
Design is as Easy as Optimization∗

Deeparnab Chakrabarty† Aranyak Mehta‡ Vijay V. Vazirani§

Abstract

We consider the class of max-min and min-max optimization problems subject to a global
budget constraint. We undertake a systematic algorithmic and complexity-theoretic study
of such problems, which we call problems design problems. Every optimization problem
leads to a natural design problem.

Our main result uses techniques of Freund-Schapire [FS99] from learning theory, and its
generalizations, to show that for a large class of optimization problems, the design version
is as easy as the optimization version.

We also observe the relationship between max-min design problems and fractional pack-
ing problems. In particular, we obtain in a systematic fashion results about the fractional
packing number of Steiner trees.

1 Introduction

In this paper, we undertake a systematic study of max-min and min-max optimization problems
subject to a global budget constraint. We call such problems design problems. Every optimiza-
tion problem leads to a natural design problem; if the optimization problem is a minimization
(maximization) problem, its design version is a max-min (min-max) problem.

The process of obtaining a design problem from an optimization problem is formally defined
in Section 2. As an illustration, the design problem obtained from the sparsest cut problem
is the following: given an undirected graph G = (V,E) and a bound B on the total weight,
find a distribution of the weight B on the edges of G so that the sparsity of the sparsest cut is
maximized. Observe that this is a max-min problem.

The history of such problems goes back all the way to Fulkerson [Ful59], who considered
the problem of maximizing the minimum cut in a network whose edge capacities could be
augmented, given a bound on the total augmentation allowed. Observe that since the minimum
cut in a network equals the maximum flow, this max-min problem can be transformed into a
pure maximization problem: that of finding the augmented network that supports maximum
possible flow. Frederickson and Solis-Oba [FSO99] considered the problem of augmenting the
weights of an undirected graph to maximize the weight of the minimum spanning tree, given
a bound on the total augmentation allowed and gave a strongly polynomial time algorithm for
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the same. They later [FSO97] generalize the problem to maximize the minimum weight basis
of a matroid.

Jüttner [Jüt06] studied a class of max-min and min-max problems, which he called bud-
geted optimization problems, which generalizes the above two problems, and showed a general
transformation to underlying optimization problems. Start with any optimization problem for
which the set of feasible solutions forms a polytope. Then, the max-min or min-max problem
obtained from it (depending on whether the original problem is a minimization or maximization
problem) is in this class.

Jüttner showed the general result that if the original optimization problem has a strongly
polynomial algorithm, then so does the budgeted optimization problem. A key step in obtaining
this result is captured in the solution to Fulkerson’s above stated problem. Without loss of
generality, assume that the budgeted optimization problem is a max-min problem, which has
been obtained from a minimization problem. Now, using fact that the set of feasible solutions
of the latter form a polytope, it can be written as a minimization LP. Its dual, a maximization
LP, also achieves the same optimal solution, thereby transforming the max-min problem into
a max-max problem, which is simply a maximization problem. The latter is solved using
Megiddo’s parametric search method [Meg79].

In retrospect, Jüttner has carved out a subclass of design problems that, via a polynomial
amount of work, can be restated as optimization problems. Here we study a more general
class of problems in which the underlying optimization problem can have an arbitrary set of
feasible solutions, may not even be polynomial time solvable and moreover may not even be
a linear (but needs to be a concave minimization problem or a convex maximization problem;
see Section 2). On the negative side, we only give polynomial, and not strongly polynomial
algorithms (exact or approximation) for design problems, whenever the optimization problem
has a polynomial time (exact or approximation) algorithm.

This brings us to the justification of the name “design problem”: Assume that the underlying
optimization problem is a minimization problem, i.e., among the set of feasible solutions, which
is typically exponentially large, it is seeking a minimum cost solution. Then the corresponding
design problem, with a given budget, is seeking an instance (among all instances satisfying
the budget constraint) in which the minimum cost solution is as large as possible. Thus the
task at hand is to design the best instance satisfying certain constraints and properties. With
this explanation, it should be clear that design problems arise in numerous applications. For
instance, consider the problem of distributing a fixed amount of capacity across the edges of a
network so as to maximize the amount of concurrent flow that can be sustained between any
two pairs of nodes - this is just the design version of the sparsest cut problem.

Two prominent design problems studied recently are: Boyd, Diaconis and Xiao [BDX04]
study the design of the fastest mixing Markov chain on a graph with a budget constraint on the
weights of the edges of a fixed graph. Elson, Karp, Papadimitriou and Shenker [EKPS04] study
the synchronization design problem in sensornets, which is essentially the problem of finding a
Markov chain on a graph that minimizes the maximum commute time. It is instructive to note
that neither of these design problems is a budgeted optimization problem.
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1.1 Overview of results

Our main result is that for a large class of optimization problems, the design version of the
problem is as easy to solve as the optimization problem itself. The class of problems we show this
for are minimization problems with concave objective functions, and maximizations problems
with convex objective functions. An important special class is the class of problems with linear
objective functions. These classes will be defined formally in Section 2. We state our results
here for minimization problems - the maximization versions have analogous results.

• In Section 3.1, we observe that for a minimization problem Π with a concave objective
function, the corresponding maxmin design problem D(Π) can be set up as a convex
optimization problem. Moreover, if we use the ellipsoid method to solve the problem,
then the separation oracle required is Π itself. Thus, if we can solve Π in polynomial
time, then we can also solve D(Π) in polynomial time. Furthermore, if Π has an α-factor
approximation algorithm, then using the ellipsoid method along with a binary search we
can get an α approximation for D(Π) as well.

• In Section 3.2 we include, for completeness, the observation from [Jüt06] that if the
optimization problem Π can be set up as a linear program, then the design problem D(Π)
can be set up as another similar linear program. If Π itself cannot be set up as a linear
program, but there is a linear program whose solution is within a factor of α of the optimal
solution of Π (e.g., an LP relaxation of an integer program for Π), then we can find a
linear program for D(Π) which has an optimal solution within a factor α of the optimal
solution to the design problem.

• In Section 4, we give the main algorithmic result of this paper – a second general method
for solving the design problem. This method is much more efficient than the ellipsoid
method of Section 3.1. We set up the design problem D(Π) of an optimization problem
Π as a two player zero-sum game and show that the D(Π) seeks the minmax value of
this game. We apply the adaptive learning techniques of Freund-Schapire [FS99] in the
linear case and that of Flaxman et.al [FKM05] in the concave case to solve the game.
This results in an iterative scheme to solve D(Π) within an additive error ε by using the
approximation algorithm for Π only O(lnn/ε2) times. If the algorithm for Π has a worst
case factor of α, then we solve D(Π) up to a factor of α with an additional ε additive
error. We note that these algorithms are randomized algorithms.

• In Section 5 we investigate the relationship between the complexity of an optimization
problem and its corresponding design problem. We already establish in Section 3.1 that if
a linear optimization problem is in P then so is its design version. We provide an example
in which a linear optimization problem is NP-complete but its design version is in P,
and another example in which a linear optimization problem and its design version are
NP-hard.

• In Section 6, using the observation that for any minimization problem, the max-min
design optimum with budget 1 is the reciprocal of the fractional packing number, we
obtain different results about the fractional packing number of Steiner trees (Section 6.1)
using the different LP relaxations for the minimum Steiner tree problem. For instance, one
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such result is that the fractional packing number of spanning trees equals the strength of
a graph which follows from the famous result of Nash-Williams [NW61] and Tutte [Tut61]
about integral packing number of spanning trees. Another result is that of Agarwal and
Charikar [AC04] which connects the network coding gain in an undirected graph with the
integrality gap of the bidirected cut relaxation.

2 Problem Definition

We present a general framework to define the design versions of optimization problems:

Definition 1 An optimization problem Π consists of a set of valid instances IΠ. Each
instance I is a tuple (EI ,SI ,wI). Henceforth we will drop the subscript when the instance is
clear from context. E is a universe of elements, and each element e ∈ E has an associated
weight w(e) ≥ 0, a rational number, giving the vector w. Throughout we will let n = |E|.
Each instance also has a set of feasible solutions 1 S. For an instance I = (E,S,w), and a
feasible solution S ∈ S, the value of the objective function is a function of S and w, denoted
as fS(w). For a minimization problem, the goal is to find an optimal solution:

S∗ = argmin
S∈S

fS(w)

We also define:
OPTΠ((E,S,w)) = min

S∈S
fS(w)

For α ≥ 1, a feasible solution S′ is called an α-approximate solution to I if:

fS′(w) ≤ α ·OPTΠ(I)

An algorithm is called an α-approximation algorithm for the problem Π if for every instance
I of Π, the algorithm returns an α-approximate solution to I. The goal of a maximization
problem is defined similarly.

Definition 2 The maxmin design version D(Π) of a minimization problem Π is defined as
follows: For every collection of valid instances of Π of the form I = (EI ,SI , ·), there is one valid
instance of D(Π): J = (EJ ,SJ , BJ), where EJ = EI , SJ = SI , and BJ is a rational number,
called the weight budget. A feasible solution to J is a weight vector w = (w(e)){e∈EJ}, which
satisfies the budget constraint

∑
e∈EJ

w(e) ≤ BJ . Every feasible solution w to J leads to an
instance I = (EI ,SI ,w) of the optimization problem Π.

The goal of the maxmin design problem is to find a feasible solution w so that the minimum
objective function value of the resulting instance of the minimization problem is as large as
possible. That is, the goal is to find an optimal solution:

w∗ = argmax
w:

P
e w(e)≤B

OPTΠ((E,S,w))

We also define:
OPTD(Π) ((E,S, B)) = max

w:
P

e w(e)≤B
OPTΠ((E,S,w))

1The number of feasible solutions may be, and usually is, exponential in n = |E|
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For α ≥ 1, a weight vector w′ is called an α-approximate solution to I if:

OPTΠ((E,S,w′)) ≥ 1
α
·OPTD(Π)

An algorithm is called an α-approximation algorithm for a design problem D(Π) if for every
instance I of D(Π), the algorithm returns an α-approximate solution to I.

The minmax design version of a maximization problem is defined similarly.

Definition 3 An optimization problem Π (and its design version D(Π)) is called linear if
all its instances I = (E,S,w), are of the following form: S ⊆ 2E , and ∀ S ∈ S : fS(w) =∑

e∈S ae,Swe, for some ae,S ≥ 0. A more general class of problems has the functions fS being
convex or concave functions of w. We shall call these concave minimization and convex
maximization problems.

Examples: Most optimization problems on graphs are linear, as defined above. For exam-
ple, in the Minimum Spanning Tree problem (Traveling-Salesman, Sparsest Cut), an instance
I = (E,S,w) has E being the set of edges of the given graph, S being the collection of all sets
of edges which form spanning trees (Hamiltonian cycles, cuts), and w being the given weights
on the edges. An instance (E,S, B) of the design version of these problems would be to allocate
a budget of B to the edges of the graph so as to maximize the weight of the minimum weight
spanning tree (maximize the weight of the best TSP tour, make the sparsest cut as dense as
possible). Clearly, some design problems make more intuitive sense than others.

An example of a convex maximization problem is that of finding the maximum commute
time of a random walk on a graph over different pairs of vertices. Here an instance is I =
(E,S,w), where E is the set of edges of the graph, S is the collection of pairs of vertices,
and the wes are the relative conductances of the edges, giving the transition probabilities. The
functions fS are the commute time functions, known to be convex (see Section 4.2.1 for details).
The design version of this problem is that of assigning transition probabilities to minimize the
maximum commute time.

3 Solving design problems

3.1 A general technique based on the ellipsoid method

Consider a concave minimization problem and its corresponding max-min design problem. The
analysis for convex min-max design problems is similar. The following theorem states that
if the optimization version can be solved in polynomial time, then the design version can be
solved up to additive error ε using the ellipsoid method.

Theorem 3.1
If we have an algorithm which solves the minimization problem Π = (E,S,w) with a concave
objective function fS(w) in polynomial time, then for any ε > 0, we can solve the corresponding
max-min design problem D(Π) up to an additive error of ε in time polynomial in n and log 1

ε .

Proof: Note that the value of the optimal max-min design is given by the following program:

OPTD(Π) := max{λ : λ− fS(w) ≤ 0, ∀S ∈ S;
∑
e∈E

w(e) ≤ B; w(e) ≥ 0, ∀e ∈ E} (1)
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If fS() is concave, then the above program is convex, since for any two feasible solutions (λ,w)
and (λ′,w′) and 0 ≤ µ ≤ 1, we have

fS(µw + (1− µ)w′) ≥ µfS(w) + (1− µ)fS(w′) ≥ µλ+ (1− µ)λ′

Hence, one can solve the above program using the ellipsoid method. Assuming an upper
bound F on the optimum, the algorithm proceeds with a guess λ of the optimum to the program
and tests for emptiness of the convex feasible set. For any ε > 0, in time polynomial in the
input size and log 1

ε , the ellipsoid method (see [GLS88]) using the minimization problem as a
separating oracle2 to construct the ellipsoids, returns a feasible w, or asserts that optimum is
smaller than λ+ ε. Via a binary search to find λ∗ which takes time logF , the theorem follows
by noting that an upper bound on λ∗ is polynomial in the size of the value returned by the
minimization problem. 2

In the next theorem we show if the minimization problem has an α-approximation, then
so does the max-min design version. The technique, a now standard trick of designing an α-
approximate separation oracle, first appeared in the work of Carr and Vempala [CV02]. We
include it for completeness.

Theorem 3.2
If we have a polynomial time algorithm returning an α-approximation to the optimization prob-
lem Π, then we can find, for any ε > 0, an approximation algorithm for the design problem
D(Π), with a multiplicative factor of α and an additive error of ε.

Proof: We have a polytime algorithm which, given (E,S,w), returns a set S with objective
function value guaranteed to be at most α-factor away from the actual optimum: fS(w) ≤
αminT∈S fT (w). As in the proof of Theorem 3.1, given a guess λ, we run ellipsoid to check if
there exists a feasible w. The difference now is that the separation oracle is the approximate
minimization algorithm. Thus, for any ε > 0, the ellipsoid algorithm returns, in time polynomial
in input and log 1

ε , a solution (λ,w), so that the optimum is less than λ + ε. However, since
the separation oracle is approximate, (λ,w) might not be feasible itself. Nevertheless, by the
guarantee of the approximation, we know (λ/α,w) is feasible, which implies the theorem. 2

Remark 3.1 We note that for linear optimization problems where the function fS() is linear,
the program (1) is a linear program, and (see [GLS88]) the above two theorems hold without
any additive error.

The ellipsoid method may need to take a number of steps equal to a large polynomial. In
each step we need to solve an instance of the optimization problem Π. The ellipsoid method
also takes a huge time in practice. This motivates us to look for faster algorithms for the design
problem. In Section 4, we will provide a different general method which works much faster.

3.2 A technique based on LP-relaxation

In this section we describe a general technique for solving design problems, in the case that
we have a linear programming relaxation for the minimization problem Π. This technique has
been described in [Jüt06], and we include it here only for the sake of completeness.

2Here, and throughout, we will say that an (approximation) algorithm solves a optimization problem if it
gives the (approximately) optimum value as well as a set S which achieves this (approximately) optimum value.
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Suppose we have:

OPTΠ ≥ min { w · x s.t Ax ≥ b; x ≥ 0 } (2)

Moreover, suppose there is an α-approximate polynomial time algorithm which returns a solu-
tion S with fS(w) ≤ α ·L ≤ α ·OPTΠ, where L is the solution to LP(2) (That is, the integrality
gap of the LP is at most α). Then we have an α-approximation for the design version as well.

Theorem 3.3
If we have an LP relaxation for the optimization problem Π, and a polynomial time algorithm
producing a solution within α ≥ 1 times the LP optimum, then we can produce an α approx-
imation algorithm for the corresponding design problem D(Π) which requires solving a single
LP having one constraint more than that of the LP relaxation.

Proof: Look at the dual of LP(2).

max { b · y s.t yTA ≤ w; y ≥ 0 } (3)

In the design problem, note that the weight vector w is no longer in the objective function but
appears in the constraints. Parameterizing the program on w, let the optimal solution to (3)
be D(w). From the previous supposition, we know there is an algorithm giving a set S with
the guarantee, D(w) ≤ fS(w) ≤ αD(w) for all weight vectors w.

To solve the design problem, we consider w as a variable in(3), and add the constraint that
the total weight is bounded by B. Thus we solve the following LP

max { b · y s.t yTA−w ≤ 0; w · 1 ≤ B; y,w ≥ 0 } (4)

Let the optimal solution to (4) be D∗. Let w′ be the optimum vector returned in the solution
of (4). Note that for any weight vector w satisfying w·1 ≤ B, we have D(w) ≤ D∗ with equality
at w′. Solve (2) with w′ and obtain a set T with the guarantee D∗ ≤ fT (w′) ≤ αD∗.

We now claim that T,w′ gives an α approximation to the design problem. To see this,
suppose w∗ was the weight vector achieving the maxmin design. Moreover, suppose S was the
set that minimized its objective value given w∗. We need to show αfT (w′) ≥ fS(w∗). To see
this note fS(w∗) ≤ αD(w∗) ≤ αD∗ ≤ αfT (w′). 2

As a corollary we get a log n approximation to maximum min-multicut, a 2-approximation
to the maximum min weighted vertex cover, a 2-approximation for max-min Steiner trees and
many such problems which have approximation algorithms via LP-relaxations.

4 Faster algorithms for Design Problems

In this section we provide a general method to solve design problems. In the case of linear
optimization and design problems this method works much faster than the method in Section 3.1
(calling the optimization algorithm only O(log n) times rather than poly(n) times) but provides
a weaker approximation (runs in time poly(1/ε), rather than poly(log 1/ε)). In Section 4.1 we
consider the conceptually simpler case of design versions of linear optimization problems, before
moving on to the more general concave minimization and convex maximization problems in
Section 4.2.
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4.1 Linear Design Problems, Zero-sum Games and Multiplicative Updates

Recall the definition of linear optimization problems and their design versions: the instances
I = (E,S,w), are of the form S ⊆ 2E , and ∀ S ∈ S : fS(w) =

∑
e∈S ae,Swe. In this section

we shall take all the ae,S = 1 for the sake of succinct notation – all the proofs extend naturally
to the general case – so that fS(w) =

∑
e∈S we.

Definition 4 Given an instance I = (E,S, B=1) of a maxmin design problem D(Π), the
equivalent zero-sum game G(I) is defined by an |E| × |S| matrix as follows: the rows are
indexed by E and the columns by S, and the entry (e, S) = 1 if e ∈ S, 0 otherwise. The entries
of the matrix represent the payment of the column player to the row player.

The game G(I) is equivalent to the instance I of the design problem in the following way: A
mixed strategy x of the row player in G(I) corresponds to a weight distribution w in I. Given a
mixed strategy x of the row player, the payment to the row player for the pure strategy S of the
column player is precisely the value of the objective function fS(w) in I. Thus, given the row’s
mixed strategy x, if the column player plays its best response to x, then the payment to the
row player is precisely OPTΠ(E,S,x). Finally, this means that the set of maxmin strategies of
the row player in G(I) is precisely the set of solutions to the instance I of the design problem
D(Π). The value of the game G(I) is precisely OPTD(Π)(I).

The technique of multiplicative updates can be used to find approximate maxmin strategies
of a zero-sum game much faster than by solving a linear program [FS99]. In this section we
describe this technique in terms of solving instances of design problems. The algorithms and
proofs here follow the proofs of [FS99] as applied to our setting. The multiplicative updates
technique has proved to be extremely useful in a wide array of applications in computer science
- see e.g., the recent survey paper by Arora et al. [AHK06]. We show here how this technique
can be used to transform an α-approximation algorithm for an optimization problem to an
α-approximation algorithm for its design version (for every α).

Algorithm Design-Linear: Given an instance I = (E,S, B) of a linear design prob-
lem D(Π), the goal is to find an α-approximate solution to I. The algorithm assumes oracle
access to an α-approximation algorithm A for the optimization problem Π.

• Input: Instance I = (E,S, B).

• Parameters: Real β > 1, integer T > 1, to be fixed later.

• Output: Weight vector w, an α-approximate solution to I.

• Initialize ∀ e : z1(e) = 1. Let w1(e) = z1(e)/
∑

e z1(e).

• Multiplicative update: For t = 1, . . . , T , do:

– Suppose A on input wt returns solution St.
– zt+1(e) = zt(e)β1(e,St) , where 1(e,St) = 1 if St contains e, 0 otherwise;
– wt+1(e) = zt+1(e)/

∑
e zt+1(e)

• Return w := B
T

∑T
t=1 wt
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Intuitively, at each step t, the algorithm finds the minimum solution with respect to weights
wt, and then in the next step increases the weights on the elements in the solution returned.
To analyze the algorithm, following [FS99] we define the quantity regret as

RT := max
w:

P
e w(e)=1

T∑
t=1

fSt(w)−
T∑
t=1

fSt(wt)

The following theorem was proved in [FS99].

Theorem [FS99]: Fixing the choice of β = 1 +
√

2 lnn
T , gives us

RT ≤
√
TO(
√

lnn)

Now we are ready to prove the bound on the quality of our solution.

Theorem 4.1
For every ε > 0, given an α-approximation algorithm A to a linear minimization problem Π,
algorithm Design-Linear, when run for T = O( lnn

ε2α2 ) rounds, returns an α-approximate solution
to every instance I of the maxmin problem D(Π), up to an additive error ε > 0.

Proof: We need to argue about the quantity minS fS(w). In the following, when we use
subscript w we assume that sum of weights is equal to 1, and that the weights will be scaled
to sum to B at the end.. We follow the proof as in [FS99]. We have

min
S
fS(w) = min

S

1
T

T∑
t=1

fS(wt) (by linearity of fS)

≥ 1
T

T∑
t=1

min
S
fS(wt)

≥ 1
T

T∑
t=1

1
αfSt(wt) (A is an α-approximation algorithm)

≥ 1
α max

w

1
T

T∑
t=1

fSt(w)−O( 1
α

√
lnn
T ) (by Theorem of Freund-Schapire)

≥ 1
α max

w
min
S
fS(w)−O( 1

α

√
lnn
T ) (minimum is smaller than the average)

Since we finally scale the weights to sum up to B, we see that it is sufficient to run for T =
O(B

2 lnn
ε2α2 ) rounds to get an ε additive error.
2

Corollary 4.2
If the α-approximation algorithm A for Π runs in time TA, then Algorithm Design-Linear is
α-approximate with additive error ε > 0 and runs in time O(TAB

2 lnn
ε2α2 ).
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4.2 Extending the framework to concave utility functions and convex cost
functions

In this section, we extend the technique described in Section 4.1 to solve the design versions
of convex maximization and concave minimization problems. Suppose we have oracle access to
an α-approximation algorithm A for the optimization problem Π. We adapt the technique of
gradient descent for online regret minimization introduced by Zinkevich [Zin03] and extended
to the bandit setting by Flaxman et.al. [FKM05], to obtain an α-approximation algorithm for
the design problem D(Π) (with an additional arbitrarily small additive error).

Suppose the instance of the design problem is (E,S, B). We assume that the budget and
the weights are scaled down to get B = 1 for notational convenience (the running time of
the algorithm will depend polynomially on B). Let n = |E| and let ∆ denote the n − 1
dimensional simplex, the set of all feasible weight vectors

∑
e∈E we = 1. We assume that for

all S ∈ S,w ∈ ∆, the value of the functions fS(w) is bounded by a polynomial φ(n).

Algorithm Design-General:

• Input: Instance I = (E,S, B=1), n = |E|.

• Parameters: η, δ, ν, T to be fixed later.

• Output: Weight vector w, an approximate solution to I.

• Set y1 = 1
n1

• For time t = 1, . . . , T , do

– Pick a random unit vector ut ∈ Rn.
Let vt be the unit vector in the direction ut − (ut · 1)1.

– wt := yt + δvt.

– Run algorithm A with weight vector wt and let it return solution St.

– zt+1 := yt − νfSt(wt)vt;
Let yt+1 be the vector in (1− η)∆ which is closest to zt+1.

• Output w := 1
T

∑T
t=1 wt

Following [FKM05], [Zin03] we define the regret in this setting as

RT := max
w∈∆

T∑
t=1

fSt(w)−E[
T∑
t=1

fSt(wt)]

where the expectation is over the random choices of the unit vectors. Flaxman et.al. proved
the following theorem
Theorem[FKM05]: For sufficiently large n and a setting of parameters of η, δ, ν,

RT ≤ O
(
nφ(n)T 5/6

)
(5)
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Now we are ready to prove our bounds on the solution obtained by Algorithm Design-
General. The proof is similar to the proof of Theorem 4.1 in Section 4.

Theorem 4.3
Given an α-approximation algorithm for the concave minimization problem Π, Algorithm Design-
General is a randomized α-approximation algorithm, in expectation, for the design version
D(Π), with an additional arbitrarily small additive error.

Proof: Note that the weight vector w returned by the algorithm is a random variable. We
show that the expected cost of the minimum solution for w is within α of the maxmin solution
(up to additive error). Thus we need to argue about the quantity E[minS∈S fS(w)].

E[min
S
fS(w)] ≥ E[min

S

1
T

T∑
t=1

fS(wt)] (by concavity of fS)

≥ 1
T E[

T∑
t=1

min
S
fS(wt)]

≥ 1
T E[

T∑
t=1

1
αfSt(wt)] (Definition of St)

≥ 1
α

1
T max

w

T∑
t=1

fSt(w)−O( 1
α
nφ(n)

T 1/6 ) (by Equation (5))

≥ 1
α max

w
min
S
fS(w)−O( 1

α
nφ(n)

T 1/6 ) (minimum is less than the average)

Hence we see that w is an α approximate (in expectation) maxmin weight distribution, with
an additive error which goes to 0 as the number of rounds T becomes large compared to nφ(n)
(say T = (nφ(n))7). 2

4.2.1 Example: Designing graphs to minimize commute time and cover time

As an application of the framework for convex functions, we show how to design the transition
probabilities on a graph to minimize the maximum commute time and cover time for a random
walk on a graph. Given edge weights, a step of the standard random walk from a vertex u goes
to a vertex v with probability p(u, v) = w(u,v)P

e adjacent to u we
. The commute time between u and v is

defined as the expected time required to start at a vertex u and hit v and come back to u. The
cover time is the expected time taken for the random walk to hit every vertex of the graph.

Here an instance I = (E,S,w) of the maximization problem Π is a graph G, with E being
the edges of the graph, w being weights on the edges, and S being the collection of vertex pairs.
The weights determine the transition probabilities of a random walk. The design version D(Π)
is that of assigning weights to the edges so as to minimize the maximum pairwise commute
time3.

We note that the commute time can be found in polynomial time and moreover, both are
bounded by a polynomial in the number of vertices(see for example Section 6.3 [MR95]). It is

3In a recent result, Boyd et.al [BDX04] investigate a similar problem of assigning transition probabilities to
the edges of a path such that the mixing time is minimized.
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also known that the commute time is a convex function of the edge weights (see [EKPS04], or
Ghosh et.al [GBS05]). Thus we can solve the design problem using Algorithm Design-General.
Moreover, the Matthews bound[Mat88] states that the cover time of the random walk is within
a log n-factor of the maximum commute time. Thus we have:

Theorem 4.4
For every graph we can find in polynomial time a weight distribution on the edges of the graph
to minimize the maximum pairwise commute time of the resulting random walk. Moreover, the
same distribution is a O(log n) approximation to design edge probabilities to minimize the cover
time.

5 The complexity of design problems

In this section we study the relationship of the complexity of design problems and the complexity
of the corresponding optimization problems.

The main result of this paper as described in Sections 3 and 4 is that solving a design
problem D(Π) is as easy as solving the corresponding optimization problem Π, for the class of
concave (convex) minimization (maximization) problems, up to arbitrarily small additive errors.
This is proved via two different general techniques to give Theorem 3.2 and Theorem 4.3. For
linear optimization problems, if Π is in P then D(Π) is also in P (see Remark 3.1 in Section
3.1). This may not be true for convex or concave optimization problems, since it may be that
Π is in P, but all optimal solutions for D(Π) have irrational values. However, we can still solve
D(Π) upto an arbitrarily small additive approximation in polynomial time.

A natural question to ask is if the converse also holds, i.e. whether solving the optimization
problem is as easy as the design version of the same. The following simple example shows that
this is not the case:

Theorem 5.1
There exists a linear minimization problem Π such that finding the value of the minimum is
NP-hard, but its design version D(Π) can be solved in polynomial time.

Proof: Call a graph a bridged clique if it consists of two cliques K1 and K2, and two edges
(u, u′), (v, v′) with u, v ∈ K1 and u′, v′ ∈ K2. Consider the problem of finding (the value of)
the cheapest tour on a weighted bridged clique. This problem is NP-hard as it involves finding
the cheapest hamiltonian paths between u, v and u′, v′ respectively. Now consider the design
version of the problem. We have to find a distribution of the weight budget on a bridged
clique so that the cost of the minimum weight tour is maximized. Since any tour will have to
pick both edges of the bridge, the optimal strategy is to divide the weights only on the bridge
edges. Thus the design version of this problem can be solved trivially in polynomial time. This
construction extends to any NP-hard problem. 2

We have seen that all design problems are as easy as their optimization versions (up to
additive errors), and that some are polynomial time solvable even though the optimization
versions are NP-hard. To complete the picture we show below that not all design problems are
easy:
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Theorem 5.2
There exists an NP-hard linear minimization problem such that the corresponding design prob-
lem is also NP-hard.

Proof: Consider the problem of finding the minimum weight Steiner tree in a weighted graph.
We prove in Section 6 (Theorem 6.1) that the value of the maxmin Steiner tree is exactly
the reciprocal of the maximum number of Steiner trees that can be fractionally packed in
the weighted graph. However, the fractional packing number of Steiner trees is known to be
NP-hard, as proved by Jain et al. [JMS03]. 2

6 Maxmin design problems and packing problems

In this section we first show the equivalence of maxmin design problems and fractional packing
problems (Theorem 6.1). Subsequently, we focus on a particular minimization problem, the
Steiner tree problem. We show a systematic procedure to obtain results about fractional packing
Steiner trees using the above equivalence and different existing LP relaxations for the minimum
Steiner tree problem. Our technique is a general technique and we use the Steiner tree problem
as an example since it is a well studied problem with various LP relaxations.

We start with the equivalence mentioned above. Consider a general set system, F = (E,S).
The fractional packing number νf (F) is defined as the maximum number of fractionally disjoints
sets in S, that is,

νf (F) := max{
∑
S∈S

λS :
∑
S:e∈S

λS ≤ 1, ∀e ∈ E; λS ≥ 0, ∀S ∈ S}

Theorem 6.1
For any set system F = (E,S), we have νf (F) = 1/OPTD(Π)(E,S, 1), that is, the fractional
packing number equals the reciprocal of the maxmin design of the linear instance (E,S) given
budget of 1.

Proof: By duality, we can write νf (F) as

νf (F) = min{
∑
e∈E

xe :
∑
e∈S

xe ≥ 1, ∀S ∈ S; xe ≥ 0, ∀e ∈ E} (6)

By definition (LP(1)),

OPTD(Π)(E,S, 1) = max{λ :
∑
e∈S

xe ≥ λ, ∀S ∈ S;
∑
e∈E

xe = 1; xe ≥ 0, ∀e ∈ E} (7)

We complete the proof by showing that the optimal solution of (6) is the reciprocal of optimal
solution of (7). Take an optimal solution {xe}e∈E to (6) of value νf . Note that (1/νf , {we =
xe/νf}e∈E) is a feasible solution for (7). This is because

∑
e∈E we =

∑
e∈E xe/νf = 1 and for

all sets S,
∑

e∈S we =
∑

e∈S xe/νf ≥ 1/νf . Similarly, if (λ, {we}e∈E) is a solution to (7), then
{xe = we

λ }e∈E is a solution to (6) of value 1
λ . 2
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6.1 Fractionally packing Steiner trees

In this section we focus on the packing problem of Steiner trees in undirected graphs. We start
with some preliminaries about Steiner trees.

Preliminaries: We work with a multigraph G = (V,E). The vertex set is partitioned into
two sets V = R ∪ S. R is the set of required vertices, S the set of Steiner vertices. A Steiner
tree is a minimal connected subgraph of G connecting all the vertices in R. We denote the set
of Steiner trees of G as T (G), or simply T when the graph is clear from context. The integral
packing number of G is the maximum number of edge-disjoint Steiner trees in T and is denoted
by νint(G). The fractional packing number of G is the maximum number of Steiner trees in T
that can be packed fractionally and is denoted by νf (G). Thus,

νint(G) := max{
∑
T∈T

λ(T ) :
∑
T :e∈T

λ(T ) ≤ 1,∀e ∈ E; λ(T ) ∈ {0, 1}, ∀T ∈ T } (8)

νf (G) := max{
∑
T∈T

λ(T ) :
∑
T :e∈T

λ(T ) ≤ 1,∀e ∈ E; λ(T ) ≥ 0, ∀T ∈ T } (9)

Let Π, the Steiner tree polytope, be the convex hull of indicator vectors of the Steiner trees of
G, that is, Π := conv{x ∈ RE : x = 1T , T ∈ T }. 1T is the vector in RE with a 1 corresponding
to edges in T and 0 otherwise. Given weights w(e) on each edge of G, the minimum weight
Steiner tree would be denoted as MST (w). Note that MST (w) = min{

∑
ew(e) ·x(e) : x ∈ Π}.

Determining MST (w) in general graphs is NP-hard. Π′ ⊆ RE is a relaxation if Π ⊆ Π′. The
LP min{

∑
ew(e) · x(e) : x ∈ Π′} is called an LP relaxation for the Steiner tree problem and is

denoted as LΠ′(w). The integrality gap, α(Π′), of the relaxation is defined as the maxw
MST (w)
LΠ′ (w) .

A partition P = (V1, V2, · · · , Vp) of the vertices V is called a valid partition if p > 1 and
for all i = 1 · · · p, Vi ∩ R 6= ∅. The edges with each end point in separate partitions are called
cross-edges of the partition, E(P). The strength of a partition is the following ratio: |E(P)|

p−1 ,
The Steiner strength of the graph, denoted by γ(G) is the minimum strength over all valid
partitions.

γ(G) := min
validP

|E(P)|
|P| − 1

(10)

Recall, the max-min Steiner tree problem is to find a weight assignment w : E → R+, so
that |w| = 1, where |w| =

∑
e∈E w(e), and the weight of the minimum weight Steiner tree is

maximized. The weight of the max-min Steiner tree is denoted as MMST . Thus,

MMST := max
w∈R+

{MST (w) : |w| = 1} = max
w∈R+

{ν : w(T ) ≥ ν, ∀T ∈ T ; |w| = 1}

The following observation is a special case of Theorem 6.1.

Theorem 6.2
For any graph G, MMST (G) = 1

νf (G)

Note that the max-min Steiner tree can be thought as

MMST = max
w:|w|=1

min
x∈Π

w · x
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To convert this into a pure maximization linear program, we take the dual of the program
LΠ(w) := minx∈Π w · x. Denote the dual as DΠ(w). Thus, the following is an exact linear
program for MMST

MMST := max
w:|w|=1

DΠ(w)

Obviously one doesn’t expect an explicit characterization of DΠ(w) given the NP-hardness of
finding MST (w). The observation now is that every LP relaxation for the minimum Steiner
tree problem gives an LP relaxation for the max-min Steiner tree problem.

Let Π′ be a relaxation of the Steiner tree polytope. Moreover suppose Π′ := {x : Ax ≥
1;x ≥ 0} can be explicitly characterized4. LΠ′(w) = min{w · x : Ax ≥ 1;x ≥ 0} is a lower
bound on MST (w). Taking the dual of LΠ′(w), we get DΠ′(w) = max{y · 1 : yTA ≤ w; y ≥ 0}
is also a lower bound on MST (w). This gives the following lower bound on MMST :

MMST ≥ max{y · 1 : yTA− w ≤ 0; |w| = 1; y, w ≥ 0} (11)

Moreover, if the integrality gap of the relaxation Π′ is α(Π′), that is, for any weight w, we
have LΠ′(w) ≤MST (w) ≤ α(Π′) ·LΠ′(w), we get the integrality gap of the above relaxation is
at most α(Π′). This gives us:

MMST ≤ α(Π′) ·max{y · 1 : yTA− w ≤ 0; |w| = 1; y, w ≥ 0} (12)

Taking duals of the above LP, we get

MMST ≤ α(Π′) ·min{µ : Ax ≥ 1; µ · 1− x ≥ 0; x ≥ 0} (13)

In the remainder of the section we will plug in three different LP relaxations for the min-
imum Steiner tree problem and use the above framework and Theorem 6.2 to obtain three
independently known results about the fractional packing number.

The Undirected Cut Relaxation
Let U := {U ( V : U ∩R 6= ∅ and U c ∩R 6= ∅} denote the subsets of V which contain at least
one required vertex but not all. Given a subset U of vertices, let δ(U) denote the set of edges
with exactly one endpoint in U . The undirected cut relaxation polytope ΠUC is the following.

ΠUC := {x ∈ RE : x(δ(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

Plugging this in the inequality(13), we get

MMST ≤ α(ΠUC) ·min{µ : x(δ(U)) ≥ 1, ∀U ∈ U ; µ ≥ x(e),∀e ∈ E; x ≥ 0}

This implies the following theorem.

Theorem 6.3
If there are 2k edge-disjoint paths between any two required vertices, then νf (G) ≥ k.

4More generally, Π′ could be {x : [A | B](x t)T ≥ 1; x, t ≥ 0} where t are auxiliary variables. We omit this
notation for the time being for brevity, although we will use auxiliary variables in the bi-directed cut relaxation
below.
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Proof: By Theorem (6.2), we need to prove MMST ≤ 1
k . Since it is known α(ΠUC) ≤ 2, it

is enough to show a feasible solution of 1
2k for the above LP. Since between any two required

vertices there are 2k edge-disjoint paths, by Menger’s theorem |δ(U)| ≥ 2k for all U ∈ U and
thus µ = x(e) = 1

2k for all edges e is a feasible solution. 2 This theorem was implicit in the

work of Li and Li[LL03] who prove it using Mader’s splitting theorem. The only tool we use is
LP-duality.

Multiway Cut Relaxation
The multiway-cut relaxation polytope ΠMC is the following.

ΠUC := {x ∈ RE : x(E(P)) ≥ |P| − 1, ∀ valid P; x ≥ 0}

Plugging this in the inequality(13), we get

MMST ≤ α(ΠMC) ·min{µ : x(E(P)) ≥ |P| − 1,∀valid P; µ ≥ x(e), ∀e ∈ E; x ≥ 0}

This leads us to the relation between fractional packing number and the Steiner strength of the
graph.

Theorem 6.4
For any graph, νf (G) ≤ γ(G) ≤ α(ΠMC) · νf (G)

Proof: The first inequality follows from the definition of νf (G) and γ(G). The second inequality
follows from the solution µ = x(e) = 1

γ(G) for all e, for the above LP. The feasibility of the
above solution follows from definition of γ(G). 2

Corollary 6.5
If the graph G has no Steiner vertices, that is, the Steiner trees are spanning trees, then νf (G) =
γ(G).

Proof: This follows from the fact that α(ΠMC) = 1 for graphs with no Steiner vertices
[Cho89, Ful71]. 2

Bi-directed cut relaxation
Call an arbitrary vertex r ∈ R as the root. Bi-direct every edge of the multigraph and call the
resulting set of arcs A giving each the same weight as the undirected edge. Let U := {U ( V :
U ∩R 6= ∅ and r /∈ U} denote the subsets of V which contain at least one required vertex but
not the root. Given a set of vertices U , let δ+(U) denote the set of arcs with heads in U and
tails outside U . Consider the following polytope.

ΠBC := {x ∈ RA : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

The bi-directed polytope is obtained by projecting onto RE where the coordinate of an edge is
the addition of the values on its two bi-directed arcs. We abuse notation and call the earlier
polytope ΠBC . Note that, as was mentioned in a footnote before, ΠBC contains auxiliary
variables: the arc variables. Thus, ΠBC cannot be plugged in directly into inequality(13), but
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rather into a more general inequality which can be derived similarly with the auxiliary variables.
We omit the exposition of the calculation. This gives

MMST ≤ α(ΠBC) ·min{µ : x(δ+(U)) ≥ 1, ∀U ∈ U ; µ ≥ x(e1) + x(e2), ∀e ∈ E; x ≥ 0}
(14)

where e1 and e2 are the bi-directed arcs of the undirected edge e.
We now digress a little to understand the forthcoming result. Consider the undirected

multi-graph G as a communication network and root r as a source wishing to transmit to all
the other nodes in R. Normally, such a communication is established via sending information
on multi-cast trees which are nothing but Steiner trees. Edges have capacities (which can be
modeled via multiplicity) and thus the maximum transmission rate is precisely the fractional
packing number of the graph: Send λ(T ) amount of information across multicast tree T , where
λ(T ) is the solution in the definition (8).

Using network coding, however, this throughput can be increased. The network coding
principle [ACLY00] is the following: the maximum throughput achievable in a directed com-
munication network between one source and many sinks is the minimum over all required
vertices, the throughput between the source and that required vertex individually. Li and Li
[LL03] noted that in an undirected graph this amounts to finding the optimum distribution of
an undirected edge’s capacity onto its bi-directed arcs so as to maximize the minimum through-
put between the source and any required vertex. This is given via the following linear program
whose optimum was called the network coding throughput and denoted as χ(G) 5.

χ(G) := max{f : x(δ+U) ≥ f, ∀U ∈ U ; x(e1) + x(e2) ≤ 1, ∀e ∈ E; x, f ≥ 0} (15)

Comparing the definition of χ(G) and the inequality (14) obtained on plugging the bi-
directed cut relaxation, and noting the LP values are reciprocals of each other, the following
theorem of Agarwal and Charikar [AC04] on the network coding gain ( χ(G)

νf (G)) is immediate.

Theorem 6.6
[AC04] For any undirected graph G, νf (G) ≤ χ(G) ≤ α(ΠBC) · νf (G).

In fact, a careful derivation shows that the second inequality holds with equality; details
can be found in the paper of Agarwal and Charikar. Our goal was to present how such results
can be obtained in a systematic fashion. We end this section by noting that a much more
challenging direction is to obtain a relation between the fractional packing of Steiner trees and
integral packing of Steiner trees; it follows from a conjecture of Kriesell [Kri03] (if true) that
this ratio is at most 2, while the current best known ratio is 24 due to Lau [Lau07].

7 Discussion: Design versions of Counting Problems

In this paper we gave a systematic way of going from an optimization problem to a design
problem, and we studied their relative complexity. We leave open the issue of carrying out an
analogous plan of study for counting problems, in particular, #P-complete problems.

Two rather interesting design problems that arise from counting problems are the following.
Determining their complexity is by itself a challenging open problem.

5One can also think of this as a fractional version of the orientation problem in directed graphs
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1. Network reliability: Given probabilities of edge failures in an undirected graph, the
problem of determining the probability that the graph gets disconnected is #P-complete
[PB83]. An FPRAS (fully polynomial randomized approximation scheme) for this prob-
lem was given by Karger [Kar99].

Consider the following design version of this problem. Let G = (V,E) be an undirected
graph. With each edge e we are specified a number pe such that 0 < pe < 1. We are given
a total weight of W . If weight w is placed on edge e then its failure probability becomes
pwe . The problem is to determine the optimal way of placing weight W on the edges so
that the failure probability of the resulting graph is minimized.

2. Permanent: We will define a design version of the problem of computing the perma-
nent of a non-negative matrix. Our problem turns out to be a generalization of the
van der Waerden Conjecture, which was settled positively by Falikman [Fal81] and Ego-
rychev [Ego81]. This conjecture states that the matrix that has all entries 1/n is the
doubly stochastic n× n matrix that has minimum permanent.

Let A be an n× n 0/1 matrix whose permanent is non-zero. This is the template matrix.
The problem is to replace the entries that are 1’s in A by non-negative numbers so that
the permanent of the resulting matrix is the minimum possible subject to the condition
that it is doubly stochastic.
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