum objective function value of the resulting instance of the
minimization problem is as large as possible. That is,

OPTD(Π) ((E,S, B)) = max
w:

P
e we≤B

OPTΠ((E,S,w))

The minmax design version of a maximization problem is defined similarly.

3 Solving design problems

3.1 A general technique based on the ellipsoid method

Let the design problem at hand be a maxmin design problem. The analysis for
minmax design problems is similar. Let (E,S, B) be an instance of the design
problem, and let fS(.) be the function giving the objective value for the solution
S ∈ S. In this section, we assume fS(.) to be a concave function in the weights3.
Consider the following program

max{ λ s.t. fS(w) ≥ λ ∀S ∈ S;
∑
e∈E

we ≤ B} (1)

Firstly note that the feasible region in the above program is convex, and thus
program 1 is a convex program. This is because if (λ,w) and (λ′,w′) are feasible
solutions, then so is their convex combination: For any 0 ≤ µ ≤ 1, ∀ S ∈ S,

fS(µw + (1− µ)w′) ≥ µfS(w) + (1− µ)fS(w′) ≥ µλ+ (1− µ)λ′

3 fS(.) can be a concave function of the weights of all elements in E, not just the
elements in S, which is used here only for indexing. Recall that we defined the
special case of additive functions to have fS(w) as the sum of weights of elements
in S.

where the first inequality uses the fact that fS is concave.
Therefore we can use the ellipsoid method to solve the convex program.

Given a candidate point (λ,w), the separation oracle needs to check whether it
is feasible or return a set S as a certificate of infeasibility. Note that solving the
optimization problem (E,S,w) suffices: if the minimum is greater than λ then
the solution is feasible, otherwise the set with the minimum objective value is
the certificate of infeasibility4. Thus we have the following theorem:

Theorem 1. If we have an algorithm which solves the optimization problem Π
in polynomial time, then for any ε > 0, we can solve the corresponding design
problem D(Π) up to an additive error of ε in time polynomial in n and log 1

ε .

Suppose we can not solve the optimization problem exactly but only have an
α-approximation for it, for some α ≥ 1. That is, we have a polytime algorithm
which, given (E,S,w), returns a set S with objective function value guaranteed
to be at most α-factor away from the actual optimum: fS(w) ≤ αminT∈S fT (w).
Then we can use the methods of [JMS03] to obtain an α approximation to the
convex program 1.

Theorem 2. If we have a polynomial time algorithm returning an α-approximation
to the optimization problem Π, then we can find, for any ε > 0, an approxima-
tion algorithm for the design problem D(Π), with a multiplicative factor of α
and an additive error of ε.

Note that in both Theorems 1 and 2, if the problems are additive, then we
do not need the additive error of ε. The ellipsoid method may need to take a
number of steps equal to a large polynomial. In each step we need to solve an
instance of the optimization problem Π. The ellipsoid method also takes a huge
time in practice. This motivates us to look for faster algorithms for the design
problem. Below, we provide two techniques which are much faster and which
apply if the given problem has a special structure. In Section 4, we will provide
a general method which also works much faster.

3.2 A technique based on LP-relaxation

Suppose we have a linear programming relaxation for the minimization prob-
lem Π, which yields an α-approximation algorithm, for some α ≥ 1. That is,
corresponding to (E,S,w) there is a linear program:

min{ w · x s.t Ax ≥ b; x ≥ 0 } (2)

with the property that the optimum value of the LP, call it L, is a lower
bound on the optimum of the given instance - ∀ T ∈ S, L ≤ fT (w). Moreover,

4 Here, and throughout, we will say that an (approximation) algorithm solves a opt-
mization problem if it gives the (approximately) optimum value as well as a set S
which achieves this (approximately) optimum value.

there is a guarantee that for any weight vector w, given an optimum solution to
LP 2, one can produce in polynomial time a set S such that fS(w) ≤ αL.

To solve the design problem, we look at the dual of LP 2.

max{ b · y s.t yTA ≤ w; y ≥ 0 } (3)

We note that the weight vector w is no longer in the objective function but
appears in the constraints. Parametrizing the program on w, let the optimum
solution to LP 3 be D(w). From the previous supposition, we know there is an
algorithm giving a set S with the guarantee, D(w) ≤ fS(w) ≤ αD(w) for all
weight vectors w.

To solve the design problem, we consider w as a variable in LP 3, and add the
constraint that the total weight is bounded by B. Thus we solve the following
LP

max{ b · y s.t yTA−w ≤ 0; w · 1 ≤ B; y,w ≥ 0 } (4)

Let the optimum solution to LP 4 be D∗. Let w′ be the optimum vector
returned in the solution of LP 4. Note that for any weight vector w satisfying
w · 1 ≤ B, we have D(w) ≤ D∗ with equality at w′. Solve LP 2 with w′ and
obtain a set T with the guarantee D∗ ≤ fT (w′) ≤ αD∗.

We now claim that T,w′ gives an α approximation to the design problem.
To see this, suppose w∗ was the weight vector acheiving the maxmin design.
Moreover, suppose S was the set that minimized its objective value given w∗.
We need to show αfT (w′) ≥ fS(w∗). To see this note fS(w∗) ≤ αD(w∗) ≤
αD∗ ≤ αfT (w′). Thus we have:

Theorem 3. If we have an LP relaxation for the optimization problem Π, and
a polynomial time algorithm producing a solution within α ≥ 1 times the LP op-
timum, then we can produce an α approximation algorithm for the corresponding
design problem D(Π) which requires solving an LP having one constraint more
than that of the LP relaxation.

As a corollary we get a log n approximation to maximum min-multicut, a
log n approximation to the maximum sparsity cut, a 2-approximation to the
maximum min weighted vertex cover and many such problems which have ap-
proximation algorithms via LP-relaxations.

3.3 A technique based on integral packing

Suppose we have an instance of the additive minimization problem (E,S,w) with
the following structure: There exist solutions S1, S2, · · · , Sk which are disjoint.
In this case, we see that B/k is an upper bound on the optimum of the maxmin
design problem (E,S, B). This is because no matter how we distribute the weight
vector w, one of the sets Si will have

∑
e∈Si

we ≤ B/k, since these sets are
disjoint. If we can demonstrate a solution of value B/k, then this is optimal.

As an example, consider the maxmin s− t cut problem. If l is the length of
the shortest path from s to t, we can pack l edge disjoint s − t cuts, e.g. the

level cuts of the BFS tree from s to t. By the above argument, we have an upper
bound of B/l on the maxmin s−t cut. Now take any shortest path and distribute
the weight B equally on all the edges in the path. Since any s− t cut contains at
least one of these edges, we see that this solution has value B/l, hence optimal.

A second example is the design version of minimum weight spanning tree in
a graph - find a weight distribution to maximize the weight of an MST. Here
the upper bound comes from the Nash-Williams and Tutte Theorem on packing
of edge disjoint spanning trees [NW61,Tut61] and can be achieved via giving
weights to the cross edges in the optimal partition. In fact, in Section 6 we shall
see a close relation between maxmin design problems and fractional packing of
solutions, and how the maxmin design framework can be used to prove results
about fractional packing.

4 Faster algorithms for Design Problems

In this section we provide a general method to solve design problems which works
much faster than the method in Section 3.1. In Section 4.1 we solve the additive
case, before solving the more general concave/convex cases in Section 4.2.

4.1 Additive Design Problems, Zero-sum Games and Multiplicative
Update

In the additive case, the maxmin design problem (E,S, B = 1) can be formulated
as a two-player zero-sum game G(E,S): The row player (the maxminimizer) has
|E| rows, corresponding to the elements, and the column player has |S| columns,
corresponding to the solutions. The |E| × |S| matrix has 0 or 1 entries, with the
entry (e, S) = 1 ⇐⇒ e ∈ S. This is the amount that the column player pays
the row player.

A probability distribution on the pure row strategies corresponds to a distri-
bution of the weight on the elements. Now the column player’s best responses
(in pure strategies) correspond to sets S ∈ S with mimimum weight with respect
to the given distribution of weight.

Proposition 1. The set of optimal weight distributions for the maxmin design
problem (E,S, B) is equal to the set of maxmin strategies for the row player in
the game G(E,S), scaled by B.

Thus the goal of the maxmin assignment problem is precisely to find a
maxmin strategy for the row player. Since |S| may be very large, one cannot
just solve the game by traditional means, say, using linear programming. We
use the technique developed in [FS99] to approximate zero-sum games to ap-
proximate design problems. The algorithms and proofs remaining section mimic
[FS99] in our setting.

Assume B = 1 for notational ease. The algorithm proceeds in rounds. In
each round we define a new weight function wt. We assume that we have a
polynomial time oracle which given any weight vector, is guaranteed to return a

solution of cost within α times the minimum cost set. That is, at each round we
get a solution St such that fSt

(wt) ≤ αminS fS(wt). Note that in this additive
case, fS(w) =

∑
e∈S w(e).

We then apply the multiplicative update rule:

– Initialize ∀ e : z1(e) = 1. Let w1(e) = z1(e)/
∑
e z1(e).

– Multiplicative update: Suppose the oracle on input wt returns solution
St. Then the new weights are found as follows:
zt+1(e) = zt(e)βM(e,St), wt+1(e) = zt+1(e)/

∑
e zt+1(e)

where M(e, St) = 1 if St contains e, 0 otherwise.

We run this algorithm for T steps. Define the regret after T steps as

RT := max
w:

P
e w(e)=1

T∑
t=1

fSt
(w)−

T∑
t=1

fSt
(wt)

The following theorem was proved in [FS99].
Theorem FS: RT ≤

√
TO(
√

lnn)

Run the algorithm for T rounds, and take the average of all the weight vec-
tors over the T rounds: w := 1

T

∑T
t=1 wt. We prove in the next lemma that w

is an α approximation with additive error to the maxmin design problem. In
particular we shall show

Lemma 1. minS fS(w) ≥ 1
α maxw:

P
e w(e)=1 minS fS(w)−O(1

α

√
lnn
T)

Proof. We follow the proof as in [FS99]. In this when we use subscript w we
assume that sum of weights is equal to 1 and not explicitly mention it. We have

min
S
fS(w) = min

S

1
T

T∑
t=1

fS(wt) (by linearity of fS)

≥ 1
T

T∑
t=1

min
S
fS(wt)

≥ 1
T

T∑
t=1

1
αfSt

(wt) (oracle is α approximate)

≥ 1
α max

w

1
T

T∑
t=1

fSt
(w)−O(1

α

√
lnn
T) (by Theorem FS)

≥ 1
α max

w
min
S
fS(w)−O(1

α

√
lnn
T) (minimum ≤ average)

Thus if we run for T = lnn
ε rounds, we get an ε additive error. Thus we get the

following theorem

Theorem 4. Given a maxmin design problem (E,S, B), suppose we have (as a
black box) an approximation algorithm which solves the corresponding minimiza-
tion problem upto a factor α ≥ 1. Then we can design an algorithm which can
solve the maxmin design problem upto a factor of α.

4.2 Extending the framework to concave utility functions and
convex cost functions

In this section, we extend the technique described in Section 4.1 to solve maxmin
(minmax) design problems with concave utility functions (convex cost functions).
We use the following online optimization setting, defined in [Zin03] and modified
in [FKM05]: There is an unknown collection C of concave utility functions over
a convex feasible region F . The optimization proceeds in rounds. In round t, the
algorithm has to choose a vector wt ∈ F , and then the adversary will provide
a utility function ct ∈ C. The algorithm will suffer a cost of ct(wt). Zinkevich
[Zin03] considered the case when the function ct is revealed, while Flaxman et.al
[FKM05] considered the bandit setting: only the value ct(wt) is revealed. The
regret of the algorithm after T rounds is defined as

RT := max
w∈F

T∑
t=1

ct(w)−
T∑
t=1

ct(wt)

Flaxman et.al. [FKM05] provide an algorithm called Bandit Gradient De-
scent (BGD), with the following guarantee:

Theorem (Flaxman et al.) If all the functions ct defined on a set S are
bounded in an interval [−C,C], the regret of the BGD algorithm is

RT ≤ 6nCT 5/6 (5)

where n is the dimension of the convex set.

For our application of this setting, we will take C to be the collection of
functions fS of the instance (E,S, B) of the design problem. Suppose there
exists a polytime algorithm A which given a weight vector w returns a solution
S such that fS(w) ≤ αminT∈S fT (w). For our application, we will choose the
adversary to play ct = fSt

where St is the solution returned by the algorithm
A on input wt. We shall also assume that all functions fS are bounded by a
polynomial C(n), where n is the number of elements. The BGD algorithm also
requires that the convex set S has a membership oracle. For our application,
the convex set will be the n-simplex corresponding to the weight distribution
over the n elements. We get the following theorem whose proof is similar to the
previous subsection.

Theorem 5. Suppose we are given an approximation algorithm for the concave
minimization problem Π, then we can obtain an α-approximation algorithm for
the maxmin problem D(Π).

Example: Designing graphs to minimize commute time and cover time
As an application of the framework for convex functions, we show how to design
the transition probabilities on a graph to minimize the maximum commute time
on a graph.

Suppose we are given a budget B on the total weight and we have to assign
weight on each edge. These weights determine the transition probabilities of
a random walk: the probability of moving from a vertex u to a vertex v is
puv = w(uv)P

e∼u we
. The goal is to place weights in such a manner so that the

maximum commute time among all pairs of vertices is minimized. We note that
in a related result, Boyd et.al [BDX04] investigate a similar problem of assigning
transition probabilities to the edges of a graph such that the mixing time is
minimized.

We note that the commute time can be found in polynomial time (see for
example [MR95]). It is also known that the commute time is a convex function
of the edge weights (see [EKPS04], also [GBS06]) 5. Thus this problem falls in
the framework and thus we can apply the BGD algorithm to obtain the minmax
commute time. Moreover, the Matthews bound states that the cover time is
within log n of the maximum commute time. Thus we have

Theorem 6. Given a graph and a budget B on the total edge weights, one can
find (upto additive error) a weight distribution on the edges so that the maxi-
mum commute time between two vertices is minimized over all possible weight
distributions. Moreover, the same distribution also gives a log n approximation
to the minimum cover time over all possible distributions.

5 The complexity of design problems

In this section we study the relationship of the complexity of design problems
and the complexity of the corresponding optimization problems.

The main result of this paper as described in Sections 3 and 4 is that solving a
design problem D(Π) is as easy as solving the corresponding optimization prob-
lem Π, for the class of concave (convex) minimization (maximization) problems
(upto arbitrarily small additive errors). This is proved via two different general
techniques to give Theorem 2 and Theorem 5.

A natural question is if the converse also holds, i.e. whether the complexity
of the optimization and design version of a problem are the same. The following
shows that this is not the case:

Theorem 7. There exists an additive minimization problem Π such that finding
the value of the minimum is NP-complete, but its design version D(Π) can be
solved in polynomial time.

5 Note the problem is a minmax problem and hence we require convex objective func-
tions

Proof. Call a graph a bridged clique if it consists of two cliques K1 and K2, and
two edges (u, u′), (v, v′) with u, v ∈ K1 and u′, v′ ∈ K2. Consider the problem of
finding (the value of) the cheapest tour on a weighted bridged clique. This prob-
lem is NP-hard as it involves finding the cheapest hamiltonian paths between
u, v and u′, v′ respectively. Now consider the design version of the problem. We
have to find a distribution of the weight budget on a bridged clique so that the
cost of the minimum weight tour is maximized. Since any tour will have to pick
both edges of the bridge, the optimal strategy is to divide the weights only on
the bridge edges. Thus the design version of this problem can be solved trivally
in polynomial time. This construction extends to any NP-complete problem.

We have seen that all design problems are as easy as their optimization ver-
sions, and that some are polynomial time sovable even though the optimization
versions are NP-hard. To complete the picture we show below that not all design
problems are easy:

Theorem 8. There exists an NP-complete additive minimization problem such
that the corresponding design problem is also NP-complete.

Proof. Consider the problem of finding the minimum weight Steiner tree in a
weighted graph. We prove in Section 6 (Theorem 9) that the value of the maxmin
Steiner tree is exactly the reciprocal of the maximum number of Steiner trees
that can be fractionally packed in the weighted graph. However, the fractional
packing number of Steiner trees is known to be NP-hard, as proved by Jain et
al. [JMS03].

We mention here a related result of Fortnow et al. [FIKU05], in which they study
the complexity of solving a succinctly represented zero-sum game. Our setting
is different in that the number of row strategies is part of the input size, and we
have access to an (approximately) best-response oracle.

6 MaxMin Design problems and Packing problems

For lack of space we defer most of the definitions and proofs of this section to
the full version of the paper, while providing a sketch of the main results.

6.1 Fractional packing and maxmin design

Consider an instance (E,S, 1) of a design problem with a budget of 1. A collection
of sets S1, S2, · · · , Sk ∈ S are said to pack fractionally with weights λ1, · · · , λk,
if for each element e,

∑
Si:e∈Si

λSi ≤ 1. The value of the packing is
∑
λi.

Theorem 9. Given a set of elements E and a collection of subsets S of E, the
maximum number of sets that can be packed fractionally is exactly equal to the
reciprocal of the maxmin design of the additive instance (E,S, 1).

Proof. (Sketch) The LPs for fractional packing and maxmin design are duals of
each other upto taking reciprocals.

6.2 Packing Steiner trees fractionally

In this subsection we look at the special case of Steiner trees. Given a graph
G(V,E) with a set of required nodes R and Steiner nodes S = V \R, a Steiner
tree is a subtree of G containing all the nodes in R. Let τ denote the set of all
Steiner trees in G. Let kf denote the maximum number of Steiner trees that can
be packed fractionally. Thus

kf = max{
∑
T∈τ

λT s.t. ∀e ∈ E :
∑
T :e∈T

λT ≤ 1}

We shall call this the fractional packing number for Steiner trees. In this section,
we use the LP framework developed in Section 3.2 to relate the fractional packing
number of Steiner trees to a quantity called the strength of a graph via the well-
known bidirected LP relaxation for minimum weight Steiner tree.

Given a partition P of vertices with a required vertex in each partition, the
strength of a partition γ(P) is defined as the ratio of the number of cross-edges
and the size of the partition minus 1. The strength of a graph, γ is defined
as the minimum over all partitions. The bidirected-cut relaxation is an LP-
relaxation for the minimum Steiner tree problem (see e.g. [Vaz00]). Evaluating
the integrality gap α of this relaxation is a major open problem and currently it
is known that 8/7 ≤ α ≤ 2. We prove the following result.

Theorem 10. Fractional Packing number of Steiner trees is within 2α of the
strength, that is, γ

2α ≤ kf ≤ γ.

The proof proceeds by proving that the maxmin Steiner tree is within 2α of
the reciprocal of the strength and by Theorem 9 we are done. This is proved by
giving feasible solutions to the LP relaxations obtained from the bidirected-cut
relaxation, as in Section 3.2.

For the special case of spanning trees, we prove a stronger result.

Theorem 11. The fractional packing number of spanning tree is exactly the
strength of the graph.

The proof uses the same techniques as the last proof and the fact that the
spanning tree can be found via a greedy algorithm. All these proofs can be found
in the full version of the paper and have been omitted here for sake of brevity.

Remark: We note that Jain et.al [JMS03] proved that evaluating the fractional
packing number is NP-hard, and an α-approximation to the minimum Steiner
tree problem implies existence of an α-approximation to the fractional packing
problem. We note that they do not show any relation to the strength of the
graph while Theorem 10 wishes to investigate the relationship with strength.
Also, Theorem 11 can be directly inferred from the Nash-Williams and Tutte
theorems [NW61,Tut61], but our proof techniques do not use these theorems.

We find it an interesting question as to whether the relationship between
packing and maxmin design problems can be used to produce other intersting

packing theorems in other combinatorial settings. Regarding the Steiner tree set-
ting, it follows from a conjecture of Kriesell [Kri03], that the maximum number
of Steiner trees that can be packed integrally is within 2 times the strength of
the graph. Recently, Lap Chi Lau [Lau04] has proved this within a factor of 26.
Improving this factor and settling Kriesell’s conjecture seems to be a challenging
problem.

References

[BB05] Francisco Barahona and Mourad Baiou. A linear programming approach to
increasing the weight of all minimum spanning trees. INFORMS, 2005.

[BDX04] S. Boyd, P. Diaconis, and L. Xiao. The fastest mixing markov chain on a
graph. SIAM Review, 2004.

[EKPS04] J. Elson, R. Karp, C. Papadimitriou, and S. Shenker. Global synchronization
in sensornets. LATIN, 2004.

[FIKU05] L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. On the complexity
of succinct zero-sum games. IEEE Conference on Computational Complexity,
pages 323–332, 2005.

[FKM05] Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. On-
line convex optimization in the bandit setting: gradient descent without a
gradient. In SODA, 2005.

[FS99] Y. Freund and R. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999.

[FSO99] G. Frederickson and R. Solis-Oba. Increasing the weight of minimum span-
ning trees. J. Algorithms, 1999.

[GBS06] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance of a graph.
Manuscript, 2006.

[J0̈3] A. Jüttner. On budgeted optimization problems. Proc. 3rd Hungarian-
Japanese Symposium on Discrete Mathematics and Its Applications, pages
194–203, 2003.

[JMS03] K. Jain, M. Mahdian, and M. Salavatipour. Packing steiner trees. In SODA,
pages 266–274, 2003.

[Kri03] M. Kriesell. Edge-disjoint trees containing some given vertices in a graph.
J. Comb. Theory, Ser. B 88(1), pages 53–65, 2003.

[Lau04] L.C. Lau. An approximate max-steiner-tree-packing min-steiner-cut theo-
rem. In FOCS, pages 61–70, 2004.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[NW61] C. St. J. A. Nash-Williams. Edge disjoint spanning trees of finite graphs. J.
Lond. Math. Soc., 1961.

[Tut61] W. T. Tutte. On the problem of decomposing a graph into n connected
factors. J. Lond. Math. Soc., 1961.

[Vaz00] Vijay V. Vazirani. Approximation Algorithms. Springer, 2000.
[Zin03] M. Zinkevich. Online convex programming and generalized infinitesimal

gradient ascent. In ICML, pages 928–936, 2003.

