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ABSTRACT
Sponsored search auctions hosted by major search engines
allow advertisers to select relevant keywords, allocate bud-
gets to those terms, and bid on different advertising posi-
tions for each keyword in a real-time auction against other
advertisers. This dynamic and competitive process creates
the significant problem of optimal bid management, espe-
cially for large advertisers who need to manage thousands
of keywords and spend tens of millions on such advertis-
ing. Algorithms for efficient, competitive bid optimization
are therefore highly desirable. We approach this problem
by casting it as an online (multiple-choice) knapsack prob-
lem, and design algorithms for the online knapsack prob-
lem achieving a provably optimal competitive ratio. This
allows for the automation of the bidding process, while op-
timizing bids to best achieve the goals of the program. To
maximize revenue from sponsored search advertising, our
bidding strategy can be oblivious (i.e., without knowledge)
of other bidders’ prices and/or click-through-rates for those
positions. We evaluate our bidding algorithms using both
synthetic data and real bidding data scraped from the Over-
ture website, and also discuss a sniping heuristic that strictly
improves bidding performance.

1. INTRODUCTION
Sponsored search auctions generated an estimated $10 bil-

lion in revenue globally in 2005 and the market is expected
to grow 41% in 2006, to more than $14 billion1. The re-
sults page of a keyword search is apparently an extremely
effective place for advertisers to reach an engaged audience.
Using an automated auction mechanism, search engines sell
the right to place ads next to these keyword results and alle-
viate the auctioneer from the burden of pricing and placing
ads. The intent of the consumer is matched with that of
the advertiser through an efficient cost/benefit engine that
favors advertisers who offer what consumers seek.

On the advertiser’s side, companies (such as HP) spend
billions of dollars each year in marketing with an increasingly
large portion of that dedicated to search engine marketing.
A number of natural questions arise: Game theoretically,
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how can an advertiser bid strategically against competitors
to maximize relative return? Operationally, how can an ad-
vertiser optimize the bidding process assuming that other
advertisers have fixed bidding patterns, how to allocate bud-
gets to keywords and how to bid under budget constraints?
In this work we focus on the bid optimization question un-
der the budget constraint. Formally, we try to address the
following problem: For each keyword and each time period,
how much should an advertiser bid to obtain which posi-
tion, so as to maximize return on investment (ROI) of these
auctions?

The bidding strategies we develop are based on the cur-
rent policy used by search engines to display their ads. We
assume that at each query of a keyword, the highest bidder
gets the first position, the second highest the second and
so on. Moreover, the pricing scheme is the generalized sec-
ond price scheme [11, 24, 16] where the advertiser in the
i-th position pays the bid of the (i + 1)-th advertiser when-
ever the former’s ad is clicked on. For each user click on
its ad, the advertiser obtains a revenue, which is the ex-
pected value-per-click, and a profit, which is equal to the
difference between revenue and cost. The advertiser (or the
agent acting on behalf of the advertiser) has a budget con-
straint, and would like to maximize either the revenue or the
profit. These budget constraints arise out of the ordinary
operational constraints of the firm and its interactions with
its partners, as well as being a generic feature of keyword
auction services themselves.

We use competitive analysis to evaluate our bidding strate-
gies, comparing our result with the maximum profit attain-
able by the omniscient bidder who knows the bids of all
the other users ahead of time. This competitive analysis
framework has been used in the worst-case analysis of online
algorithms and helps to convert the problem of devising bid-
ding strategies to designing algorithms for online knapsack
problems. Although it is known [18] that the most general
online knapsack problem admits no online algorithms with
any non-trivial competitive ratio, the auction scenario sug-
gests a few constraining assumptions which allow us to give
interesting and optimal online algorithms. Thus, we con-
tribute to the literature of knapsack problems as well.

The bidding strategies suggested by the online algorithms
are very simple to state. In fact, the bidding strategy for
revenue maximization can be stated in one sentence:

At any time t, if the fraction of budget spent is
z(t), bid V

Ψ(z(t))
,

where V is the expected value-per-click of the keyword, and



Ψ(z) is a continuous function of z. Thus the bidding price
depends only on the value of the keyword and the fraction
of budget spent. Besides its simplicity, the strategy is also
oblivious, in the sense that it does not need to consider other
player’s bids or how frequently queries arrive.

1.1 Model Description
Suppose there are N + 1 bidders {0, 1, · · · , N} interested

in a single keyword. Bidder 0 is the default advertiser, and
he wants to maximize his profit over a period of time T .
Let V denote the expected value-per-click for the default
advertiser, 2 and he has a budget of B over time period T
(e.g., if T is 24 hours, B is the daily budget). Here the
budget constraint is a hard constraint, in the sense that
once exhausted, it can not be refilled; budget remaining at
the end of period T is taken away. Once a bidder exhausts
his budget, he leaves the auction.

Bidders bid on the keyword, and are allowed to change
their bids at any moment of time. We make a crucial but rea-
sonable assumption that the bids are very small compared
to the budget of Bidder 0. As soon as a query for the key-
word arrives, the search engine allocates S slots to bidders
as follows: It takes the S highest bids, b1 ≥ b2 ≥ . . . ≥ bS

and displays s-th bidder’s ad in slot s. Moreover, if any user
clicks on the ad at the s-th slot, the search engine charges
the s-th bidder a price bs+1, if s < S or a minimum fee bmin

(usually 10¢). Hence, we may assume that all bids are at
least bmin.

Each slot s has a click-through-rate α(s), which is defined
as the expected number of clicks on an ad divided by the
total number of impressions (displays). Usually α(s) is a
decreasing function of s. Each time his ad in slot s is clicked,
Bidder 0 gets a profit of V −bs+1 where bs+1 is the bid of the
advertiser in the (s+1)-th slot or bmin if s = S. Suppose the
time interval T is discretized into periods {1, 2, · · · , T}, such
that, within a single time period t, no bidder changes his
bid. Let X(t) denote the expected number of queries for the
keyword in time period t. Moreover, suppose Bidder 0 can
make his bid in time period t after seeing all other bidders’
bids. As we will see, this assumption does not matter much
and is mainly for explanation purposes. The problem faced
by Bidder 0 is to decide, how much to bid at each time
period t, in order to maximize its profit while keeping its
total cost within its budget.

1.2 Bidding Strategies and Knapsack Prob-
lems

It is not too hard to see that if we know bids of all the
agents at each time period, then the best bidding strategy
corresponds to solving a knapsack problem (This observa-
tion was also made by [6].) Let us start with the relatively
simple single-slot case where there is only one ad slot. At
each time period t, let b(t) be the maximum bid on the
keyword among bidders 1 to N . The omniscient bidder
knows all the bids {b(t)}T

t=1. To maximize his profit, the
omniscient bidder should bid higher than b(t) at those time
periods which give him maximum profit and keep his total
cost within budget. Winning at time t costs him w(t) =
b(t)X(t)α and earns him profit π(t) = (V − b(t))X(t)α,
where X(t)α is the expected number of clicks at time period

2Here we assume that the expected value-per-click for Bid-
der 0 is fixed over time T .

t. Thus, the omniscient bidder should choose time periods
S ⊂ T to maximize π(S) =

P
t∈S π(t) satisfying the con-

straint w(S) =
P

t∈S
w(t) ≤ B. This is a standard instance

of the classic 0/1 knapsack problem, which is defined as fol-
lowing: Given a knapsack of capacity B and T items of
profit and weight (π(t), w(t)) for 1 ≤ t ≤ T , select a subset
of items to maximize the total profit with total weight of
selected items bounded by B. For the case of maximizing
revenue, it is similar except that π(t) = V X(t)α for each
item t. However, for the keyword auction problem, items
arrive in an online fashion. At each time period t, Bidder
0 has to make a decision of either overbidding b(t) or not.
Bidder 0 does not know the future, and furthermore, it could
neither recall time instances gone nor revoke its decision of
outbidding later. Thus designing a bidding strategy corre-
sponds to designing an algorithm for the online knapsack
problem.

The case of multiple slots is captured by the online version
of a variant of the classical knapsack problem, the multiple-
choice knapsack problem. We elaborate more on this in
Section 3.

The knapsack problem is a classic problem in operations
research and theoretical computer science. For online knap-
sack problems, Marchetti-Spaccamela and Vercellis [18] showed
that in its most general case, there can be no online algo-
rithm achieving any non-trivial competitive ratio, where the
competitive ratio is the ratio of the value of the given online
algorithm to that of the best offline algorithm. 3 Fortu-
nately, in our setting, we can make two reasonable assump-
tions on the items of the knapsack, which allow us to develop
interesting online algorithms. We state the assumptions be-
low and justify them in Section 2. The assumptions are:

1. Each item has weight much smaller than the capacity
of the knapsack, that is, w(t) ≪ B for each item t.

2. The value-to-weight ratio of each item is both lower

and upper bounded, i.e., L ≤ π(t)
w(t)

≤ U, ∀t.

1.3 Our Results
In Section 2, we show that in the case of single-slot auc-

tions, the bidding strategy corresponds to online algorithms
for the classical 0/1 knapsack problem. We design an al-
gorithm for the online knapsack problem with competitive
ratio ln(U/L) + 1, and also show a lower bound of ln(U/L).
Therefore our algorithm is provably optimal in the worst-
case sense. We translate the online knapsack algorithm into
a bidding strategy for the single-slot auction. As stated
in the introduction, these strategies are oblivious, and thus
work even if other bidders bids were not known. It also im-
plies that the strategy is an approximate dominant strategy
in the sense that it is an approximate best response to any
bid profile of other bidders.

In Section 3, we extend our results to the case of multiple-
slot auctions. We give a (ln(U/L)+2)-competitive online al-
gorithm for a variant of the classical knapsack problem called
the multiple-choice knapsack problem (MCKP). We trans-
late the algorithm for Online-MCKP to bidding strategies
for the multiple-slot case, and obtain both profit-maximizing

3Consider a knapsack of capacity 1 and two sequences
{(1,1);(0,1)} and {(1,1);(∞,1)}. Any deterministic strategy
will perform arbitrarily badly against at least one of these
sequences.



and revenue-maximizing bidding strategies. The profit max-
imizing strategy is not oblivious and requires knowledge of
other players’ bids and also the clickthrough-rates of all
slots. The revenue-maximizing strategy remains oblivious.

The reason why the multiple-slot profit-maximizing strat-
egy turns non-oblivious is subtle: It might be more profitable
for an advertiser to appear in a less desirable (lower) slot and
pay less than appearing in a higher slot which gives more
clicks. This non-monotonicity has actually been used [11,
3] to show that the generalized second-price scheme is not
truthful.

For ease of exposition, we restrict our attention to a single
keyword in this paper. All our results extend naturally to
the general case of multiple keywords and multiple slots per
keyword, with V replaced by Vmax, the maximum valuation-
per-click among all the keywords.

We implement these bidding strategies and evaluate them
using both synthetic bidding data and real bidding data
scraped from the Overture website. We modify our strategy
by adding a sniping heuristic, which while maintaining the
same theoretical bounds, performs much better empirically.
Our preliminary experimental work, reported in Section 4,
suggests that parameter tuning is important for the perfor-
mance of bidding algorithms.

1.4 Related Work
Keyword Auctions. Keyword auctions are used by Inter-
net search engines to sell various positions (slots) of search
results pages of keyword queries. Edelman et al. [11] and
Varian [24] study Nash equilibria of a fixed keyword market
for strategic bidders without budget constraints. The cur-
rent auction mechanism deployed by Google and Yahoo! are
not truthful, and various truthful auction mechanisms are
proposed by Gagan et al. [3] and Lahaie [16]. Bidding dy-
namics and its impact on auctioneer revenue were discussed
by a series of papers [10, 4, 23, 26].

Budget Constraints. When budget constraints are en-
forced by bidders, things become complicated. For a simpli-
fied model where multiple identical units of a single good are
auctioned with budget constrained bidders, Borgs et al. [7]
and Abrams [2] study the revenue maximization problem
with competitive analysis. For the ad placement revenue
maximization problem, Mehta et al. [19] propose an on-
line algorithm that assigns queries to bidders achieving an
optimal competitive ratio of 1 − 1/e. The techniques used
in this paper are perhaps the closest to the ones we use.
They use a trade-off function Ψ (compare it to our thresh-
old function), and grant queries to the bidder having the
maximum Ψ value. We discuss more about this similarity
in Section 2.1. Despite the similarity in techniques, our
work is complementary to their work. While [19] maximize
the revenue of the auctioneer, we maximize profit or revenue
of the advertiser. Thus, while they cast their problem as a
generalized online matching between bidders and queries, we
cast our problem as a generalized online knapsack problem,
and the results of these two papers are incomparable.

Bidding Optimization. For bidding optimization from
the advertiser point of view, there has been less work. Kitts
and LeBlanc [13] describe various heuristics for bidding op-
timization in keyword auctions, but do not include any the-
oretical results. Borgs et al. [6] propose a bidding strategy
which over time equalizes the return on investment (ROI)
over all keywords. They show that in the case of single-

slot auctions, if all bidders play the same strategy, in finite
time, the pricing of keywords reach a market equilibrium.
Rusmevichientong and Williamson [22] discuss the situation
in which an advertiser must learn the clickthrough-rates for
various keywords over time and bid accordingly. Their set-
ting does not include any competitive aspect of the bidding
process.

Online Knapsack Problems. Our bidding strategies are
built on online algorithms for the (multiple-choice) knapsack
problems. Marchetti-Spaccamela and Vercellis [18] showed
that in the general case, there exists no online algorithm
achieving any non-trivial competitive ratio. We make two
assumptions in the end of Section 1.1 which are relevant to
the keyword auction scenario and make the problem easier
to handle. Many special cases of the problem have been
studied, including the stochastic online knapsack problem
[17, 21, 15], the removable online knapsack problem [12]
and the online partially fractional knapsack problems [20],
but none of them seem to imply our assumptions. A special
case of the online knapsack problem where all items have
unit cost is the so-called online multiple secretary problem:
numbers come in an online fashion and the task is to select at
most k of them to maximize the sum of selected numbers.
Kleinberg [14] gave an online algorithm with competitive

ration 1 − O(1/
√

k) for the online k-secretary problem.

Online Routing and Packing Problems. The online
knapsack problem is closely related to other online problems,
especially the online admission control and routing problem.
Awerbuch et al. [5] studied the online call routing problem
where call requests arrive for a single source-destination pair
and bandwidth is limited in the network. This is a gener-
alization of the classical knapsack problem (where the net-
work consists of two nodes and one edge). Their results
with extensions that assign “profits” to calls seem to im-
ply an O(ln(U/L))-competitive algorithm for the classic 0/1
knapsack problem. Recently, Buchbinder and Naor [8] came
up with a general paradigm for designing online algorithms
for the fractional packing-covering problems. For the on-
line fractional packing problem with just 1 linear constraint,
their work implies an O(log(U/L))-competitive online algo-
rithm for the knapsack problem where each item can be
taken with an arbitrary nonnegative quantity. They also
gave a matching Ω(log(U/L)) lower bound. It is possible
to obtain the same competitive ratio enforcing 0/1 quan-
tity constraints for knapsack items combining randomized
rounding and other advanced techniques. In a later paper
[9], they showed that results stated above in [5] can be de-
rived via their general method.

Although the online knapsack problems (both the 0/1
and the multiple-choice) fall into the online routing and
packing framework, it is not clear how to enforce the 0/1
quantity constraint to obtain an O(log(U/L)))-competitive
algorithm, and how to enforce the xor constraint for the
multiple-choice knapsack problem. Furthermore, our bounds
for the competitive ratio are upper bounded by ln(U/L)+1
and lower bounded by ln(U/L), respectively. One can think
of our results as pinning down the constants in their re-
sults for the knapsack problem via a simple algorithm. Fur-
thermore, their settings seem not generalize to the multiple-
choice knapsack problem, which is actually the most impor-
tant case for the keyword auction model. In addition, our
algorithms are much more direct and cleaner, and thus give



rise to simple and oblivious bidding strategies.
As an anonymous reviewer pointed out, a simple random-

ized algorithm implies a competitive ratio of O(log(U/L))
for the online knapsack problem. The algorithm first picks
uniformly random an integer i from [0, log(U/L)] and set
the threshold value x = 2i. For each arriving item, it will be
selected if and only if the knapsack is not full and the item
efficiency ratio is at least x. The algorithm may return a
profit of 0, has a high variance of returned value, and is no
longer competitive if the adversary can change input stream
after seeing the threshold value. On the other hand, our al-
gorithms are robust to any adversary attack, and the worst
case bound ln(U/L) holds for each run of any instance.

2. SINGLE-SLOT AUCTIONS AND ONLINE
KNAPSACK PROBLEMS

In this section, we focus on single-slot auctions and the
corresponding online knapsack problem. We design algo-
rithms for the online knapsack problem and translate them
back into bidding strategies for single-slot keyword auctions.
Before presenting the algorithms, we first explain why the
assumptions made in Section 1.2 are justified.

Recall that the unique item at time period t has a weight
w(t) and a profit π(t) where

w(t) ≡ b(t)X(t)α, π(t) ≡ (V − b(t))X(t)α.

For revenue maximization, π(t) corresponds to the revenue
of winning the bid, thus π(t) = V X(t)α. Here X(t)α is the
number of expected clicks on the displayed ad in time pe-
riod t. The first assumption of w(t) ≪ B follows since the
budget of the agent is usually much larger than the money
spent in small time periods as the bids are small. For the
second assumption, we separate into two cases. In the case

of profit maximization, since π(t)
w(t)

= V
b(t)

− 1, it suffices to

set U ≡ V
bmin

− 1. To get a lower bound on the profit-to-

weight ratio, notice that if b(t) is close to V , little is lost
without bidding at those time intervals. Specifically, if we
bid only when b(t) ≤ V

1+ǫ
for some fixed ǫ > 0, the maxi-

mum amount of profit lost from not bidding in these time
periods is bounded by ǫB. If ǫ is small, then the profit loss
can be negligible. In other words, we can set L = ǫ and ig-
nore all items with efficiency smaller than ǫ. This results in
a maximum profit loss of ǫB, and it will not affect much the
algorithm performance if the total profit of the algorithm
is relatively large. In the case of revenue maximization, we
have π(t)/w(t) = V/b(t). Here it suffices to set U ≡ V

bmin
.

For the lower bound with revenue maximization, it is rea-
sonable to assume that the optimum strategy would never
bid when b(t) is higher than V . This holds when there are
enough items with value-to-cost ratio at least 1 to consume
all the budget. Otherwise, the optimal solution needs to
take items which cost more than their value, and the bud-
get seems unnecessarily large. Therefore, assuming that the
optimum never bids when b(t) is higher than V , we only
need to consider items with efficiency at least 1, i.e., set
L = 1.

2.1 The Online Knapsack Problem
Given an online algorithm A, we say that A is c-competitive

(has a competitive ratio of c) if for any input sequence of
items σ, we have OPT(σ) ≤ cA(σ), where A(σ) is the profit

of A given σ, and OPT(σ) is the maximum profit obtained
by any offline algorithm with the knowledge of σ.

We give an algorithm which makes the assumptions of
Section 1.2, that is for all items t, w(t) ≪ B and L ≤
π(t)
w(t)

≤ U . Given the lower bound L and upper bound

U for item efficiency, it is easy to verify that the greedy
algorithm which keeps selecting items until the knapsack is
full gives a competitive ratio of U/L. Next we state our
algorithm for the online knapsack problem, which achieves
an almost optimal bound of ln(U/L) + 1. In the remainder
of the paper, e denotes the base of the natural logarithm.

Algorithm Online-KP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) be the fraction of capacity filled, pick
element t iff

π(t)

w(t)
≥ Ψ(z(t)).

Observe that for z ∈ [0, z̄] where z̄ ≡ 1/ ln(Ue/L), Ψ(z) ≤
L, thus the algorithm will pick all items available until z̄
fraction of the knapsack is filled. When z = 1, Ψ(z) = U ,
and since Ψ is strictly increasing, the algorithm will not
spend more than its budget.

The above algorithm may seem mysterious to the reader
as it uses just one threshold function to select items, and the
threshold function is a very specialized exponential function
of its capacity filled. Actually we first consider a discrete
version which in the limit leads us to the continuous thresh-
old function Ψ, for details see the forthcoming technical re-
port. This method of obtaining the continuous version of a
discrete algorithm was also done in [19].

Theorem 2.1. For any input sequence σ, if A(σ) is the
profit obtained by Online-KP-Threshold and OPT(σ) is
the maximum profit that can be attained, then

OPT(σ) ≤ A(σ)(ln(U/L) + 1).

In other words, the above algorithm has a competitive ratio
of ln(U/L) + 1.

Proof. Fix the input sequence σ. Let the algorithm ter-
minate filling Z fraction of the knapsack and obtaining a
profit of A(σ). Let S and S∗ respectively be the set of items
picked by the Algorithm Online-KP-Threshold and the
optimum. Denote the weight and the profit of the com-
mon items by W = w(S ∩ S∗) and P = π(S ∩ S∗). For
each item t not picked by the algorithm, its efficiency is
< Ψ(z(t)) ≤ Ψ(Z) since Ψ(z) is a monotone increasing func-
tion of z. Thus,

OPT(σ) ≤ P + Ψ(Z)(B − W)

Since A(σ) = P + π(S \ S∗), the above inequality implies
that

OPT(σ)

A(σ)
≤ P + Ψ(Z)(B − W )

P + π(S \ S∗)
. (1)

Each item j picked in S must have efficiency at least Ψ(zj)
where zj is the fraction of the knapsack filled at that instant.
Round down the profit of each item j picked by the algo-
rithm to Ψ(zj)wj where wj is weight of the item. Let P1 be



the profit obtained by rounding down profits of S ∩ S∗ and
P2 be profit obtained by rounding down S \ S∗, then

P ≥ P1 ≡
X

j∈S∩S∗

Ψ(zj)wj , (2)

π(S \ S∗) ≥ P2 ≡
X

j∈S\S∗

Ψ(zj)wj . (3)

If Ψ(Z)(B − W ) ≤ π(S \ S∗), then Eq. (1) implies that
OPT(σ) ≤ A(σ), thus the claim of the theorem is trivially
satisfied. Therefore we now assume that Ψ(Z)(B − W ) >
π(S \ S∗). Thus, if we reduce P to P1 in both denominator
and numerator in the RHS of Eq. (1), the ratio increases,
i.e.,

P + Ψ(Z)(B − W )

P + π(S \ S∗)
≤ P1 + Ψ(Z)(B − W )

P1 + π(S \ S∗)
(4)

Notice that P1 ≤ Ψ(Z)w(S∩S∗) = Ψ(Z)W , since Ψ is an
increasing function, thus

P1 + Ψ(Z)(B − W )

P1 + π(S \ S∗)
≤ Ψ(Z)B

P1 + P2
(5)

Combining Eqs.(1), (4), (5), we get

OPT(σ)

A(σ)
≤ Ψ(Z)B

P1 + P2
=

Ψ(Z)P
j∈S

Ψ(zj)∆zj

(6)

where ∆zj = zj+1 − zj = wj/B for all j.
Based on Assumption 1 in Section 1.2, ∆zj ≈ 0 (Refer to

the remark following the proof), and thusX
j∈S

Ψ(zj)∆zj ≈
Z Z

0

Ψ(z)dz.

Note that since Ψ(z) ≤ L for 0 ≤ z ≤ z̄ where z̄ ≡
1/ ln(Ue/L), we can replace Ψ(z) by L in this interval. Thus,

P1 + P2

B
≥

Z z̄

0

L · dz +

Z Z

z̄

Ψ(z) · dz

= Lz̄ +
L

e

(Ue/L)Z − (Ue/L)z̄

ln(Ue/L)

=
L

e

(Ue/L)Z

ln(Ue/L)
=

Ψ(Z)

ln(Ue/L)

Putting this together with Eq.(6), we complete the proof
of Theorem 2.1.

OPT(σ)

A(σ)
≤ Ψ(Z)B

P1 + P2
≤ ln(Ue/L) = ln(U/L) + 1.

Remark 2.1. We can make the approximation made above
precise. Since Ψ(z) is an increasing function of z, we obtainP

j∈S
Ψ(zj)∆zj ≥ (1−ǫ0)

R Z

0
Ψ(z)dz where ǫ0 = (maxj wj)/B

is small constant. Thus, to be precise, the competitive ratio
is actually ln(Ue/L) · 1

1−ǫ0
. For simplicity, we ignore the

factor 1 − ǫ0 for subsequent analysis.

2.2 Lower Bound on Competitive Ratio of On-
line Knapsack Problem

In this section we use Yao’s minimax technique [25] to
get a lower bound on the competitive ratio of Online-KP,
almost matching the upper bound given in Theorem 2.1.

That is, we show if any deterministic (or randomized) algo-
rithm is c-competitive for the online knapsack problem, i.e.,
for any input sequence σ it guarantees OPT(σ) ≤ cA(σ) (or
OPT(σ) ≤ cE[A(σ)]), then c ≥ ln(U/L). We state our
results in the following theorem:

Theorem 2.2. With the assumptions stated in Section 1.2,
the competitive ratio of any (possibly randomized) online al-
gorithm is at least ln(U/L).

Proof. Yao’s minimax principle gives us the following
relation. For any input distribution D and any randomized
algorithm A,

min
σ

E[A(σ)]

OPT(σ)
≤ max

deterministic A

Eσ←D

�
A(σ)

OPT(σ)

�
and thus the right-hand side gives an upper bound on 1/c.
Note that the first expectation is over the random choices
that the randomized algorithm makes, and the second expec-
tation is over the randomization in the input distribution.
Thus to prove the lower bound, we specify a distribution D
such that

max
deterministic A

Eσ←D

�
A(σ)

OPT(σ)

�
≤ 1

ln(U/L)
. (7)

Fix a parameter η > 0. Let k be an integer such that

(1 + η)k = U/L, i.e., k =
ln(U/L)

ln(1 + η)
.

The support of the input distribution consists of the in-
stances I0, I1, · · · , Ik, where I0 is a stream of B identical
items each with weight 1 and value L. I1 is I0 followed
by a stream of B identical items each with weight 1 and
value (1+η)L, and in general Ij+1 is Ij followed by B items
with weight 1 and value (1 + η)j+1L. The distribution D is
specified by giving equal probability of 1

k+1
to each of these

instances.
Given this distribution, any deterministic algorithm A can

be specified by the vector (f0, f1, · · · , fk), where fi is the
fraction of the knapsack it fills with items having value-to-
weight ratio (1 + η)iL. Thus we have

Eσ←D

�
A(σ)

OPT(σ)

�
=

1

k + 1

kX
i=0

Pi

j=0(1 + η)jfj

(1 + η)i

=
1

k + 1

kX
j=0

fj

kX
i=j

(1 + η)j−i

≤ 1

k + 1

kX
j=0

fj
1 + η

η

≤ 1 + η

kη
=

(1 + η) ln(1 + η)

ln(U/L)η
,

where the last inequality uses the fact that
Pk

i=0 fi ≤ 1 as
the algorithm cannot over-fill the knapsack.

Let η → 0, then ln(1+ η)/η → 1, and the last term of the
above inequalities goes to 1/ ln(U/L). So Eq.(7) is proved
by setting η approaching 0.



2.3 Bidding Strategies for Single-Slot Auctions
We now construct the bidding strategies suggested by

the algorithm Online-KP-Threshold. Let us consider the
profit-maximizing case first. As explained in the beginning
of the section, we may assume b(t) ≤ V

1+ǫ
for some ǫ. Set

U = V/bmin − 1 and L = ǫ. At time t, suppose Bidder
0 has spent z(t) fraction of its budget. This corresponds
to the fact that z(t) fraction of the knapsack is filled. As
per the algorithm, Bidder 0 must win the bid if and only if
the efficiency of the next bid is at least Ψ(z(t)). That is,

Bidder 0 must bid higher than b(t) iff V−b(t)
b(t)

≥ Ψ(z(t)) or

b(t) ≤ V
1+Ψ(z(t))

, which means bidding V
1+Ψ(z(t))

suffices. We

formally state the bidding strategy below:

Bidding Strategy: Profit-Maximizing Single-

Slot

Fix ǫ > 0. Let Ψ(z) ≡ (Ue/ǫ)z(ǫ/e).
At time t, if fraction of budget spent is z(t), then bid

b0(t) =
V

1 + Ψ(z(t))
.

The above bidding strategy for profit-maximizing single-
slot auctions has the following performance guarantee:

Theorem 2.3. Let Profit denote the profit obtained by
our profit-maximizing bidding strategy. Then for any ǫ > 0,

OPT ≤ ǫB + ln

�
e(V − bmin)

ǫbmin

�
· Profit

where bmin is the minimum bid of any bidder and OPT is
the maximum profit obtained by the omniscient bidder.

The proof of Theorem 2.3 follows from Theorem 2.1 and
the fact that the optimum without the assumption of b(t) ≤

V
1+ǫ

can actually earn at most ǫB more profit than the op-
timum with the assumption.

Similarly, using U = V
bmin

and L = 1, we get the following

revenue-maximizing bidding strategy.

Bidding Strategy: Revenue-Maximizing Single-

Slot

At time t, if fraction of budget spent is z(t), then bid

b0(t) =
V

Ψ(z(t))

where Ψ(z) ≡ (Ue)z/e.

Theorem 2.4. Let Revenue be the profit obtained by our
revenue-maximizing bidding strategy and OPT be the maxi-
mum revenue obtained by the omniscient bidder. Assuming
that OPT does not contain any item t with b(t) > V , then

OPT ≤ ln

�
eV

bmin

�
· Revenue

where bmin is the minimum bid of any bidder.

The proof of Theorem 2.4 follows from Theorem 2.1. Note
that both the above strategies looked only at the budget
spent and are thus oblivious of other bidders’ bids and the
number of clicks for each time slot.

3. MULTIPLE-SLOT AUCTIONS AND ON-
LINE MCKP

We extend our investigation to the case of multiple slots.
As we see, the strategy in the multiple-slot case corresponds
to the online multiple-choice knapsack problem. The multiple-
choice knapsack problem (MCKP) is a generalization of the
knapsack problem: Given a knapsack of capacity B, and T
sets of items N1, N2, · · ·NT , the goal is to choose at most
one item from each set to maximize profit and not exceed
the knapsack capacity. In the online version, the sets come
online and we need to make our decision on the fly. Items
once picked cannot be disposed, and sets cannot be recalled.

Next we show how to model the multiple-slot keyword
auction problem into Online MCKP. Once again, the budget
corresponds to the capacity of the knapsack. At each time
period t, let b1(t) ≥ b2(t) ≥ . . . ≥ bS(t) be the S highest
bids. To win slot s, we need to bid bs(t). This incurs a cost
ws(t) and a profit πs(t) where

ws(t) ≡ bs(t)X(t)α(s), πs(t) ≡ (V − bs(t))X(t)α(s),

and α(s) is the click-through-rate of slot s. The S slots
at each time period correspond to the set arriving at time
t. Since Bidder 0 can win at most one slot at each time
period, the omniscient bidder needs to solve the multiple-
choice knapsack problem while Bidder 0 needs to solve the
online multiple-choice knapsack problem. Once again, we
assume (1) ws(t) ≪ B and (2) L ≤ πs(t)/ws(t) ≤ U for
all s, t, similar to the assumptions made in Section 1.2. In
subsequent subsections, we give competitive algorithms for
Online-MCKP and use it to devise bidding strategies for
multiple-slot auctions. The algorithm is an easy generaliza-
tion of the algorithm Online-KP-Threshold. However,
unlike the single-slot case, the bidding strategy for profit
maximization requires knowledge of other bidder’s bids and
also the clickthrough-rates of various slots.

3.1 Algorithm for Online MCKP
The algorithm for Online-MCKP is very similar to that

for Online-KP, which is stated below.

Algorithm Online-MCKP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) denote the fraction of capacity filled,

Et ≡
�

s ∈ Bt | πs(t)

ws(t)
≥ Ψ(z(t))

�
,

pick element s ∈ Et with maximum πs(t)

The above algorithm has a competitive ratio of ln(U/L)+
2, stated as the following theorem:

Theorem 3.1. The algorithm Online-MCKP-Threshold for
Online-MCKP satisfies

OPT ≤ (ln(U/L) + 2)ALG

where ALG is the profit of the algorithm, and OPT is the
maximum profit of any offline algorithm.

Proof. For any input sequence of sets σ, let A(σ) be the
profit obtained by the above algorithm and OPT(σ) be the
maximum profit obtainable. We claim that for any σ,

OPT(σ) −A(σ) ≤ (ln(U/L) + 1)A(σ).



If the claim is true, immediately we obtain that

OPT(σ) ≤ (ln(U/L) + 2)A(σ)

for any input sequence σ, and the theorem is proved. In the
following we show how to prove the above claim.

As in the proof of Theorem 2.1, let S and S∗ be the set
of items picked by the algorithm and the optimum, respec-
tively. Let P = π(S ∩ S∗) denote the profit of the common
items, W = w(S ∩ S∗) denote the weight. As before, we
want to bound the profit of the items picked by OPT but
not by ALG. In the multiple-choice case, unlike in the proof
of Theorem 2.1, the efficiency of an item selected by OPT
from Nt is not necessarily bounded by Ψ(z(t)) since ALG
may have also selected one different item from Nt. Thus we
partition the items picked by OPT and not by ALG into two:
items which do not satisfy the efficiency condition, and the
items which do. Thus the first kind of items have efficiency
less than Ψ(z(t)), while for the second kind of items, the
total profit of these items is less than A(σ) since ALG picks
the most profitable item from the same set which satisfy
the efficiency condition. We can exclude the second types
of items from further consideration since they in total result
in at most a profit of A(σ). Now we can assume that all
items have efficiency < Ψ(z(t)) at time t, thus it returns to
a similar situation as in the proof of Theorem 2.1. A similar
proof shows that the above claim holds.

3.2 Bidding Strategy for Multiple-Slot Auc-
tions

For multiple-slot auctions, we also consider the profit-
maximizing case first. As in the single-slot case, we assume
that bs(t) ≤ V

1+ǫ
for all s, t. This implies that the efficiency

of each bid is upper bounded by U = V
bmin

− 1 and lower

bounded by ǫ. So we obtain the following bidding strategy:

Bidding Strategy Profit-Maximizing Multiple-

Slot

Fix ǫ > 0. Let Ψ(z) ≡ (Ue/ǫ)z(ǫ/e).
At time t, let z(t) be fraction of budget spent,

Et ≡
�

s | bs(t) ≤
V

1 + Ψ(z(t))

�
,

bid bs(t) where

s = arg maxs∈Et
(V − bs(t))α(s).

Note that the bidding strategy is still oblivious of X(t),
however now requires knowing the bids bs(t) and also α(s).
Similar to the performance guarantee of the single-slot profit-
maximizing bidding strategy in Theorem 2.3, the above bid-
ding strategy has a performance guarantee, stated as the
following theorem:

Theorem 3.2. Let Profit denote the profit obtained by
our profit-maximizing bidding strategy. Then for any ǫ > 0,

OPT ≤ ǫB +

�
ln

�
V

ǫbmin

�
+ 2

�
Profit

where bmin is the minimum bid of any bidder and OPT is
the maximum profit obtained by the omniscient bidder.

For revenue maximization, the bidding strategy is similar
to profit maximization except that we can actually find the
slot s in time t to maximize the revenue. This is because,
the revenue obtained on bidding bs(t) is V X(t)α(s). Given
that α(s) is a decreasing function, maximizing V X(t)α(s)
is equivalent to minimize s, i.e., to find the rank s as low as
possible. Since the efficiency condition imposes that the slot
we win have bs(t) ≤ V

Ψ(z(t))
, our bid should be exactly that.

Thus we have a bidding strategy for revenue-maximizing
multiple-slot auctions which is exactly the same as that for
single-slot auctions in Section 2, which has the desirable
property of obliviousness.

Theorem 3.3. Let Revenue be the revenue obtained by
our revenue-maximizing bidding strategy and OPT the max-
imum revenue obtained by the omniscient bidder. Assuming
that OPT does not contain any item with bs(t) > V , then

OPT ≤ (ln(V/bmin) + 2) Revenue

where bmin is the minimum bid of all bidders.

4. EXPERIMENTAL EXPLORATION
In this section we conduct preliminary experiments evalu-

ating our bidding algorithms for both synthetic data as well
as some limited real-world bidding data.

4.1 Simulation and Strategy Modification
We now discuss an experiment for single-slot auctions that

points out a weakness of the bidding strategy. We then
modify the strategy which, although having the same the-
oretical guarantee, performs much better empirically. As a
negative, the strategy does not remain oblivious any more:
it requires knowledge of X(t), the traffic function and also
α, the clickthrough-rate of the slot.

Figure 1 shows the performance of our algorithm in a sim-
ulation against bidders whose bids are random variables.
The budget of the bidder is $1000 and value V = $8.00.
Figure 1 shows our strategy obtains around 40% of that ob-
tained by the omniscient bidder (the theoretical bound is
around 13%). The advertiser stops overbidding very early,
at around t = 200, and has an unspent budget of $425.

The reason for the above weakness is that the strategy is
unaware of the time remaining in the auction. It stops over-
bidding too early, missing out possible advantageous bids
later on. Thus a potential performance improvement is snip-
ing towards the end of the auction. At time t, suppose the
fraction of budget remaining is y(t) = 1 − z(t). Moreover
assume we know future click traffic X(τ )α for t < τ ≤ T .
Thus the maximum number of clicks in the remaining time

is
R T

t
X(τ )α ·dτ , and bidding at most y(t)·BR

T

t
X(τ)α·dτ

from time

t to T would avoid exhausting the budget. Therefore the
modified bidding strategy is as follows.

Bidding Strategy: Profit-Maximizing Single-

Slot with Sniping

Fix ǫ > 0. Let Ψ(z) ≡ (Ue/ǫ)z(ǫ/e).
At time t, if fraction of budget spent is z(t), bid

max

(
V

1 + Ψ(z(t))
,

(1 − z(t)) · BR T

t
X(τ )α · dτ

)
.



On running the bidding strategy on the simulation (Refer
Figure 1) we found that the strategy attained more than
70% of that of the omniscient bidder and ended up with
unspent budget of around $50.
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Figure 1: Performance comparison of various bidding

strategies in presence of random bidders. Each bidder

bids a price uniform random between $4.00 and $6.00.

Modified Strategy attains around 70% of that obtained

by Omniscient Bidder. It emulates original strategy up

to time slot 800.

Thus it does much better than the original strategy, al-
though it requires the knowledge of X(t) and α. In fact,
as we prove next, the modified bidding strategy with snip-
ing always performs at least as well as the original strategy,
implying that Theorem 2.3 holds for the modified bidding
strategy as well.

Theorem 4.1. The modified bidding strategy using snip-
ing always obtains at least as much profit as the original
bidding strategy.

Proof. We proof the theorem by showing that whenever
the original strategy wins a bid, the modified strategy also
wins. Let p1(t) denote the first term of the modified bid
function, and p2(t) denote the second term of the modified
bid function. Since Ψ(z(t)) is monotone increasing in term
of time t, p1(t) = V/(1+Ψ(z(t))) is monotone decreasing in
t. Consider the first time t0 when p2(t0) > p1(t0). If such
t0 does not exist, the modified bidding strategy is identical
to the original bidding strategy and the theorem is trivially
proved. Thus we assume that t0 ≤ T exists. Next we claim
that p2(t) is monotone increasing for all t ≥ t0. If this is true,
then since p2(t) monotone increasing and p1(t) monotone
decreasing, thus p2(t) ≥ p1(t) for all t ≥ t0.

For simplicity, let α = 1. Denote the second term

p2(t) ≡
(1 − z(t))BR T

t
X(τ )d(τ )

=
F (t)

G(t)

where F (t) ≡ (1 − z(t))B, G(t) ≡
R T

t
X(τ )d(τ ).

Next we prove that p2(t+1) > p2(t). Notice that F (t+1)
is budget remaining at time t + 1, thus it is equal to bud-
get remaining at time t, F (t), minus money spent at time t.
Since money spent at time t is at most X(t) max{p1(t), p2(t)}
= X(t)p2(t), thus

F (t + 1) ≥ F (t) − X(t)p2(t) = F (t)

�
1 − X(t)

G(t)

�
.

Since

G(t + 1) = G(t) − X(t) = G(t)

�
1 − X(t)

G(t)

�
,

thus

p2(t + 1) =
G(t + 1)

F (t + 1)
≥ G(t)

F (t)
= p2(t).

Since p1(t) is monotone decreasing in t, and p2(t) is monotone
increasing when t ≥ t0, thus the modified bidding strategy
coincides with the original strategy up to time t0 and then
switches to the sniping strategy. Since the sniping strategy
is defined to never exceed the budget, the modified bidding
strategy never exceeds its budget.

The above sniping heuristic can be generalized to the
multiple-slot case and it is formally described below. No-
tice that the theoretical performance bound of Theorem 4.1
does not generalize here, even though we will show in the
next subsection that the general sniping heuristic improves
bidding performance significantly and exhausts budgets in
most experiments.

Bidding Strategy: Multiple-Slot with Sniping

At time t, let z(t) denote fraction of budget spent,
ρ = Ψ(z(t))

For each slot s, if ρ > πs(t)
ws(t)

& bs(t) ≤ (1−z(t))B

α(s)
R

T

t
X(τ)dτ

:

ρ = πs(t)
ws(t)

Et = {s | πs(t)
ws(t)

) ≥ ρ}
bid bs(t) where s = arg maxs∈Et

πs(t)

4.2 Evaluation using Real Bidding Data
Next we report some preliminary experimental results on

evaluating bidding algorithms for multiple-slot auctions us-
ing real bidding data. Due to lack of publicly available bid-
ding data set, we manually collected bidding prices asso-
ciated with each position from the Overture webpage [1].
We launched an Internet Explorer browser visiting Over-
ture view bids website, and periodically refreshed the web-
page and downloaded bidding data from it. Due to the
website’s anti-crawling policy, we had to periodically an-
swer randomly generated computer tests to keep the crawl-
ing process alive. Given all the obstacles, we still managed to
download data for a couple of weeks, for one of the most dy-
namic keyword “auto insurance”. Each time slot is roughly
1 minute, since we found price changes for this keyword
for roughly every one minute. For T = 1842, B = $1000,
and three different values V = 8.0, 10.0, 12.0, we evaluated
both profit-maximizing and revenue-maximizing bidding al-
gorithms, with and without sniping. 4

We observe that the performance of these algorithms de-
pend crucially on L, U , the minimum and maximum effi-
ciency ratios of all the slots. If we use U = V/bmin and
V = 8.0, bmin = 0.1, L = 0.1, we get a performance ratio
of 27%, close to the worst-case guarantee 1/ ln(eU/L). On

4We also need to know X(t) and α(s) for comparison pur-
poses. For simplicity, we set X(t) = 1 and α(s) = 1− sd for
a small constant d for all the experiments. Other reasonable
values of X(t) and α(s) lead to similar results and omitted.



the other hand, if we use bmin = 0.9 as it is a better em-
pirically observed lower bound for almost all time periods
for this keyword, and L = 4.5, ALG/OPT turns out to be
53%, with budget remaining $225. With sniping deployed,
the performance improves to 68%, and budget remaining
becomes almost zero.

Since results are very similar for different parameter val-
ues, we summarize them in Table 1. For all these experi-
ments, we use U = V/bmin − 1 for profit maximization and
U = V/bmin for revenue maximization, and bmin = 0.9. The
lower bound L is optimized for each instance without snip-
ing, and it remains the same for the sniping version. For
all the examples we run, sniping improves the bidding per-
formance significantly while exhausting the budget . The
preliminary results in Table 1 seems to tell us, for almost all
values, the performance ratio (ALG/OPT) is around 50%
without sniping, and 67% with sniping.

Profit-Maximization Bidding Algorithm
ALG budget ALG

V OPT ALG/OPT left ALG/OPT
(sniping)

8.0 5172.5 2751.3 225.5 3540.9
53.2% 68.5%

10.0 6894.4 4058.6 116.1 4606.6
58.9% 66.8%

12.0 8616.2 4462.9 240.8 5842.1
51.8% 67.8%

Revenue-Maximization Bidding Algorithm
8.0 6887.4 3627 194.7 4505.4

52.7% 65.4%
10.0 8609.3 4234.5 236.4 5565

49.2% 64.6%
12.0 10331.1 5080.8 239.8 6700.8

49.2% 64.9%

Table 1: Performance on “Auto Insurance” for both

profit and revenue maximizations.

5. EXTENSIONS AND OPEN QUESTIONS
In this paper we investigated budget constrained bidding

strategies in keyword auctions and converted them to vari-
ants of online knapsack problems. We focused on the sin-
gle keyword case, and looked at strategies for both single-
slot and multiple-slot cases. We compared performance of
our strategies with that of an omniscient bidder who knows
every bidder’s bid in advance. This competitive analysis
framework translated the bidding problem to online algo-
rithms for (multiple-choice) knapsack problems. In the case
of single-slot auctions, our algorithms suggest oblivious strate-
gies for both profit and revenue maximizations. The oblivi-
ousness is a very desirable property in any bidding strategy.
In the multiple-slot case, our bidding strategy for profit max-
imization is no longer oblivious and requires knowledge of
the various bids and click-through-rates of slots. However,
for revenue maximization, it still remains oblivious.

The algorithms in the paper can be extended to the gen-
eral case where there are multiple keywords and each key-
word has multiple positions. The competitive ratio would
now have V replaced by Vmax, where Vmax is the maximum
valuation for all keywords.

We use worst-case competitive analysis, comparing our
bidding strategy with the omniscient bidder who know every-

thing in advance. In practice, other bidders do not behave
in the worst-case but bid according to their own strategies.
It would be interesting if one could attain a better bidding
strategy with some assumptions on the strategies used by
other agents. Incorporating previous work on stochastic
knapsack problems together with average-case analysis (e.g.
Lueker [17]) might be an essential ingredient.

There is a small gap of 1 in the lower and upper bounds
for the competitive ratio of the online knapsack problem,
and the gap becomes 2 for the multiple-choice case. It will
be nice to close these gaps from a theoretical point of view.
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