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Abstract

We introduce a problem that is a common generalization of the uncapacitated facility location (UFL)
and minimum latency (ML) problems, where facilities not only need to be opened to serve clients, but also
need to be sequentially activated before they can provide service. This abstracts a setting where inventory
demanded by customers needs to be stocked or replenished at facilities from a depot or warehouse.
Formally, we are given a set F of n facilities with facility-opening costs {fi}, a set D of m clients, and
connection costs {cij} specifying the cost of assigning a client j to a facility i, a root node r denoting the
depot, and a time metric d on F ∪ {r}. Our goal is to open a subset F of facilities, find a path P starting
at r and spanning F to activate the open facilities, and connecting each client j to a facility φ(j) ∈ F ,
so as to minimize

∑
i∈F fi +

∑
j∈D(cφ(j),j + tj), where tj is the time taken to reach φ(j) along path

P . We call this the minimum latency uncapacitated facility location (MLUFL) problem.
Our main result is an O

(
log n max{log n, log m}

)
-approximation for MLUFL. Via a reduction to the

group Steiner tree (GST) problem, we show this result is tight in the sense that any improvement in the
approximation guarantee for MLUFL, implies an improvement in the (currently known) approximation
factor for GST. We obtain significantly improved constant approximation guarantees for two natural
special cases of the problem: (a) related MLUFL, where the connection costs form a metric that is a
scalar multiple of the time metric; (b) metric uniform MLUFL, where we have metric connection costs
and the time-metric is uniform. Our LP-based methods are fairly versatile and are easily adapted with
minor changes to yield approximation guarantees for MLUFL (and ML) in various more general settings,
such as (i) the setting where the latency-cost of a client is a function (of bounded growth) of the delay
faced by the facility to which it is connected; and (ii) the k-route version, where we can dispatch k
vehicles in parallel to activate the open facilities.

Our LP-based understanding of MLUFL also offers some LP-based insights into ML. We obtain two
natural LP-relaxations for ML with constant integrality gap, which we believe shed new light upon the
problem and offer a promising direction for obtaining improvements for ML.

1 Introduction

Facility location and vehicle routing problems are two broad classes of combinatorial optimization problems
that have been widely studied in the Operations Research community (see, e.g., [25, 32]), and have a wide
range of applications. Both problems can be described in terms of an underlying set of clients that need to be
serviced. In facility location problems, there is a candidate set of facilities that provide service, and the goal
is to open some facilities and connect each client to an open facility so as to minimize some combination
of the facility-opening and client-connection costs. Vehicle routing problems consider the setting where a
vehicle (delivery-man or repairman) provides service, and the goal is to plan a route that visits (and hence
services) the clients as quickly as possible. Two common objectives considered are: (i) minimize the total
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length of the vehicle’s route, giving rise to the traveling salesman problem (TSP), and (ii) (adopting a client-
oriented approach) minimize the sum of the client delays, giving rise to minimum latency (ML) problems.

These two classes of problems have mostly been considered separately. However, various logistics
problems involve both facility-location and vehicle-routing components. For example, consider the follow-
ing oft-cited prototypical example of a facility location problem: a company wants to determine where to
open its retail outlets so as to serve its customers effectively. Now, inventory at the outlets needs to be
replenished or ordered (e.g., from a depot); naturally, a customer cannot be served by an outlet unless the
outlet has the inventory demanded by it, and delays incurred in procuring inventory might adversely impact
customers. Hence, it makes sense for the company to also keep in mind the latencies faced by the customers
while making its decisions about where to open outlets, how to connect customers to open outlets, and in
what order to replenish the open outlets, thereby adding a vehicle-routing component to the problem.

We propose a mathematical model that is a common generalization of the uncapacitated facility location
(UFL) and minimum latency (ML) problems, and abstracts a setting (such as above) where facilities need to
be “activated” before they can provide service. Formally, as in UFL, we have a set F of n facilities, and a
set D of m clients. Opening facility i incurs a facility-opening cost fi, and assigning a client j to a facility
i incurs connection cost cij . Taking a lead from minimum latency problems, we model activation delays as
follows. We have a root (depot) node r, and a time metric d on F ∪ {r}. A feasible solution specifies a
subset F ⊆ F of facilities to open, a path P starting at r and spanning F along which the open facilities are
activated, and assigns each client j to an open facility φ(j) ∈ F . The cost of such a solution is∑

i∈F

fi +
∑
j∈D

(
cφ(j)j + tj

)
(1)

where tj = dP (r, φ(j)) is the time taken to reach facility φ(j) along path P . We refer to tj as client j’s
latency cost. The goal is to find a solution with minimum total cost. We call this the minimum-latency
uncapacitated facility location (MLUFL) problem.

Apart from being a natural problem of interest, we find MLUFL appealing since it generalizes, or is
closely-related to, various diverse problems of interest (in addition to UFL and ML); our work yields new
insights on some of these problems, most notably ML (see “Our results”). One such problem, which captures
much of the combinatorial core of MLUFL is what we call the minimum group latency (MGL) problem. Here,
we are given an undirected graph with metric edge weights {de}, subsets {Gj} of vertices called groups,
and a root r; the goal is to find a path starting at r that minimizes the sum of the cover times of the groups,
where the cover time of Gj is the first time at which some i ∈ Gj is visited on the path. Observe that MGL
can be cast as MLUFL with zero facility costs (where F = node-set \ {r}), where for each group Gj , we
create a client j with cij = 0 if i ∈ Gj and ∞ otherwise. Note that we may assume that the groups are
disjoint (by creating multiple co-located copies of a node), in which case these cijs form a metric. MGL
itself captures various other problems. Clearly, when each Gj is a singleton, we obtain the minimum latency
problem. Also, given a set-cover instance, if we consider a graph whose nodes are (r and) the sets, create a
group Gj for each element j consisting of the sets containing it, and consider the uniform metric, then this
MGL problem is simply the min-sum set cover (MSSC) problem [16].

Our results and techniques. Our main result is an O
(
log n max{log m, log n}

)
-approximation algorithm

for MLUFL (Section 2.1), which for the special case of MGL, implies an O(log2 n) approximation. Com-
plementing this result, we prove (Theorem 2.9) that a ρ-approximation algorithm (even) for MGL yields
an O(ρ log m)-approximation algorithm for the group Steiner tree (GST) problem [17] on n nodes and
m groups. Thus, any improvement in our approximation ratio for MLUFL would yield a corresponding
improvement of GST, whose approximation ratio has remained at O(log2 n log m) for a decade [17]. More-
over, combined with the result of [22] on the inapproximability of GST, this shows that MGL, and hence
MLUFL with metric connection costs cannot be approximated to better than a Ω(log m)-factor unless NP ⊆
ZTIME (npolylog(n)).
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Given the above hardness result, we investigate certain well-motivated special cases of MLUFL and
obtain significantly improved performance guarantees. In Section 2.2, we consider the case where the
connection costs form a metric, which is a scalar multiple of the d-metric (i.e., duv = cuv/M , where
M ≥ 1; the problem is trivial if M < 1). For example, in a supply-chain logistics problem, this models a
natural setting where the connection of clients to facilities, and the activation of facilities both proceed along
the same transportation network. We obtain a constant-factor approximation algorithm for this problem.

In Section 2.3, we consider the uniform MLUFL problem, which is the special case where the time-
metric is uniform. Uniform MLUFL already generalizes MSSC (and also UFL). For uniform MLUFL with
metric connection costs (i.e., metric uniform MLUFL), we devise a 10.78-approximation algorithm. (Without
metricity, the problem becomes set-cover hard, and we obtain a simple matching O(log m)-approximation.)
The chief novelty here lies in the technique used to obtain this result. We give a simple generic reduction
(Theorem 2.12) that shows how to reduce the metric uniform MLUFL problem with facility costs to one
without facility costs, in conjunction with an algorithm for UFL. This reduction is surprisingly robust and
versatile and has other applications. For example, the same reduction yields an O(1)-approximation for
metric uniform k-median (i.e., metric uniform MLUFL where at most k facilities may be opened), and the
same ideas lead to improved guarantees for the k-median versions of connected facility location [31], and
facility location with service installation costs [28].

We obtain our approximation bounds by rounding the optimal solution to a suitable linear-programming
(LP) relaxation of the problem. This is interesting since we are not aware of any previous LP-based methods
to attack ML (as a whole). In Section 3, we leverage this to obtain some interesting insights about ML, which
we believe cast new light on the problem. In particular, we present two LP-relaxations for ML, and prove that
these have (small) constant integrality gap. Our first LP is a specialization of our LP-relaxation for MLUFL.
Interestingly, the integrality-gap bound for this LP relies only on the fact that the natural LP relaxation for
TSP has constant integrality gap (i.e., a ρ-integrality gap for the natural TSP LP relaxation translates to an
O(ρ)-integrality gap). In contrast, the various known algorithms for ML [7, 10, 1] all utilize algorithms for
the arguably harder k-MST problem or its variants. Our second LP has exponentially-many variables, one
for every path (or tree) of a given length bound, and the separation oracle for the dual problem is a rooted path
(or tree) orienteering problem: given rewards on the nodes and metric edge costs, find a (simple) path rooted
at r of length at most B that gathers maximum reward. We prove that even a bicriteria approximation for
the orienteering problem yields an approximation for ML while losing a constant factor. This connection
between orienteering and ML is known [14]. But we feel that our alternate proof, where the orienteering
problem appears as the separation oracle required to solve the dual LP, offers a more illuminating explanation
of the relation between the approximability of the two problems. (In fact, the same relationship also holds
between MGL and “group orienteering.”)

We believe that the use of LPs opens up ML to new venues of attack. A good LP-relaxation is beneficial
because it yields a concrete, tractable lower bound and handle on the integer optimum, which one can
exploit to design algorithms (a point repeatedly driven home in the field of approximation algorithms). Also,
LP-based techniques tend to be fairly versatile and can be adapted to handle more general variants of the
problem (more on this below). Our LP-rounding algorithms exploit various ideas developed for scheduling
and facility-location problems (e.g., α-points) and polyhedral insights for TSP, which suggests that the
wealth of LP-based machinery developed for these problems can be leveraged to obtain improvements for
ML. We suspect that our LP-relaxations are in fact better than what we have accounted for, and consider
them to be a promising direction for making progress on ML.

Section 4 showcases the flexibility afforded by our LP-based techniques, by showing that our algorithms
and analyses extend with little effort to handle various generalizations of MLUFL (and hence, ML). For exam-
ple, consider the setting where the latency-cost of a client j is λ(time taken to reach the facility serving j),
for some non-decreasing function λ(.). When λ is convex and has “growth” at most p (i.e., λ(cx) ≤ cpλ(x)),
we derive an O

(
max{(p log2 n)p, p log n log m}

)
-approximation for MLUFL, an O

(
2O(p)

)
-approximation
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for related MLUFL and ML, and an O(1)-approximation for metric uniform MLUFL. (Concave λs are even
easier to handle.) This in turn leads to approximation guarantees for the Lp-norm generalization of MLUFL,
where instead of the sum (i.e., L1-norm) of client latencies, the Lp-norm of the client latencies appears in
the objective function. The spectrum of Lp norms tradeoff efficiency with fairness, making the Lp-norm
problem an appealing problem to consider. We obtain an O

(
p log n max{log n, log m}

)
-approximation for

MLUFL, and an O(1)-approximation for the other special cases. Another notable extension is the k-route
version of the problem, where we may use k paths starting at r to traverse the open facilities. With one sim-
ple modification to our LPs (and algorithms), all our approximation guarantees translate to this setting. As a
corollary, we obtain a constant-factor approximation for the Lp-norm version of the k-traveling repairmen
problem [14] (the k-route version of ML).

Related work. To the best of our knowledge, MLUFL and MGL are new problems that have not been
studied previously. There is a great deal of literature on facility location and vehicle routing problems (see,
e.g., [25, 32]) in general, and UFL and ML, in particular, which are special cases of our problem, and we
limit ourselves to a sampling of some of the relevant results. The first constant approximation guarantee
for UFL was obtained by Shmoys, Tardos, and Aardal [29] via an LP-rounding algorithm, and the current
state-of-the-art is 1.5-approximation algorithm due to Byrka [8]. The minimum latency (ML) problem seems
to have been first introduced to the computer science community by Blum et al. [7], who gave a constant-
factor approximation algorithm for it. Goemans and Kleinberg [19]improved the approximation factor to
10.78, using a “tour-concatenation” lemma, which has formed a component of all subsequent algorithms
and improvements for ML. The current-best approximation factor for ML is 3.59 due to Chaudhuri, Godfrey,
Rao and Talwar [10]. As mentioned earlier, MGL with a uniform time metric captures the min-sum set
cover (MSSC) problem. This problem was introduced by Feige, Lovasz and Tetali [16], who gave a 4-
approximation algorithm for the problem and a matching inapproximability result. Recently, Azar et al. [2]
introduced a generalization of MSSC, for which Bansal et al. [5] obtained a constant-factor approximation.

If instead of adding up the latency cost of clients, we include the maximum latency cost of a client in
the objective function of MLUFL, then we obtain the min-max versions of MGL and MLUFL, which have
been studied previously. The min-max version of MGL is equivalent to a “path-variant” of GST: we seek a
path starting at r of minimum total length that covers every group. Garg, Konjevod, and Ravi [17] devised
an LP-rounding based O(log2 n log m)-approximation for GST, where n is the number of nodes and m
is the number of groups. Charikar et al. [9] gave a deterministic algorithm with the same guarantee, and
Halperin and Krauthgamer [22] proved an Ω(log2 m)-inapproximability result. The rounding technique
of [17] and the deterministic tree-embedding construction of [9] (rather its improvement by [15]) are key
ingredients of our algorithm for (general) MLUFL. The min-max version of MLUFL can be viewed a path-
variant of connected facility location [27, 20]. The connected facility location problem, in its full generality,
is essentially equivalent to GST [27]; however, if the connection costs form a metric, and the time- and the
connection-cost metrics are scalar multiples of each other, then various constant-factor approximations are
known [20, 31, 13].

Very recently, we have learnt that, independent of, and concurrent with, our work, Gupta et al. [21] also
propose the minimum group latency (MGL) problem (which they arrive at in the course of solving a different
problem), and obtain results similar to ours for MGL. They also obtain an O(log2 n)-approximation for MGL,
and the reduction from GST to MGL with a log m-factor loss (see also [26]), and relate the approximability
of the MGL and “group orienteering” problems. Their techniques are combinatorial and not LP-based, and
it is not clear how these can be extended to handle facility-opening costs.
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2 LP-rounding approximation algorithms for MLUFL

We can express MLUFL as an integer program and relax the integrality constraints to obtain a linear program
as follows. We may assume that dii′ is integral for all i, i′ ∈ F ∪{r}. Let E denote the edge-set of the com-
plete graph on F ∪ {r} and let dmax := maxe∈E de. Let T ≤ min{n, m}dmax be a known upper bound on
the maximum activation time of an open facility in an optimal solution. For every facility i, client j, and time
t ≤ T, we have a variable yi,t indicating if facility i is opened at time t or not, and a variable xij,t indicating
whether client j connects to facility i at time t. Also, for every edge e ∈ E and time t, we introduce a vari-
able ze,t which denotes if edge e has been traversed by time t. Throughout, we use i to index the facilities in
F , j to index the clients in D, t to index the time units in [T] := {1, . . . ,T}, and e to index the edges in E.

min
∑
i,t

fiyi,t +
∑
j,i,t

(
cij + t

)
xij,t (P)

s.t.
∑
i,t

xij,t ≥ 1 for all j; xij,t ≤ yi,t for all i, j, t

∑
e

deze,t ≤ t for all t (2)∑
e∈δ(S)

ze,t ≥
∑

i∈S,t′≤t

xij,t′ for all t, S ⊆ F , j (3)

xij,t, yi,t, ze,t ≥ 0 for all i, j, t, e; yi,t = 0 for all i, t with dir > t.

The first two constraints encode that each client is connected to some facility at some time, and that if a
client is connected to a facility i at time t, then i must be open at time t. Constraint (2) ensures that by time
t no more than t “distance” is covered by the tour on facilities, and (3) ensures that if a client is connected
to i by time t, then the tour must have visited i by time t. We assume for now that T = poly(m), and show
later how to remove this assumption (Lemma 2.7, Theorem 2.8). Thus, (P) can be solved efficiently since
one can efficiently separate over the constraints (3). Let (x, y, z) be an optimal solution to (P), and OPT
denote its objective value. For a client j, define C∗

j =
∑

i,t cijxij,t, and L∗
j =

∑
i,t txij,t. We devise various

approximation algorithms for MLUFL by rounding (x, y, z) to an integer solution.
In Section 2.1, we give a polylogarithmic approximation algorithm for (general) MLUFL (where the cijs

need not even form a metric). Complementing this result, we prove (Theorem 2.9) that a ρ-approximation
algorithm (not necessarily LP-based) for MLUFL yields an O(ρ log m)-approximation algorithm for the GST
problem on n nodes and m groups. In Sections 2.2 and 2.3, we obtain significantly-improved approximation
guarantees for various well-motivated special cases of MLUFL. Section 2.2 obtains a constant-factor approx-
imation algorithm in the natural setting where the connection costs form a metric that is a scalar multiple
of the time-metric. Section 2.3 considers the setting where the time-metric is the uniform metric. Our main
result here is a constant-factor approximation for metric connection costs, which is obtained via a rather
versatile reduction of this uniform MLUFL problem to UFL and uniform MLUFL with zero-facility costs.

2.1 An O
(
log n · max{log n, log m}

)
-approximation algorithm

We first give an overview. Let Nj = {i ∈ F : cij ≤ 4C∗
j } be the set of facilities “close” to j, and define τj

as the earliest time t such that
∑

i∈Nj ,t′≤t xij,t′ ≥ 2
3 . By Markov’s inequality, we have

∑
i∈Nj

∑
t xij,t ≥ 3

4
and τj ≤ 12L∗

j . It is easiest to describe the algorithm assuming first that the time-metric d is a tree metric.
Our algorithm runs in phases, with phase ` corresponding to time t` = 2`. In each phase, we compute a
random subtree rooted at r of “low” cost such that for every client j with τj ≤ t`, with constant probability,
this tree contains a facility in Nj . To compute this tree, we utilize the rounding procedure of Garg-Konjevod-
Ravi (GKR) for the group Steiner tree (GST) problem [17] (see Lemma 2.4), by creating a group for each
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client j with τj ≤ t` comprising of, roughly speaking, the facilities in Nj . We open all the facilities included
in the subtree, and obtain a tour via the standard trick of doubling all edges and performing an Eulerian tour
with possible shortcutting. The overall tour is a concatenation of all the tours obtained in the various phases.
For each client j, we consider the first tree that contains a facility from Nj (which must therefore be open),
and connect j to such a facility.

Given the result for tree metrics, an oft-used idea to handle the case when d is not a tree metric is to
approximate it by a distribution of tree metrics with O(log n) distortion [15]. Our use of this idea is however
more subtle than the typical applications of probabilistic tree embeddings. Instead of moving to a distribution
over tree metrics up front, in each phase `, we use the results of [9, 15] to deterministically obtain a tree T`
with edge weights {dT`

(e)}, such that the resulting tree metric dominates d and
∑

e=(i,i′) dT`
(i, i′)ze,t` =

O(log n)
∑

e deze,t` . As we show in Section 4, this deterministic choice allows to extend our algorithm
and analysis effortlessly to the setting where the latency-cost in the objective function is measured by a
more general function (e.g., the Lp-norm) of the client-latencies. The algorithm is described in detail as
Algorithm 1, and utilizes the following results. Let τmax = maxj τj .

Theorem 2.1 ([9, 15]) Given any edge weights {ze}e∈E , one can deterministically construct a weighted
tree T having leaf-set F ∪ {r}, leading to a tree metric, dT (·), such that, for any i, i′ ∈ F ∪ {r}, we have:
(i) dT (i, i′) ≥ di,i′ , and (ii)

∑
e=(i,i′)∈E dT (i, i′)zi,i′ = O(log n)

∑
e deze.

Theorem 2.2 ([17]) Consider a tree T rooted at r with n leaves, subsets G1, . . . , Gp of leaves, and frac-
tional values ze on the edges of T satisfying z(δ(S)) ≥ νj for every group Gj and node-set S such that
Gj ⊆ S, where νj ∈

[
1
2 , 1

]
. There exists a randomized polytime algorithm, henceforth called the GKR

algorithm, that returns a rooted subtree T ′′ ⊆ T such that (i) Pr[e ∈ T ′′] ≤ ze for every edge e ∈ T ; and
(ii) Pr[T ′′ ∩Gj = ∅] ≤ exp

(
− νj

64 log2 n

)
for every group Gj .

Algorithm 1 Given: a fractional solution (x, y, z) to (P) (with C∗
j , L∗

j , Nj , and τj defined as above for each client j).

A1. In each phase ` = 0, 1, . . . ,N := dlog2(2τmax) + 4 log2 me, we do the following. Let t` = min{2`,T}.
A1.1. Use Theorem 2.1 with edge weights {ze,t`

} to obtain a tree T` =
(
V (T`), E(T`)

)
. Extend T` to a tree T ′` by

adding a dummy leaf edge (i, vi) of cost fi to T` for each facility i. Let E′ = {(i, vi) : i ∈ F}.
A1.2. Map the LP-assignment {ze,t`

}e∈E to an assignment z on the edges of T ′` by setting ze =∑
e lies on the unique i-i′ path in T`

zii′,t`
for all e ∈ E(T`), and ze =

∑
t≤t`

yi,t for all e = (i, vi) ∈ E′. Note
that

∑
e∈E(T`)

dT`
(e)ze =

∑
e=(i,i′) dT`

(i, i′)ze,t`
= O(log n)

∑
e deze,t`

= O(log n)t`.

A1.3. Define D` = {j : τj ≤ t`}. For each client j ∈ D`, we define the group N ′
j = {vi : i ∈ Nj}. We

now compute a subtree T ′
` of T ′` as follows. We obtain N := log2 m subtrees T ′′

1 , . . . , T ′′
N . Each tree T ′′

r

is obtained by executing the GKR algorithm 192 log2 n times on the tree T ′` with groups {N ′
j}j∈D`

, and
taking the union of all the subtrees returned. Note that we may assume that i ∈ T ′′

r iff (i, vi) ∈ T ′′
r . Set

T ′
` to be any tree in {T ′′

1 , . . . , T ′′
N} satisfying (i)

∑
(i,vi)∈E(T ′

`) fi ≤ 40 · 192 log2 n
∑

(i,vi)∈E′ fizi,vi and (ii)∑
e∈E(T ′

`)\E′ dT`
(e) ≤ 40 · 192 log2 n

∑
e∈E(T`)

dT`
(e)ze; if no such tree exists, the algorithm fails.

A1.4. Now remove all the dummy edges from T ′
` , open all the facilities in the resulting tree, and convert the

resulting tree into a tour Tour` traversing all the opened facilies. For every unconnected client j, we connect
j to a facility in Nj if some such facility is open (and hence part of Tour`).

A2. Return the concatenation of the tours Tour` for ` = 0, 1, . . . ,N shortcutting whenever possible. This induces an
ordering of the open facilities. If some client is left unconnected, we say that the algorithm has failed.

Analysis. The algorithm may fail in steps A.1.3 and A2. Lemmas 2.4 and 2.5 bound the failure probability
in each case by 1/ poly(m). To bound the expected cost conditioned on success, it suffices to bound the
expectation of the random variable that equals the cost incurred if the algorithm succeeds, and is 0 otherwise.
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Since each client j is connected to a facility in Nj , the total connection cost is at most 4
∑

j C∗
j . To

bound the remaining components of the cost, we first show that in any phase `, the z-assignment defined
above “covers” each group in {N ′

j}j∈D`
to an extent of at least 2

3 (Claim 2.3). Next, we show in Lemma 2.4
that for every client j ∈ D`, the probability that a facility in Nj is included in the tree T ′

` , and hence opened
in phase `, is at least 5

6 ·
2
3 = 5

9 . The facility-cost incurred in a phase is O(log n)
∑

i,t fiyi,t, and since
τmax ≤ T = poly(m), the number of phases is O(log m), so this bounds the facility-opening cost incurred.
Also, since the probability that j is not connected (to a facility in Nj) in phase ` decreases geometrically
(at a rate less than 1/2) with ` when t` ≥ τj , one can argue that (a) with very high probability (i.e.,
1− 1/ poly(m)), each client j is connected to some facility in Nj , and (b) the expected latency-cost of j is
at most O(log n)

∑
e∈E(T`)

dT`
(e)ze = O(log2 n)τj .

Claim 2.3 Consider any phase `. For any subset S of nodes of the corresponding tree T ′` with r /∈ S, and
any N ′

j ⊆ S where j ∈ D`, we have z(δ(S)) ≥
∑

i∈Nj ,t≤t`
xij,t ≥ 2/3 (where δ(S) denotes δT ′

`
(S)).

Proof : Let R = S ∩ V (T`), and Y ⊆ F be the set of leaves in R. Then δ(S) = δT`
(R) ∪

(
δ(S) ∩ E′).

Let δE(Y ) = {(i, i′) ∈ E : |{i, i′}| ∩ Y | = 1}. Observe that z(δT`
(R)) ≥

∑
e∈δE(Y ) ze,t` . This is simply

because if we send zii′,t` flow along the unique (i, i′) path in T` for every (i, i′) ∈ δE(Y ), then we obtain
a flow between Y and F ∪ {r} \ Y respecting the capacities {ze}e∈E(T`), and of value equal to the RHS
above. Thus, the inequality follows because the capacity of any cut containing Y must be at least the value
of the flow. Since (x, y, z) satisfies (3), we further have that

∑
e∈δE(Y ) ze,t` ≥

∑
i∈Y,t≤t`

xij,t. So

z(δ(S)) ≥
∑

e∈δT`
(R)

ze,t` +
∑

(i,vi)∈δ(S):i/∈Y

(∑
t≤t`

yi,t

)
≥

∑
i∈Y,t≤t`

xij,t +
∑

i∈Nj\Y,t≤t`

xij,t ≥
∑

i∈Nj ,t≤t`

xij,t ≥
2
3
.

Lemma 2.4 In any phase `, with probability 1 − 1/ poly(m), we obtain the desired tree T ′
` in step A1.3.

Moreover, Pr[T ′
` ∩N ′

j 6= ∅] ≥ 5/9 for all j ∈ D`.

Proof : Consider any tree T ′′
r obtained by executing the GKR algorithm 192 log2 n times and taking the

union of the resulting subtrees. For brevity, we denote
∑

(i,vi)∈E(T ′′
r ) fi by F (T ′′

r ), and
∑

e∈E(T ′′
r )\E′ dT`

(e)
by d`(T ′′

r ).
For j ∈ D`, let Er

j denote the event that T ′′
r ∩ N ′

j is non-empty. By Theorem 2.2, we have Pr[Er
j ] ≥

1 − exp
(
− νj

64 log2 n · 192 log n
)
≥ 1 − e−3νj ≥ (1 − e−3)νj ≥ 11/18. We also have that E

[
F (T ′′

r )
]
≤

192 log2 n
∑

(i,vi)∈E′ fizi,vi and E
[
d`(T ′′

r )
]
≤ 192 log2 n

∑
e∈E(T`)

dT`
(e)ze. Let Fr and Dr denote respec-

tively the events that F (T ′′
r ) ≤ 40·192 log2 n

∑
(i,vi)∈E′ fizi,vi , and d`(T ′′

r ) ≤ 40·192 log2 n
∑

e∈E(T`)
dT`

(e)ze.
By Markov’s inequality each event happens with probability at least 39/40. Thus, for any j ∈ D`, we get
that

Pr[Er
j |(Fr ∧Dr)] ≥ Pr[Er

j ∧ Fr ∧Dr] ≥ 1− (7/18 + 1/40 + 1/40) > 5/9. (4)

Now the probability that (Fr ∧Dr)c happens for all r = 1, . . . , N is at most (2/40)N ≤ 1/m4. Hence,
with high probability, there is some tree T ′

` := Tr such that both Fr and Dr hold, and (4) shows that
Pr[T ′

` ∩N ′
j 6= ∅] ≥ 5/9 for all j ∈ D`.

Lemma 2.5 The probability that a client j is not connected by the algorithm is at most 1/m4. Let Lj be
the random variable equal to j’s latency-cost if the algorithm succeeds and 0 otherwise. Then E

[
Lj

]
=

O(log2 n)t`j
, where `j (= dlog2 τje) is the smallest ` such that t` ≥ τj .
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Proof : Let Pj be the random variable denoting the phase in which j gets connected; let Pj := N + 1 if
j remains unconnected. We have Pr[Pj ≥ `] ≤

(
4
9

)(`−`j) for ` ≥ `j The algorithm proceeds for at least
4 log2 m phases after phase `j , so Pr[j is not connected after N phases] ≤ 1/m4. Now,

Lj ≤
∑
`≤Pj

d(Tour`) ≤ 2
∑
`≤Pj

∑
e∈E(T ′

`)\E′

dT`
(e) = O(log n)

∑
`≤Pj

∑
e∈E(T`)

dT`
(e)ze = O(log2 n)

∑
`≤Pj

t`

so E
[
Lj

]
= O(log2 n)

N∑
`=0

Pr[Pj ≥ `] · t` ≤ O(log2 n)
[ `j∑

`=0

t` +
∑
`>`j

t` ·
(

4
9

)(`−`j)]
= O(log2 n)t`j

.

Theorem 2.6 Algorithm 1 succeeds with probability 1−1/ poly(m), and returns a solution of expected cost
O

(
log n ·max{log n, log m}

)
·OPT .

Proof : Lemmas 2.4 and 2.5 show that the failure probability is 1/ poly(m). Let Y denote the cost incurred
if the algorithm succeeds, and 0 otherwise. Since t`j

≤ 2τj = O(L∗
j ) for each j, we have E

[
Y

]
=

O
(
log n ·max{log n, log m}

)
·OPT by Lemma 2.5 and the preceding arguments.

Removing the assumption T = poly(m). We first argue that although (P) has a pseudopolynomial
number of variables, one can compute a near-optimal solution to it in polynomial time (Lemma 2.7) by con-
sidering only (integer) time-values that are powers of (1 + ε) (rouhgly speaking). Given ε > 0, define Tr =
d(1 + ε)re, and let TS := {T0,T1, . . . ,Tk}where k is the smallest integer such that Tk ≥ min{n, m}dmax.
Define T−1 = 0. Let (P)TS denote (P) when t ranges over TS.

Lemma 2.7 For any ε > 0, we can obtain a solution to (P) of cost at most (1+ε)OPT in time poly(input size, 1/ε).

Proof : We prove that the optimal value of (P)TS is at most (1 + ε)OPT . Since the size of (P)TS is
poly(input size, 1/ε) this proves the lemma.

We transform (x, y, z), an optimal solution to (P) to a feasible solution (x′, y′, z′) to (P)TS of cost at
most (1+ε)OPT . (In fact, the facility-opening and connection-costs remain unchanged, and the latency-cost
blows up by a (1+ε)-factor.) z′ is simply a restriction of z to the times in TS, that is, z′e,t = ze,t for each e, t ∈
TS. Set x′ij,1 = xij,1, y′i,1 = yi,1 for all i and j. For each ` = 1, . . . , k, facility i, client j, we set x′ij,T`

=∑T`
t=T`−1+1 xij,t and y′i,T`

=
∑T`

t=T`−1+1 yi,t. It is clear that
∑

t∈TS x′ij,t =
∑

t xij,t and
∑

t∈TS y′i,t =∑
t yi,t for all i and j, and moreover for any T` ∈ TS, we have

∑
t∈TS:t≤T`

x′ij,t =
∑

t≤T`
xij,t. It fol-

lows that (x′, y′, z′) is a feasible solution to (P)TS and
∑

i,t∈TS fiy
′
i,t =

∑
i,t fiyi,t,

∑
j,i,t∈TS cijx

′
ij,t =∑

j,i,t cijxij,t. To bound the latency cost, note that for any t > T`−1, we have T` ≤ (1 + ε)t, so
for any client j and facility i,

∑
t∈TS tx′ij,t ≤ xij,1 + (1 + ε)

∑
t>1 txij,t ≤ (1 + ε)

∑
t txij,t. Thus,∑

j,i,t∈TS tx′ij,t ≤ (1 + ε)
∑

j,i,t txij,t.

Let (x′, y′, z′) denote an optimal solution to (P)TS. The only changes to Algorithm 1 are in the definition
of the time t` and the number of phases N . (Of course we now work with (x′, y′, z′), and C∗

j , L∗
j are

defined in terms of (x′, y′, z′) now.) The idea is to define t` so that one can “reach” the τj of every client j
in O(log m) phases; thus, one can terminate in O(log m) phases and thereby obtain the same approximation
on the facility-opening cost. Let L = (

∑
j L∗

j )/m = (
∑

j,i,t∈TS tx′ij,t)/m. For x ≤ Tk, define TS(x) to be
the earliest time in TS that is at least x; if x ≥ Tk, define TS(x) := Tk. Note that TS(x) ≤ (1 + ε)x for all
x ≥ 0. We now define t` = TS(L ·2`), and set the number of phases toN :=

⌈
log2(2τmax/L) + 4 log2 m

⌉
.

Note that since τj = O(L∗
j ), we have N = O(log m).

Theorem 2.8 For any ε > 0, Algorithm 1 with the above modifications succeeds with high probability and
returns a solution of expected cost O

(
log n max{log n, log m}

)
(1 + ε)OPT .
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Proof : The analysis of the facility-opening and connection-cost is exactly as before (sinceN = O(log m)).
Define `j as the smallest ` such that t` ≥ τj . Note that `j ≤

⌊
log2(2τj/L)

⌋
(this holds even when τj ≤

L). Hence, the probability that j is not connected after N phases is at most 1/m4. So as before, the
failure probability is at most 1/ poly(m). We have

∑
`≤`j

t` ≤ (1 + ε)L
∑

`≤`j
2` ≤ 2(1 + ε)t`j

, and∑
`>`j

t`
(

4
9

)(`−`j) = O(t`j
). Thus, the inequalities involving Lj and E

[
Lj

]
in Lemma 2.5 are still valid,

and we obtain the same bound on E
[
Lj

]
as in Lemma 2.5. Note that t`j

≤ 2(1 + ε)τj = O(L∗
j ) when

τj ≥ L. Thus,
∑

j E
[
Lj

]
≤ O(log2 n)

[
m · L +

∑
j:τj>t0

O(L∗
j )

]
= O(log2 n)L∗.

Inappproximability of MLUFL. We argue that any improvement in the guarantee obtained in Theorem 2.6
would yield an improvement in the approximation factor for GST. We reduce GST to MGL, the special case
of MLUFL mentioned in Section 1, where we have groups Gj ⊆ F and the goal is to order the the facilities
so as to minimize the sum of the covering times of the groups. (Note that Theorem 2.6 implies an O(log2 n)-
approximation for MGL.) Recall that we may assume that the groups in MGL are disjoint, in which case the
connection costs form a metric.

Theorem 2.9 Given a ρn,m-approximation algorithm for MGL with (at most) n nodes and m groups, we
can obtain an O(ρn,m log m)-approximation algorithm for GST with n nodes and m groups. Thus, the
polylogarithmic inapproximability of GST [22] implies that MGL, and hence MLUFL even with metric con-
nection costs, cannot be approximated to a factor better than Ω(log m), even when the time-metric arises
from a hierarchically well-separated tree, unless NP ⊆ ZTIME (npolylog(n)).

Our proof of the above theorem is LP-based and is deferred to Appendix A. Gupta et al. [21] indepen-
dently arrived at the above theorem via a combinatorial proof.

2.2 MLUFL with related metrics

Here, we consider the MLUFL problem when the facilities, clients, and the root r are located in a common
metric space that defines the connection-cost metric (on F ∪ D ∪ {r}), and we have duv = cuv/M for all
u, v ∈ F∪D∪{r}. We call this problem, related MLUFL, and design an O(1)-approximation algorithm for it.

The algorithm follows a similar outline as Algorithm 1. As before, we build the tour on the open
facilities by concatenating tours obtained by “Eulerifying” trees rooted at r of geometrically increasing
length. At a high level, the improvement in the approximation arises because one can now obtain these
trees without resorting to Theorems 2.1 and 2.2 and losing O(log n)-factors in process. Instead, since
the d- and c- metrics are related, we can obtain a group Steiner tree on the relevant groups by using a
Steiner tree algorithm (in a manner similar to the LP-rounding algorithms in [27, 20]). We now define
Nj = {i :

∑
t xij,t > 0, cij ≤ 3C∗

j }, and τj = 6L∗
j . Ideally, in each phase `, we want to connect the Nj

groups for all j such that τj ≤ t` := 2`. But to obtain a low-cost solution, we do a facility-location-style
clustering of the set of clients with τj ≤ t` and build a tree T` that connects the Njs of only the cluster
centers: we contract these Njs and build an MST (in the d-metric) on them, and then connect each Nj

internally (in the d-metric) using intracluster edges incident on j. Here we crucially exploit the fact that the
d- and c-metrics are related.

Deciding which facilities to open is tricky because groups Nj and Nk created in different phases could
overlap, and we could have C∗

j � C∗
k but τj � τk; so if we open i ∈ Nj and use this to also serve k, then

we must connect i to some T` (without increasing its d-cost by much) where t` = O(τk). We consider the
collection C of cluster centers created in all the phases, and pick a maximal subset C′ ⊆ C that yields disjoint
clusters by greedily considering clusters in increasing C∗

j order. We open the cheapest facility in Nj for all
j ∈ C′, and attach it to the tree T`, where ` is the earliest phase such that there is some cluster Nk created
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in that phase that was removed (from C) when Nj was included in C′ (because Nk ∩Nj 6= ∅). Since d and
c are related, one can bound the resulting increase in the d-cost of T`. Finally, we convert these augmented
T`-trees to tours and concatenate these tours.

We now describe the algorithm in detail. We have not sought to optimize the approximation ratio. When
we refer to an edge or a node below, we mean an edge or node of the complete graph on F ∪D∪{r}. Recall
that Nj = {i :

∑
t xij,t > 0, cij ≤ 3C∗

j }, and τj = 6L∗
j . So

∑
i∈Nj

∑
t xij,t ≥ 2

3 , and
∑

i∈Nj ,t≤τj
xij,t ≥

1
2 .

R1. For each time t` = 2`, where ` = 0, 1, . . . , dlog Te, we do the following. Define D` = {j : τj ≤
t`} \

(⋃
0≤`′<` C`′

)
(where the union of an empty collection is ∅).

• (Clustering) We cluster the facilities in
⋃

j∈D`
Nj as follows. We pick j ∈ D` with smallest C∗

j value
and form a cluster around j consisting of the facilities in Nj . For every client k ∈ D` (including j)
such that cjk ≤ 30C∗

k (note that C∗
k ≥ C∗

j ), we remove k from D`, set σ(k) = j, and recurse on
the remaining clients in D` until no client is left in D`. Let C` denote the set of cluster centers (i.e.,
{j ∈ D` : σ(j) = j}). Note that for two clients j and j′ in C`, Nj ∩Nj′ is ∅.

• (Building a group Steiner tree T` on {Nj}j∈C`
) We contract the clusters Nj for j ∈ C` into supern-

odes, and build a minimum spanning tree (MST) T ′′` connecting r and these supernodes. Next, we
uncontract the supernodes, and for each j ∈ C`, we add edges joining j to every facility i ∈ Nj that
has an edge incident to it in T ′′` . This yields the tree T`.

R2. (Opening facilities) Let C =
⋃

` C`. (Note that a client appears in at most one of the C` sets.) We
cannot open a facility in every cluster centered around a client in C, since for j ∈ C` and k ∈ C`′ , Nj

and Nk need not be disjoint. So we select a subset C′ ⊆ C such that for any two j, k in C′, the sets Nj

and Nk are disjoint. This is done as follows. We initialize C′ ← ∅. Pick the client j ∈ C with smallest
C∗

j value and add it to C′. We delete from C every client k ∈ C (including j) such that Nk ∩Nj 6= ∅,
setting nbr(k) = j, and recurse on the remaining set of clients until no client is left in C.

Consider each j ∈ C′. We open the facility i ∈ Nj with smallest fi. Let ` be the smallest index such
that there is some k ∈ C` with nbr(k) = j. We connect i to T` by adding the facility edge (i, k) to it.
Let T ′` denote T` augmented by all such facility edges.

R3. We obtain a tour connecting all the open facilities, by converting each tree T ′` into a tour, and concate-
nating the tours for ` = 0, . . . , dTe (in that order).

R4. For every client j ∈ C, we assign j to the facility opened from Nnbr(j). For every client j /∈ C, we
assign j to the same facility as σ(j).

Theorem 2.10 For related MLUFL, one can round (x, y, z) to get a solution with facility-opening cost at
most 3

2

∑
i,t fiyi,t, where each client j incurs connection-cost at most 39C∗

j and latency-cost at most 64τj =
384L∗

j . Thus, we obtain an O(1)-approximation algorithm for related MLUFL.

Proof : The clusters Nj for clients j ∈ C′ are disjoint; each such cluster has facility weight
∑

i∈Nj

∑
t yi,t ≥

2
3 , and we open the cheapest facility in the cluster.

Consider a client j, and let it be assigned to facility i. If j ∈ C′, then i ∈ Nj , and we have cij ≤ 3C∗
j .

If j ∈ C \ C′ with nbr(j) = k, then i ∈ Nk and there is some facility i′ ∈ Nj ∩ Nk. So cij ≤ cik +
ci′k + ci′j ≤ 2 · 3C∗

k + 3C∗
j ≤ 9C∗

j . Finally, if j /∈ C and j′ = σ(j), then σ(j′) is also assigned to i, so
cij ≤ cij′ + cjj′ ≤ 9C∗

j′ + 30C∗
j ≤ 39C∗

j .
We next bound d(T`) and d(T ′` ) for any phase `. For any client j ∈ D` and any node-set S ⊇ Nj , r /∈ S,

we have
∑

e∈δ(S) ze,t` ≥
∑

i∈S,t≤t`
xij,t ≥

∑
i∈Nj ,t≤τj

xij,t ≥ 1
2 . Therefore, (2ze,t`) forms a fractional
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Steiner tree of cost at most 2t` on the supernodes and r, and hence, d(T ′′` ) ≤ 4t` since it is well known that
the cost of an MST is at most twice the cost of a fractional solution to the Steiner-tree LP. For j ∈ C`, let
degj denote the degree of the cluster Nj in T ′′` . Observe that if e is an edge of T ′′` joining Nj and Nk (so
j, k ∈ C`), then ce ≥ 24 max{C∗

j , C∗
k}, since 30 max{C∗

j , C∗
k} ≤ cjk ≤ 3C∗

j + ce + 3C∗
k . So the (d-) cost

of adding the additional edges to T ′′` is at most 1
M ·

∑
j∈C`

degj ·3C∗
j ≤ d(T ′′` )/4, and hence, d(T`) ≤ 5t`.

Now consider the cost of adding facility edges to T` in step R2. For each facility edge (i, k) added, we
know that i ∈ Nnbr(k), k ∈ C`, and k is assigned to i. So we have cik ≤ 9C∗

k . Observe that each client
k ∈ C` is responsible for at most one such facility edge. So the d-cost of these facility edges is at most
1
M ·

∑
j∈C`

9C∗
j ≤ 1

M

∑
j∈C`

degj ·9C∗
j ≤ 3

4 · d(T ′′` ). Thus, d(T ′` ) ≤ d(T`) + 3
4 · d(T ′′` ) ≤ 8t`.

Finally, we prove that the latency cost of any client j is at most 64τj = 384L∗
j . Let j be assigned

to facility i. Let ` be the smallest index such that j ∈ D`, so t` ≤ 2τj . We first argue that if i is part
of the tree T ′`′ , then `′ ≤ `. If j ∈ C, this follows since we know that i ∈ Nnbr(j) and `′ = min{r :
∃k ∈ Cr with nbr(k) = nbr(j)}. If j /∈ C, then we know that σ(j) ∈ C` is also assigned to i, and
so by the preceding argument, we again have that `′ ≤ `. Thus, the latency-cost of j is bounded by∑`′

r=0 2d(T ′r ) ≤ 16
∑`′

r=0 tr ≤ 32t`′ ≤ 64τj .

2.3 MLUFL with a uniform time-metric

We now consider the special case of MLUFL, referred to as uniform MLUFL, where the time-metric d is
uniform, that is, dii′ = 1 for all i, i′ ∈ F ∪ {r}. When the connection costs form a metric, we call it the
metric uniform MLUFL. We consider the following simpler LP-relaxation of the problem, where the time t
now ranges from 1 to n.

min
∑
i,t

fiyi,t +
∑
j,i,t

(cij + t)xij,t subject to (Unif-P)

∑
i,t

xij,t ≥ 1 ∀j; xij,t ≤ yi,t ∀i, j, t;
∑

i

yi,t ≤ 1 ∀t; xij,t, yi,t ≥ 0 ∀i, j, t.

Let (x, y) be an optimal solution to (Unif-P), and OPT be its value. Let C∗
j =

∑
i,t cijxij,t, L∗

j =∑
i,t txij,t. As stated in the introduction, uniform MLUFL generalizes: (i) set cover, when the facility and

connection costs are arbitrary; (ii) MSSC, when the facility costs are zero (ZFC MLUFL); and (iii) metric
UFL, when the connection costs form a metric. We obtain approximation bounds for uniform MLUFL, ZFC
MLUFL, and metric MLUFL (Theorems 2.11 and 2.14) that complement these observations.

The main result of this section is Theorem 2.12, which shows that a ρUFL-approximation algorithm for
UFL and a γ-approximation algorithm for ZFC MLUFL (with metric connection costs) can be combined to
yield a (ρUFL + 2γ)-approximation algorithm for metric uniform MLUFL. Taking ρUFL = 1.5 [8] and γ = 9
(part (ii) of Theorem 2.11), we obtain a 19.5-approximation algorithm. We improve this to 10.773 by using
a more refined version of Theorem 2.12, which capitalizes on the asymmetric approximation bounds that
one can obtain for different portions of the total cost in UFL and ZFC MLUFL.

We note that by considering each (i, t) as a facility, since the connection costs cij + t form a metric, one
can view metric MLUFL as a variant of metric UFL, and use the ideas in [3] to devise an O(1)-approximation
for this variant. We instead present our alternate algorithm based on the reduction in Theorem 2.12, because
this reduction is quite robust and versatile. In particular, it allows us to: (a) handle certain extensions of
the problem, e.g., the setting where we have non-uniform latency costs (see Section 4), for which the above
reduction fails since we do not necessarily obtain metric connection costs, and (b) devise algorithms for the
uniform latency versions of other facility location problems, where the cost of a facility does not depend
on the client-set assigned to it (so one can assign a client to any open facility freely without affecting the
facility costs). For instance, consider uniform MLUFL with the restriction that at most k facilities may be
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opened: our technique yields a (ρkMed + 2γ) approximation for this problem, using a ρkMed-approximation
for k-median.

Theorem 2.11 One can obtain:
(i) an O(lnm)-approximation algorithm for uniform MLUFL with arbitrary facility- and connection- costs.
(ii) a solution of cost at most 1

1−α

∑
j C∗

j + 4
α

⌈
1
α

⌉ ∑
j L∗

j for ZFC MLUFL, for any parameter α ∈ (0, 1).
Thus, setting α = 8

9 , yields solution of cost at most 9 ·OPT .

We defer the proof of Theorem 2.11 to the end of the section, and focus first on detailing the aforemen-
tioned reduction.

Theorem 2.12 Given a ρUFL-approximation algorithm A1 for UFL, and a γ-approximation algorithm A2

for uniform ZFC MLUFL, one can obtain a (ρUFL+2γ)-approximation algorithm for metric uniform MLUFL.

Proof : Let I denote the metric uniform MLUFL instance, and O∗ denote the cost of an optimal integer
solution. Let IUFL be the UFL instance obtained form I by ignoring the latency costs, and IZFC be the ZFC
MLUFL instance obtained from I by setting all facility costs to zero. Let O∗

UFL and O∗
ZFC denote respectively

the cost of the optimal (integer) solutions to these two instances. Clearly, we have O∗
UFL, O

∗
ZFC ≤ O∗. We

use A1 to obtain a near-optimal solution to IUFL: let F1 be the set of facilities opened and let σ1(j) denote
the facility in F1 to which client j is assigned. So we have

∑
i∈F1

fi+
∑

j cσ1(j)j ≤ ρUFL ·O∗
UFL. We useA2

to obtain a near-optimal solution to IZFC: let F2 be the set of open facilities, σ2(j) be the facility to which
client j is assigned, and π(i) be the position of facility i. So we have

∑
j

(
cσ2(j)j + π(σ2(j))

)
≤ γ ·O∗

ZFC.
We now combine these solutions as follows. For each facility i ∈ F2, let µ(i) ∈ F1 denote the facility

in F1 that is nearest to i. We open the set F = {µ(i) : i ∈ F2} of facilities. The position of facility
i ∈ F is set to mini′∈F2:π(i′)=i π(i′). Each facility in F is assigned a distinct position this way, but some
positions may be vacant. Clearly we can always convert the above into a proper ordering of F where each
facility i ∈ F occurs at position κ(i) ≤ mini′∈F2:π(i′)=i π(i′). Finally, we assign each client j to the
facility φ(j) = µ(σ2(j)) ∈ F . Note that κ(φ(j)) ≤ π(σ2(j)) (by definition). For a client j, we now have
cφ(j)j ≤ cσ2(j)µ(σ2(j)) + cσ2(j)j ≤ cσ2(j)σ1(j) + cσ2(j)j ≤ cσ1(j)j + 2cσ2(j)j . Thus, the total cost of the
resulting solution is at most

∑
i∈F1

fi +
∑

j

(
cσ1(j)j + 2cσ2(j)j + π(σ2(j))

)
≤ (ρUFL + 2γ) ·O∗.

We call an algorithm a (ρf , ρc)-approximation algorithm for UFL if given an LP-solution to UFL with
facility- and connection- costs F ∗ and C∗ respectively, it returns a solution of cost at most ρfF ∗ + ρcC

∗.
Similarly, we say that an algorithm is a (γc, γl)-approximation algorithm for uniform ZFC MLUFL if given
a solution to (P) with connection- and latency- costs C∗ and L∗ respectively, it returns a solution of cost at
most γcC

∗ + γlL
∗. The proof of Theorem 2.12 easily yields the following more general result.

Corollary 2.13 One can combine a (ρf , ρc)-approximation algorithm for UFL, and a (γc, γl)-approximation
algorithm for uniform ZFC MLUFL, to obtain a solution of cost at most max{ρf , ρc + 2γc, γl} ·OPT .

Proof : The proof mimics the proof of Theorem 2.12. The only new observation is that (x, y) yields an
LP-solution to (i) IUFL with facility cost

∑
i,t fiyi,t and connection cost

∑
j,i,t cijxij,t; and (ii) IZFC with

connection cost
∑

j,i,t cijxij,t and latency cost
∑

j,i,t txij,t. Thus, applying the construction in the proof of
Theorem 2.12 yields a solution of total cost at most

ρf

∑
i,t

fiyi,t + (ρc + 2γc)
∑
j,i,t

cijxij,t + γl

∑
j,i,t

txij,t ≤ max{ρf , ρc + 2γc, γl} ·OPT .

Combining the
( ln(1/β)

1−β , 3
1−β

)
-approximation algorithm for UFL [29] with the

(
1

1−α , 4
α

⌈
1
α

⌉)
-approximation

algorithm for ZFC MLUFL (part (ii) of Theorem 2.11) gives the following result.
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Theorem 2.14 For any α, β ∈ (0, 1), one can obtain a solution of cost max
{ ln(1/β)

1−β , 3
1−β + 2

1−α , 4
α

⌈
1
α

⌉}
·

OPT . Thus, taking α = 0.7426, β = 0.000021, we obtain a 10.773-approximation algorithm.

2.3.1 Proof of Theorem 2.11

The following lemma will often come in handy.

Lemma 2.15 Let (x̂, ŷ) be a solution satisfying
∑

i ŷi,t ≤ k for every time t, where k ≥ 0 is an integer, and
all the other constraints of (Unif-P). Then, one can obtain a feasible solution (x′, y′) to (Unif-P) such that
(i)

∑
i,t fiy

′
i,t =

∑
i,t fiŷi,t; (ii)

∑
j,i,t cijx

′
ij,t =

∑
j,i,t cij x̂ij,t; and (iii)

∑
j,i,t tx′ij,t ≤ k ·

∑
j,i,t tx̂ij,t.

Proof : For each time t, define St = {(i, t) : ŷi,t > 0}. The idea is to simply “spread out” the St sets. Let
S0 =

⋃
t St be an ordered list where all the (·, t) pairs are listed before any (·, t + 1) pair, and the pairs for

a given t (i.e., (i, t) ∈ St) are listed in arbitrary order. Let T0 =
⌈∑

i,t ŷi,t

⌉
. We divide the pairs in S0 into

T0 groups as follows. Initialize ` ← 1, S ← S0. For a set A of (i, t) pairs, we define the ŷ-weight of A as
ŷ(A) =

∑
(i,t)∈A ŷi,t, and the x̂j-weight of A as

∑
(i,t)∈A x̂ij,t. If 0 < ŷ(S) ≤ 1, then we set G` = S to

end the grouping process. Otherwise, group G` includes all pairs of S, taken in order starting from the first
pair, stopping when the total ŷ-weight of the included pairs becomes at least 1; all the included pairs are also
deleted from S. If the ŷ-weight of G` now exceeds 1, then we split the last pair (i, t) into two copies: we
include the first copy in G` and retain the second copy in S, and distribute ŷi,t across the ŷ-weight of the two
copies so that ŷ(G`) is now exactly 1. (Thus, the new ŷ-weight of S is precisely its old ŷ-weight −1.) Also,
for each client j, we distribute x̂ij,t across the x̂j-weight of the two copies arbitrarily while maintaining that
the x̂j-weight of each copy is at most its ŷ-weight. We update `← ` + 1, and continue in this fashion with
the current (i.e., ungrouped) list of pairs S. Note that an (i, t) pair in S0 may be split into at most two copies
above (that lie in consecutive groups). To avoid notational clutter, we call both these copies (i, t) and use
ŷ`

i,t to denote the ŷ-weight of the copy in group G` (which is equal to the original ŷi,t if (i, t) is not split).
Analogously, we use x̂`

ij,t to denote the x̂j-weight of the copy of (i, t) in group G`.
For every facility i, client j, and ` = 1, . . . , T0, we set y′i,` =

∑
t:(i,t)∈G`

ŷ`
i,t and x′ij,` =

∑
t:(i,t)∈G`

x̂`
ij,t,

so we have x′ij,` ≤ y′i,`. It is clear that
∑

` y′i,` =
∑

t ŷi,t and
∑

` x′ij,` =
∑

t x̂ij,t for every facility i and
client j. Thus, (x′, y′) is feasible to (Unif-P), and parts (i) and (ii) of the lemma hold. To prove part (iii),
note that if (some copy of) (i, t) is in G`, then ` ≤ kt, since then we have

(⋃`−1
r=1 Gr

)
⊂

⋃t
t′=1 St′ and so

`− 1 < kt. Thus, for any client j, we have∑
i,`

`x′ij,` =
∑
i,`

`
( ∑
t:(i,t)∈G`

x̂`
ij,t

)
=

∑
i,t

∑
`:(i,t)∈G`

`x̂`
ij,t ≤

∑
i,t

kt
∑

`:(i,t)∈G`

x̂`
ij,t = k ·

∑
i,t

tx̂ij,t.

Proof of part (i) of Theorem 2.11 : We round the LP-optimal solution (x, y) by using filtering followed by
standard randomized rounding. Clearly, we may assume that

∑
i′,t xi′j,t = 1 and yi,t = maxj xij,t for every

i, j, t. Also, we may assume that if
∑

i yi,t+1 > 0, then
∑

i yi,t = 1, because otherwise for some facility i
and some ε > 0, we may decrease yi,t+1 by ε and increase yi,t by ε, and modify the {xij,t+1, xij,t}j values
appropriately so as to maintain feasibility, without increasing the total cost. Define Nj = {(i, t) : cij + t ≤
2(C∗

j + L∗
j )} for a client j. The algorithm is as follows.

U1. For each (i, t), we set Yi,t = 1 independently with probability min{4 ln m · yi,t, 1}.

U2. Considering each client j, if {(i, t) ∈ Nj : Yi,t = 1} = ∅, then set Yij ,1 = 1 where ij is such that
fij = min(i,t)∈Nj

fi (note that (ij , 1) ∈ Nj). Let Sj = {(i, t) ∈ Nj : Yi,t = 1} (which is non-empty).
Assign each client j to the (i, t) pair in Sj with minimum cij + t value, i.e., set Xij,t = 1.
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U3. Let K = maxt
∑

i Yi,t. Use Lemma 2.15 to convert (X, Y ) into a feasible integer solution to (Unif-P).

Let Cj and Lj denote respectively the connection cost and latency cost of client j in (X, Y ). We argue
that (i) E

[∑
i,t fiYi,t

]
= O(lnm) ·

∑
i,t fiyi,t, (ii) with probability 1, Cj + Lj ≤ 2(C∗

j + L∗
j ) for every

client j, and (iii) K = O(lnm) with high probability, and in expectation. The theorem then follows from
Lemma 2.15.

For any client j, we have
∑

(i,t)∈Nj
xij,t ≥ 1

2 (by Markov’s inequality). Thus, fij ≤ 2
∑

(i,t)∈Nj
fiyi,t

and Pr[
∑

(i,t)∈Nj
Yi,t = 0] is at most e−4 ln m· 1

2 = 1/m2. The expected cost of opening facilities in
step U1 is clearly at most 4 ln m ·

∑
i,t fiyi,t. The expected facility-opening cost in step U2 is at most

Pr[facility is opened in step U2]·
∑

j fij ≤ m· 1
m2 ·2m

∑
i,t fiyi,t. So E

[∑
i,t fiYi,t

]
= O(lnm)·

∑
i,t fiyi,t.

Since we always open some (i, t) pair in Nj , we have Cj + Lj ≤ 2(C∗
j + L∗

j ) for every client j.
Let S = {t :

∑
i yi,t > 0}. Note that |S| ≤ 1 +

∑
i,t yi,t ≤ 1 +

∑
j,i,t xij,t = m + 1. After step U1,

we have E
[∑

i Yi,t

]
≤ 4 ln m for every time t ∈ S. Since the Yi,t random variables are independent, we

also have Pr[
∑

i Yi,t > 8 ln m] ≤ 1/m2 for all t ∈ S (and also, E
[
maxt∈S

∑
i Yi,t

]
= O(lnm)). Thus,

after step U2, we have Pr[
∑

i Yi,1 > 8 ln m] ≤ 1/m2 + 1/m and Pr[
∑

i Yi,t > 8 ln m] ≤ 1/m2 for all
t ∈ S, t > 1. Hence, Pr[K > 8 ln m] ≤ 2/m. (This also shows that E

[
K

]
= O(lnm).)

Proof of part (ii) of Theorem 2.11 : We round (x, y) by applying filtering [23] followed by Lemma 2.15 to
reduce the problem to a MSSC problem, and then use the result of Feige et al. [16] to obtain a near-optimal
solution to this MSSC problem. Let

min
∑
j,t

txj,t s.t.
∑

t

xj,t ≥ 1 ∀j, xj,t ≤
∑

S:j∈S

yS,t ∀j, t,
∑
S

yS,t ≤ 1 ∀t, x, y ≥ 0. (P1)

denote the standard LP-relaxation of MSSC [16] (here j indexes the elements, S indexes the sets, and t
indexes time). Feige et al. showed that given a solution (x̂, ŷ) to (P1), one can obtain in polytime an integer
solution of cost at most 4 ·

∑
j,t tx̂j,t.

The rounding algorithm for ZFC MLUFL is as follows. Define Nj = {i : cij ≤ C∗
j /(1 − α)}, so∑

i∈Nj ,t xij,t ≥ α. For all i, j, t, set ŷi,t = yi,t/α, and x̂ij,t = xij,t/α if i ∈ Nj and x̂ij,t = 0 otherwise.
It is easy to see that (x̂, ŷ) satisfies

∑
i ŷi,t ≤ 1

α for all t, and all the other constraints of (Unif-P). We use
Lemma 2.15 to convert (x̂, ŷ) to a feasible solution (x′, y′) to (Unif-P). Next, we extract a solution to (P1)
from (x′, y′). We identify facility i with the set {j : i ∈ Nj}, and set x̄j,t =

∑
i∈Nj

x′ij,t. Now (x̄, y′) is a
feasible solution to (P1). Finally, we round (x̄, y′) to an integer solution. This yields the ordering ỹ = (ỹi,t)
of the facilities. For each client j, if j is first covered by set i (so i ∈ Nj) at time (or position) t in the MSSC
solution, then we set x̃ij,t = 1.

Analysis. Since a client j is always assigned to a facility in Nj , the connection cost of j is bounded by
C∗

j /(1 − α). To bound the latency cost, first we bound the cost of (x̂, ŷ). Since we modify the assign-
ment of a client j by transferring weight from farther facilities to nearer ones, it is clear that

∑
i,t cij x̂ij,t ≤∑

i,t cijxij,t. Also, clearly
∑

j,i,t tx̂ij,t ≤ 1
α ·

∑
j,i,t txij,t. and

∑
i ŷi,t ≤ 1

α . Thus, applying Lemma 2.15
yields (x′, y′) satisfying

∑
j,i,t tx′ij,t ≤

⌈
1
α

⌉
1
α ·

∑
j,i,t txij,t. The result of [16] now implies that∑

j,i,t tx̃ij,t ≤ 4
∑

j,t tx̄j,t = 4
∑

j,i,t tx′ij,t ≤ 4
α

⌈
1
α

⌉ ∑
j txij,t.

3 LP-relaxations and algorithms for the minimum-latency problem

In this section, we consider the minimum-latency (ML) problem and apply our techniques to obtain LP-
based insights and algorithms for this problem. We give two LP-relaxations for ML with constant integrality
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gap. The first LP (LP1) is a specialization of (P) to ML, and to bound its integrality gap, we only need the
fact that the natural subtour elimination LP for TSP has constant integrality gap. The second LP (LP2P )
has exponentially-many variables, one for every path (or tree) of a given length bound, and the separation
oracle for the dual problem corresponds to an (path- or tree-) orienteering problem. We prove that even a
bicriteria approximation for the orienteering problem yields an approximation for ML while losing a constant
factor. (The same relationship also holds between MGL and “group orienteering”.) As mentioned in the
Introduction, we believe that our results shed new light on ML and opens up ML to new venues of attack.
Moreover, as shown in Section 4 these LP-based techniques can easily be used to handle more general
variants of ML, e.g., k-route ML with Lp-norm latency-costs (for which we give the first approximation
algorithm). We believe that our LP-relaxations are in fact (much) better than what we have accounted for,
and conjecture that the integrality gap of both (LP1) and (LP2P ) is at most 3.59, which is the currently best
known approximation factor for ML.

Let G = (D∪{r}, E) be the complete graph on N = |D|+1 nodes with edge weights {de} that form a
metric. Let r be the root node at which the path visiting the nodes must originate. We use e to index E and
j to index the nodes. In both LPs, we have variables xj,t for t ≥ djr to denote if j is visited at time t (where
t ranges from 1 to T); for convenience, we think of xj,t as being defined for all t, with xj,t = 0 if djr > t.
(As in Section 2.1, one can move to a polynomial-size LP losing a (1 + ε)-factor.)

A compact LP. As before, we use a variable ze,t to denote if e has been traversed by time t.

min
∑
j,t

txj,t subject to (LP1)

∑
t

xj,t ≥ 1 ∀j;
∑

e

deze,t ≤ t ∀t;
∑

e∈δ(S)

ze,t ≥
∑
t′≤t

xj,t′ ∀t, S ⊆ D, j; x, z ≥ 0.

Theorem 3.1 The integrality gap of (LP1) is at most 10.78.

Proof : Let (x, z) be an optimal solution to (LP1), and L∗
j =

∑
t txj,t. For α ∈ [0, 1], define the α-point

of j, τj(α), to be the smallest t such that
∑

t′≤t xjt′ ≥ α. Let Dt(α) = {j : τj(α) ≤ t}. We round (x, z)
as follows. We pick α ∈ (0, 1] according to the density function q(x) = 2x. At each time t, we utilize the
3
2 -integrality-gap of the subtour-elimination LP for TSP and the parsimonious property (see [33, 30, 18, 6]),
to round 2z

α and obtain a tour on {r} ∪Dt(α) of cost Ct(α) ≤ 3
α ·

∑
e deze,t ≤ 3t

α . We now use Lemma 3.2
to combine these tours.

Lemma 3.2 ([19] paraphrased) Let Tour1, . . . ,Tourk be tours containing r, with Touri having cost Ci and
containing Ni nodes, where N0 := 1 ≤ N1 ≤ . . . ≤ Nk = N . One can find a subset Touri1 , . . . ,Tourib=k

of tours, and a way of concatenating them that gives total latency at most 3.59
2

∑
i Ci(Ni −Ni−1).

The tours we obtain for the different times are nested (as the Dt(α)s are nested). So
∑

t≥1 Ct(α)(|Dt(α)|−
|Dt−1(α)|) =

∑
j

∑
t:j∈Dt(α)\Dt−1(α) Ct(α) =

∑
j Cτj(α)(α) ≤ 3

∑
j

τj(α)
α . Thus, using Lemma 3.2, and

taking expectation over α (note that E
[ τj(α)

α

]
≤ 2L∗

j ), we obtain that the total latency-cost is at most
(3.59 · 3)

∑
j L∗

j .

Note that in the above proof we did not need any procedure to solve k-MST or its variants, but rather
just needed the integrality gap for the subtour-elimination LP to be a constant. Also, we can modify the
rounding procedure to ensure that (latency-cost of j) ≤ 18τj(0.5) for each client j, as follows. (Such a
guarantee is useful to bound the total cost when its measured as an Lp norm for p > 1; see Section 4.)
We now only consider times t` = 2`. Recall that for any α ∈ (0, 1), at each time t, we can obtain a tour
on {r} ∪ Dt(α) of cost Ct(α) ≤ 3t

α . We take this tour for t`, and traverse the resulting tour randomly
clockwise or anticlockwise (this choice can easily be derandomized), and concatenate all these tours. Let
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`j(α) be the smallest ` such that t` ≥ τj(α). So the (expected) latency-cost of j is at most
∑

`<`j(α)
3t`
α +

1
2 ·

3t`j(α)

α ≤
4.5t`j(α)

α ≤ 9τj(α)
α . Fixing α = 0.5, we obtain a 36-approximation with the per-client guarantee

that (latency-cost of j) ≤ 18τj(0.5) for each j.

An exponential-size LP: relating the orienteering and latency problems. Let Pt and Tt denote respec-
tively the collection of all (simple) paths and trees rooted at r of length at most t. For each path P ∈ Pt, we
introduce a variable zP,t that indicates if P is the path used to visit the nodes with latency-cost at most t.

min
∑
j,t

txj,t (LP2P )

s.t.
∑

t

xj,t ≥ 1 ∀j∑
P∈Pt

zP,t ≤ 1 ∀t (5)

∑
P∈Pt:j∈P

zP,t ≥
∑
t′≤t

xj,t′ ∀j, t (6)

x, z ≥ 0.

max
∑

j

αj −
∑

t

βt (LD2)

s.t. αj ≤ t +
∑
t′≥t

θj,t′ ∀j, t (7)

∑
j∈P

θj,t ≤ βt ∀t, P ∈ Pt (8)

α, β, θ ≥ 0. (9)

(5) and (6) encode that at most one path may be chosen for any time t, and that every node j visited at time
t′ ≤ t must lie on this path. (LD2) is the dual LP with exponentially many constraints. Let (LP2T ) be the
analogue of (LP2P ) with tree variables, where we have variables zQ,t for every Q ∈ Tt, and we replace all
occurrences of zP,t in (LP2P ) with zQ,t.

Separating over the constraints (8) involves solving a (rooted) path-orienteering problem: for every t,
given rewards {θj,t}, we want to determine if there is a path P rooted at r of length at most t that gathers
reward more than βt. A (ρ, γ)-{path, tree} approximation algorithm for the path-orienteering problem is an
algorithm that always returns a {path, tree} rooted at r of length at most γ(length bound) that gathers reward
at least (optimum reward)/ρ. Chekuri et al. [11] give a (2+ε, 1)-path approximation algorithm, whereas [10]
design a (1+ε, 1+ε)-tree approximation for orienteering (note that weighted orienteering can be reduced to
unweighted orienteering with a (1+ε)-factor loss). We prove that even a (ρ, γ)-tree approximation algorithm
for orienteering can be used to obtain an O(ργ)-approximation for ML. First, we show how to compute a
near-optimal LP-solution. Typically, one argues that, scaling the solution computed by the ellipsoid method
run on the dual with the approximate separation oracle yields a feasible and near-optimal dual solution,
and this is then used to obtain a near-optimal primal solution (see, e.g., [24]). However, in our case, we
have negative terms in the dual objective function, which makes our task trickier: if our (unicriteria) ρ-
approximate separation oracle determines that (α, β, θ) is feasible, then although (α, ρβ, θ) is feasible to
(LD2), one has no guarantee on the value of this dual solution. Instead, the notion of approximation we
obtain for the primal solution computed involves bounded violation of the constraints.

Let
(
LP2(a,b)

P
)

be (LP2P ) where we replace Pt by Pbt, and the RHS of (5) is now a. Let
(
LP2(a,b)

T
)

be

defined analogously. Let OPTP be the optimal value of (LP2P ) (i.e.,
(
LP2(1,1)

P
)
). Note that OPTP is a

lower bound on the optimum latency.

Lemma 3.3 Given a (ρ, γ)-tree approximation for the orienteering problem, one can compute a feasible
solution (x, z) to

(
LP2(ρ,γ)

T
)

of cost at most OPT .
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Proof : Lemma 3.3 Define

Pfeas(ν; a, b) :=
{

(α, β, θ) : (7), (9),
∑
j∈P

θj,t ≤ βt ∀P ∈ Pbt,
∑

j

αj − a
∑

t

βt ≥ ν
}

,

Tfeas(ν; a, b) :=
{

(α, β, θ) : (7), (9),
∑
j∈Q

θj,t ≤ βt ∀Q ∈ Tbt,
∑

j

αj − a
∑

t

βt ≥ ν
}

.

Note that OPTP is the largest value of ν such that Pfeas(ν; 1, 1) is feasible. Given ν, (α, β, θ), if there
was an algorithm to either show (α, β, θ) ∈ Pfeas(ν; 1, 1) or exhibit a separating hyperplane, then using
the ellipsoid method we could optimally solve for OPTP . However, such a separation oracle would solve
orienteering exactly.

We use the (ρ, γ)-tree approximation algorithm to give an approximate separation oracle in the following
sense. Given ν, (α, β, θ), we either show (α, ρβ, θ) ∈ Pfeas(ν; 1, 1), or we exhibit a hyperplane separating
(α, β, θ) and Tfeas(ν; ρ, γ). Note that Tfeas(ν; ρ, γ) ⊆ Pfeas(ν; 1, 1). Thus, for a fixed ν, the ellipsoid
method in polynomial time, either certifies that Tfeas(ν; ρ, γ) is empty or returns a point (α, β, θ) with
(α, ρβ, θ) ∈ Pfeas(ν; 1, 1). Let us describe the approximate separation oracle first, and then use the above
fact to prove the lemma. First, check if (

∑
j αj − ρβt ≥ ν), (7), and (9) hold, and if not, we use the

appropriate inequality as the separating hyperplane between (α, β, θ) and Tfeas(ν; ρ, γ). Next, for each t,
we run the (ρ, γ)-tree approximation on the orienteering problem specified by

(
G, {de}

)
, root r, rewards

{θj,t}, and budget t. If for some t, we obtain a tree Q ∈ Tγt with reward greater than βt, then we return∑
j∈Q θj,t ≤ βt as the separating hyperplane. If not, then for all paths P of length at most t in G, we have∑
j∈P θj,t ≤ ρβt and thus (α, ρβ, θ) ∈ Pfeas(ν; 1, 1).
We find the largest ν∗ (via binary search) such that the ellipsoid method run for ν∗ with our separation

oracle returns a solution (α∗, β∗, θ∗) with (α∗, ρβ∗, θ∗) ∈ Pfeas(ν∗; 1, 1); hence, we have ν∗ ≤ OPTP (by
duality). Now for ε > 0, the ellipsoid method run for ν∗ + ε terminates in polynomial time certifying the
infeasibility of Tfeas(ν∗+ ε; ρ, γ). That is, it generates a polynomial number of inequalities of the form (7),
(9), and (

∑
j∈Q θj,t ≤ βt) where Q ∈ Tγt, which together with the inequality

∑
j αj − ρ

∑
t βt ≥ ν∗ + ε

constitute an infeasible system. Applying Farkas’ lemma, equivalently, we get a polynomial sized solution
(x, z) to

(
LP2(ρ,γ)

T
)

that has cost at most ν∗ + ε. Taking ε small enough (something like 1/ exp(input size)
so that ln(1/ε) is still polynomially bounded), this also implies that (x, z) has cost at most ν∗ ≤ OPTP .
This completes the proof of the lemma.

Theorem 3.4 (i) A feasible solution (x, z) to
(
LP2(ρ,γ)

T
)

(or the corresponding LP-relaxation for MGL) can
be rounded to obtain a solution of expected cost at most O(ργ) ·

∑
j,t txj,t; (ii) A feasible solution (x, z) to(

LP2(ρ,γ)
P

)
can be rounded to obtain a solution of cost at most (3.59 · 2)ργ

∑
j,t txj,t.

Proof : We prove part (i) first. (Note that for ML, the analysis leading to Theorem 3.1 already implies that
one can obtain a solution of cost at most 10.78ργ

∑
j,t txj,t, because setting ze,t =

∑
Q∈Tγt:e∈Q zQ,t yields

a solution (x, z) that satisfies
∑

e deze,t ≤ ργt and all other constraints of (LP1).) We sketch a (randomized)
rounding procedure that also works for MGL and yields improved guarantees. We may assume that each
zQ,t ∈ [0, 1]. At each time t` = 2`, ` = dlog2 T + 4 log2 me, we select at most dwt`e trees from Tbt` ,
picking each Q ∈ Tγt` with probability zQ,t` . (We can always do this (efficiently) since for every time t,

the polytope {z ∈ [0, 1]Tbt :
∑

Q zQ,t ≤
⌈∑

Q zQ,t

⌉
} is integral.) We take the union of all these trees.

Note that expected cost of the resulting subgraph is at most wtγt` ≤ ργt`. We “Eulerify” the resulting
subgraph to obtain a tour for t` of cost at most 2ργt`, and concatenate these tours. The probability that
j is not visited (or covered) by the tour for t` is at most 1 −

∑
t≤t`

xj,t, which implies that with high
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probability, we obtain a tour spanning all nodes. Letting τj = tj
(

2
3

)
, the expected latency-cost of j is at

most 2ργ
(
2τj + 2τj

∑
k≥0(

2
3)k

)
≤ 16ργτj .

To prove part (ii), we adopt a rounding procedure that again utilizes Lemma 3.2, and yields the stated
bound (deterministically). Recall that τj(α) denotes the α-point of j. Let Dt(α) = {j : τj(α) ≤ t}. For
any α ∈ (0, 1), and time t, we now show to obtain a tour spanning Dt(α) ∪ {r} of cost at most 2ργt

α . We
can then proceed as in the rounding procedure for Theorem 3.1 to argue that, for the tours we obtain, the
quantity

∑
i Ci(Ni − Ni−1) appearing in Lemma 3.2 is bounded by 2ργ

∑
j

tj(α)
α . Hence, choosing α as

before according to the distribution q(x) = 2x and taking expectations, we obtain a solution with the stated
cost.

Let K be such that Kα, {KzP,t}P∈Pγt are integers. For each P with zP,t > 0, we create KzP,t copies
of each edge on P , and direct the edges away from r. Let AP,t denote the resulting arc-set. Note that
in At :=

⊎
P :zP,t>0 AP,t, every node j ∈ D has in-degree at least its out-degree, and there are Kα arc-

disjoint paths from r to j for each j ∈ Dt(α). So applying Theorem 2.6 in Bang-Jensen et al. [4], one can
obtain Kα arc-disjoint out-arborescences rooted at r, each containing all nodes of Dt(α). Thus, if we pick
the cheapest such arborescence and “Eulerify” it, we obtain a tour spanning Dt(α) ∪ {r} of cost at most
2 ·Kργt · 1

Kα = 2ργt
α .

In Appendix A, we prove an analogue of Lemma 3.3 for MGL. Combined with part (i) of Theorem LP2P ,
this shows that (even) a bicriteria approximation for “group orienteering” yields an approximation for MGL
while losing a constant factor.

4 Extensions

We now consider various well-motivated extensions of MLUFL, and show that our LP-based techniques and
algorithms are quite versatile and extend with minimal effort to yield approximation guarantees for these
more general MLUFL problems. Our goal here is to emphasize the flexibility afforded by our LP-based
techniques, and we have not attempted to optimize the approximation factors.

Monotone latency-cost functions with bounded growth, and higher Lp norms. Consider the general-
ization of MLUFL, where we have a non-decreasing function λ(.) and the latency-cost of client j is given
by λ(time taken to reach the facility serving j); the goal, as before, is to minimize the sum of the facility-
opening, client-connection, and client-latency costs. Say that λ has growth at most p if λ(cx) ≤ cpλ(x)
for all x ≥ 0, c ≥ 1. It is not hard to see that for concave λ, we obtain the same performance guarantees
as those obtained in Section 2 (for λ(x) = x). So we focus on the case when λ is convex, and obtain an
O

(
max{(p log2 n)p, p log n log m}

)
-approximation algorithm for convex latency functions of growth p. As

a corollary, we obtain an O
(
p log n max{log n, log m}

)
-approximation for Lp-MLUFL, where we seek to

minimize the facility-opening cost + client-connection cost + the Lp-norm of client-latencies.

Theorem 4.1 There is an O
(
max{(p log2 n)p, p log n log m}

)
-approximation algorithm for MLUFL with

convex monotonic latency functions of growth (at most) p.

Proof : We highlight the changes to the algorithm and analysis in Section 2.1. We again assume that T =
poly(m) for convenience. This assumption can be dropped by proceeding as in Theorem 2.8; we do after
proving the theorem. The objective of (P) now changes to min

∑
i,t fiyi,t+

∑
j,i,t

(
cij +λ(t)

)
xij,t. The only

change to Algorithm 1 is that we now define t` = min{2`/p,T} and setN :=
⌈
p log2(21/pτmax) + 4 log2 m

⌉
=

O(p log m). Define Lcostj =
∑

i,t λ(t)xij,t. Note that we now have λ(τj) ≤ 12Lcostj . Define `j to be the
first phase ` such that t` ≥ τj . Let the random variable Pj be as defined in Lemma 2.5. The failure probabil-
ity of the algorithm is again at most 1/ poly(m). The facility-cost incurred in O(p log n log m)

∑
i,t fiyi,t,
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and the connection cost of client j is at most 4C∗
j . We generalize Lemma 2.5 below to show that E

[
Lj

]
=

O
(
(p log2 n)p

)
λ(t`j

) ≤ O
(
(2p log2 n)p

)
· λ(τj), which yields the desired approximation. We have

Lj ≤ λ
(∑
`≤Pj

d(Tour`)
)
≤ λ

(
O(log2 n)

∑
`≤Pj

t`
)
≤ O(log2p n)λ

(∑
`≤Pj

t`
)
,

so E
[
Lj

]
≤ O(log2p n)

[
λ
(∑

`≤`j
t`

)
+

∑
k≥1 Pr[Pj ≥ `j + k]λ

(∑
`≤`j+k t`

)]
. Now, Pr[Pj ≥ `j + k] ≤(

4
9

)k,
∑

`≤`j+k t` ≤ t`j
· 2k/p

1−2−1/p , and (21/p − 1) ≥ ln 2
p . Plugging these in gives,

E
[
Lj

]
= O(log2p n) · 2

(21/p − 1)p
· λ(t`j

) ·
∑
k≥0

(4
9

)k
2k = O

(
(p/ ln 2)p log2p n

)
λ(t`j

).

Removing the assumption T = poly(m) in Theorem 4.1. As in the case of Theorem 2.8, to drop the as-
sumption that T = poly(m), we (a) solve the LP considering only times in TS = {T0, . . . ,Tk} (where Tr =
d(1 + ε)re); and (b) set t` = TS(L·2`/p) and the number of phases toN :=

⌈
p log2(21/pτmax/L) + 4 log2 m

⌉
,

where L = (
∑

j,i,t txij,t)/m. Note thatN = O(p log m), and λ(L) ≤ (
∑

j,i,t λ(t)xij,t)/m = (
∑

j Lcostj)/m,
which shows that the expected latency cost incurred for clients j with τj ≤ t0 is at most

∑
j Lcostj .

Corollary 4.2 One can obtain an O
(
p log n max{log n, log m}

)
-approximation algorithm for Lp-MLUFL.

Proof : As is standard, we enumerate all possible values of the Lp-norm of the optimal client latencies in
powers of 2, losing potentially another factor of 2 in the approximation factor. To avoid getting into issues
about estimating the solution-cost for a given guess (since our algorithms are randomized), we proceed as
follows. For a given guess Lat, we solve (P) modifying the objective to be min

∑
i,t fiyi,t +

∑
j,i,t cijxij,t,

and we adding the constraint
∑

j,i,t tpxij,t ≤ Latp. Among all such guesses and corresponding optimal
solutions, let (x, y, z) be the solution that minimizes

∑
i,t fiyi,t +

∑
j,i,t cijxij,t + Lat. Let OPT denote

this minimum value. Note that OPT ≤ 2O∗, where O∗ is the optimum value of the Lp-MLUFL instance.
We apply Theorem 4.1 (with λ(x) = xp) to round (x, y, z). Let F , C, and L =

∑
j Lj , denote respectively

the (random) facility-opening, connection-, and latency- cost of the resulting solution. The bounds in Theo-
rem 4.1 imply that E

[
(
∑

j Lj)1/p
]
≤

(
E

[∑
j Lj

])1/p ≤ O(p log2 n)Lat, which combined with the bounds
on E

[
F

]
and E

[
C

]
, shows that the expected total cost is O

(
p log n max{log n, log m}

)
OPT .

We obtain significantly improved guarantees for related MLUFL, metric uniform MLUFL, and ML with
(convex) latency functions of growth p. For related MLUFL and ML, the analyses in Sections 2.2 and 3
directly yield an O

(
2O(p)

)
-approximation guarantee since for both problems, we can (deterministically)

bound the delay of client j by O
(
α-point of j

)
(for suitable α). For metric uniform MLUFL, we obtain

an O(1)-approximation bound as a consequence of Theorem 2.12: this follows because one can devise
an O(1)-approximation algorithm for the zero-facility-cost version of the problem by adapting the ideas
used in [3]. Thus, we obtain an O(1)-approximation for the Lp-versions of related-MLUFL, metric uniform
MLUFL, and ML.

k-route MLUFL with length bounds. All our algorithms easily generalize to k-route length-bounded
MLUFL, where we are given a budget B and we may use (at most) k paths starting at r of (d-) length at
most B to traverse the open facilities and activate them. This captures the scenario where one can use k
vehicles in parallel, each with capacity B, starting at the root depot to activate the open facilities. Observe
that with B =∞, we obtain a generalization of the k-traveling repairmen problem considered in [14].

We modify (P) by setting T = B and setting the RHS of (3) to kt. In Algorithm 1, we now obtain a
tour Tour` in phase ` of (expected length) O(log2 n)kt`. Each facility i ∈ Tour` satisfies

∑
t≤t`

yi,t > 0,
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so d(i, r) ≤ t`, and we may therefore divide Tour` into k tours of length at most O(log2 n)t`. Thus, we
obtain the same guarantee on the expected cost incurred, and we violate the budget by an O(log2 n)-factor,
that is, we get a bicriteria

(
polylog, O(log2 n)

)
-approximation. Similarly, for related MLUFL and ML, we

obtain an
(
O(1), O(1)

)
-approximation. For ML, we may again use either (LP1) or (LP2P ): in both LPs

we set T = B; in (LP1), we now have the constraint
∑

e deze,t ≤ kt, and in (LP2P ), the RHS of (5) is
now k. For metric uniform MLUFL, we modify (Unif-P) in the obvious way: we now have

∑
t yi,t ≤ k for

each time t, and t now ranges from 1 to B. We can again apply Theorem 2.12 here to obtain a (unicriteria)
O(1)-approximation algorithm: for the zero-facility-location problem (where we may now “open” at most
kB facilities), we can adapt the ideas in [3] to devise an O(1)-approximation algorithm.

Finally, these guarantees extend to latency functions of bounded growth (in the same way that guar-
antees for MLUFL extend to the setting with latency functions). Thus, in particular, we obtain an O(1)-
approximation algorithm for the Lp-norm k-traveling repairmen problem; this is the first approximation
guarantee for this problem.

Non-uniform latency costs. We consider here the setting where each client j has a (possibly different)
time-to-cost conversion factor λj , which measures j’s sensitivity to time delay (vs. connection cost); so the
latency cost of a client j is now given by λjtj , where tj is the delay faced by the facility serving j.

All our guarantees in Sections 2.2, 2.3, and 3 continue to hold in this non-uniform latency setting.
In particular, we obtain a constant approximation guarantee for related metric MLUFL, metric uniform
MLUFL, and ML. Notice that the metric uniform MLUFL problem cannot now be solved via a reduction
to the metric-UFL variant discussed in Section 2.3; however we can still use Corollary 2.13 to obtain a
10.773-approximation. For general MLUFL, it is not hard to see that our analysis goes through under the
the assumption T = poly(m). However, the scaling trick used to bypass this assumption leads to an extra
O

(
log(λmax

λmin
)
)

factor in the approximation.
Recall that the scaling factor L (in the definition of t`) in Section 2.1 was defined as

∑
j L∗

j/m, where
L∗

j =
∑

i,t txij,t. Now, L∗
j =

∑
i,t λjtxij,t, and we set L =

∑
j L∗

j/
∑

j λj . One can again argue that the
expected latency-cost of each client j is at most λj ·O(log2 n) ·max

{
L, τj}, so we incur an O(log2 n)-factor

in the latency-cost. The number of phases, however, isN :=
⌈
log2(2τmax/L) + 4 log2 m

⌉
, and 2τmax/L =

O
( τmax

P
j λjP

j L∗
j

) ≤ O
(

mλmax
λmin

), which gives an extra log2(λmax/λmin) factor in the facility-opening cost.
Finally, as before, these guarantees also translate to the k-route length-bounded versions of our problems.
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[29] D. B. Shmoys, É. Tardos, and K. I. Aardal. Approximation algorithms for facility location problems.
In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265–274, 1997.

[30] D. Shmoys and D. Williamson. Analyzing the Held-Karp TSP bound: a monotonicity property with
application. Inf. Process. Lett., 35(6):281–285, 1990.

[31] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location problems. Algorith-
mica, 40(4):245–269, 2004.

[32] P. Toth and D. Vigo, eds. The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics
and Applications, Philadelphia, 2002.

[33] L. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical Programming
Study, 13:121-134, 1980.

A Proofs omitted from the main body

Proof of Theorem 2.9 : Consider a GST instance
(
H = (V,E), r, {de}e∈E , {Gj ⊆ V }mj=1). Let n = |V |.

We may assume that H is the complete graph, d is a metric, and the groups are disjoint. We abbreivate ρn,m

to ρ below. Let Q denote the collection of all solutions to the path-variant of GST; that is, Q consists of
all paths starting at r that visit at least one node of each group. For a path Q ∈ Q and a group Gj , define
Qj to be the portion of Q from r to the first node of Gj lying on Q. Let dj(Q) =

∑
e∈Qj

de be the length
of Qj ; that is, dj(Q) is the latency of group j along path Q. Consider the following LP-relaxation for the
path-variant of GST, and its dual. We have a variable xQ for every Q ∈ Q indicating if path Q is chosen.
We use Q below to index the paths in Q.

min M (P’)

s.t.
∑
Q

dj(Q)xQ ≤M ∀j∑
Q

xQ ≥ 1

x ≥ 0.

max α (D’)

s.t.
∑

j

λjdj(Q) ≥ α ∀Q (10)∑
j

λj ≤ 1

α, λ ≥ 0.
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(P’) has an exponential number of variables. But observe that separating over the constraints (10) in the
dual involves solving an MGL problem. The minimum value (over all Q ∈ Q) of the LHS of (10) is the
optimal value of the MGL problem defined by {(Gj , λj)}, where we seek to minimize the weighted sum of
client latency costs. (This weighted group latency problem can be reduced to the unweighted problem by
“creating” λj copies of each group Gj (we can scale the λjs so that they are integral); equivalently (instead
of explicitly creating copies), one can simulate this copying-process in whatever algorithm one uses for
(unweighted) MGL.) Thus, a ρ-approximation algorithm for MGL yields a ρ-approximate separation oracle
for (D’). Now, applying an argument similar to the one used by Jain et al. [24] shows that one can use this
to (also) obtain a ρ-approximate solution (x,M) to (P’).

We now use randomized rounding to round (x,M) and obtain a group Steiner tree of cost at most
O(log m)M . We pick path Q independently with probability min{4 log m · xQ, 1}. Let Q′ ⊆ Q denote
the collection of paths picked. Note that for every group Gj , we have

∑
Q∈Q:dj(Q)≤2M xQ ≥ 1

2 . So a
standard set-cover argument shows that with probability at least 1 − 1/m, for every j, there is some path
Q(j) ∈ Q′ such that dj(Q(j)) ≤ 2M . We may assume that

∑
Q xQ = 1, so Chernoff bounds show

that |Q′| = O(log m) with overwhelming probability. The group Steiner tree T consists of the union of
all the Q

(j)
j (sub)paths (deleting edges to remove cycles as necessary). Clearly, the cost of T is at most

|Q′| · 2M = O(log m)M . Note that T also yields a path of length O(log m)M starting at r and visiting all
groups, so the integrality gap of (P’) is O(log m).

Extension of Lemma 3.3 to MGL. Notice that we did not use anything specific to the minimum-latency
problem in the proof, and so essentially the same proof also applies to MGL. Recall that in MGL, we have
a set F of facilities and a d-metric on F ∪ {r}, and a collection of m groups {Gj ⊆ F}. Analogous to(
LP2(a,b)

P
)
, the LP-relaxation with path variables for MGL and its dual are as follows.

min
∑
j,t

txj,t (LP’(a,b)
P )

s.t.
∑

t

xj,t ≥ 1 ∀j∑
P∈Pbt

zP,t ≤ a ∀t

∑
P∈Pbt:Gj∩P 6=∅

zP,t ≥
∑
t′≤t

xj,t′ ∀j, t

x, z ≥ 0.

max
∑

j

αj − a
∑

t

βt (LD’P(a, b))

s.t. αj ≤ t +
∑
t′≥t

θj,t′ ∀j, t

∑
j:Gj∩P 6=∅

θj,t ≤ βt ∀t, P ∈ Pbt (11)

α, β, θ ≥ 0.

The LP-relaxation
(
LP’(a,b)

T
)

with tree variables is obtained by replacing Pbt with Tbt in (LP’(a,b)
P ). The

orienteering problem that we need to solve now to separate over the constraints (11) is group orienteering:
given a reward θj,t for each group Gj , we want to determine if there is a path (or tree) rooted at r of length at
most bt such that the total reward of the groups covered by it is more than βt. Given these changes, the proof
that one can obtain a feasible solution (x, y) to

(
LP’(a,b)

T
)

of cost at most the optimal value of
(
LP’(1,1)

P
)

is
as in the proof of Lemma 3.3.
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