
Online Knapsack Problems

Deeparnab Chakrabarty

Dept. of Comb. and Opt.

University of Waterloo

Waterloo, ON N2L 3G1, Canada

deepc@math.uwaterloo.ca

Yunhong Zhou

Rocket Fuel Inc.

One Lagoon Dr.

Redwood Shores, CA 94065

yzhou@rocketfuelinc.com

Rajan Lukose

HP Research Labs

1501 Page Mill Rd

Palo Alto, CA 95304

rajan.lukose@hp.com

Abstract

Since no competitive online algorithms exist for general knapsack problems, we consider online
variants of knapsack problems with two assumptions: (i) the weight of each item is very small
compared to the knapsack capacity; (ii) the value-to-weight ratio of each item is lower and upper
bounded by two positive constants L and U . We design a deterministic threshold-based algorithm
for the online knapsack problem achieving a provably optimal competitive ratio ln(U/L) + 1. We
also extend the online algorithm to variations of knapsack problems, include the multiple knapsack
problem, the multiple-choice knapsack problem, and the generalized assignment problem, and discuss
about their applications to sponsored search auctions1.

1 Introduction

In this paper we consider the online version of variants of knapsack problems. The most basic
problem we consider is the classic 0/1 knapsack problem: Given a knapsack of capacity B, m items
where item j has value vj and weight wj , the goal is to obtain a subset of items having maximum
value with the total weight being at most B. The most general problem we consider is the generalized
assignment problem (GAP): Given a set A of n knapsacks (or bins) of capacity B1, · · · , Bn, a set Q
of m items with item j having a value vij and weight wij for bin i, the goal is to find an allocation of
items to bins such that the total weight in each bin does not exceed the capacity and the total value
across bins is maximized.

We devise algorithms for online versions of these knapsack problems. That is, the set of items
Q is not known at the beginning and items arrive one at a time. At each instant, the algorithm
must decide what to do with the item (place it in a bin or discard it), and the decision once made is
irrevocable - discarded items cannot be recalled back and items once allocated cannot be de-allocated.

We analyze the performance of our algorithms using competitive analysis. That is, given any
set of items J , we compare the value obtained by our algorithms to the best value that could have
been obtained by any (computationally all-powerful) “offline” algorithm who has complete knowledge
about the set of items. Comparing with such an all powerful benchmark has its difficulties - as we
make clear later, if one makes no assumption then no algorithm with constant competitive ratio is
possible. We make the following two assumptions throughout the paper:

1. The weight of each item is much smaller than the capacity of the bins. In particular, there is
an ǫ > 0 very close to 0, such that wij/Bi ≤ ǫ for all i ∈ A, j ∈ Q. 2

1A preliminary version of this work bases on this application appeared in [3]
2In fact, for the sake of brevity of notation and simplicity of expressions, throughout the paper all our results will be

states assuming ǫ = 0; all factors need to be multiplied a factor of error(ǫ) for the precise factor, where error(ǫ)→ 1 as
ǫ→ 0. We show this factor once and avoid repeating the same argument all the time.

1

2. The value-to-weight ratios are neither too high, nor too small. That is, there exists U, L > 0
such that

L ≤
vij

wij
≤ U, ∀ i ∈ A, j ∈ Q.

Our main results are a (ln(U/L)+2)-competitive algorithm for online generalized assignment prob-
lem (ON-GAP) and the online multiple-choice knapsack problem (ON-MCKP), and a (ln(U/L)+1)-
competitive algorithm for the 0/1 knapsack problem (ON-KP) and the multiple knapsack problem
(ON-MKP). For the cases of the single knapsack problem, we show no algorithm, even allowing ran-
domization, can achieve a competitive ratio better than (ln(U/L) + 1). Therefore, the competitive
ratios of our algorithms for ON-KP and ON-MKP are optimal, while for ON-GAP and ON-MCKP
they are off from the optimal by at most 1. All our algorithms are simple and deterministic.

1.1 Related Work

The offline knapsack problem and its variations are well studied in the computer science and op-
erations research communities. For a acomprehensive treatment of the topic, see the textbook by
Kellerer et al. [6]. The classic 0/1 knapsack problem is NP-complete, as is true for most of its variants.
Both the 0/1 knapsack problem (KP) and the multiple-choice knapsack problem (MCKP) accept an
FPTAS [6]. The multiple knapsack problem (MKP) is slightly harder as it has only a PTAS [4] and
does not have an FPTAS unless P=NP. The generalized assignment problem (GAP) is APX-hard.

The online knapsack problem was first studied by Marchetti-Spaccamela and Vercellis [9] who
show that no non-trivial competitive algorithms existed for the general case of the online knapsack
problem. To see this, consider the case where the capacity B = 1 and consider two input sequences
both having two items, σ1 = {(1, 1), (0, 1)} and σ2 = {(1, 1), (∞, 1)}. Its easy to see any deterministic
online algorithm will be infinitely worse than the omniscient algorithm on at least one of the inputs.
It is not too hard to generalize this argument for randomized online algorithms as well.

Besides giving the impossibility result, [9] study the online knapsack problem in the average case
setting with the values and weights of the items being picked from a fixed distribution and give
an online algorithm which, in our setting, gives a value an additive factor away from the optimal.
Lueker [8] improves the additive factor and gives an optimal algorithm in this setting. More general
stochastic knapsack problems are considered by Papastavrou et.al [11, 7] and Van-Slyke and Young
[12]. Other variants of the online knapsack problem like the removable online knapsack problems [5]
and online partially fractional knapsack problems [10] have also been studied recently.

As per our knowledge, we do not know of any work on the online knapsack problem with the
assumptions that we make. However, recently in a series of works, Buchbinder and Naor [1, 2] design
online algorithms for fractional versions of general packing problems; our allocation problems are
also packing problems. One can derive O(ln(U/L))-competitive online algorithms for our problems
using their framework. Nevertheless, we believe our algorithms are much simpler for the special case
of knapsack problems and furthermore our results are either optimal or off from the optimal by at
most an additive factor of 1.

2 The Online Knapsack Problem

In this section we first present a deterministic algorithm for the online knapsack problem achieving
competitive raio of ln(U/L) + 1. The algorithm works against all adversaries with adaptive input
sequences. Next we prove that any algorithm (either deterministic or randomized) can not achieve
a competitive ratio lower than ln(U/L) + 1. Thus our algorithm achieves the optimal competitive
ratio. In the remainder of the paper, e denotes the base of the natural logarithm.

The idea of the algorithm is simple. Early on, we should pick any item which arrives. As the
knapsack fills, we should be more and more selective, that is, we pick items iff the value to weight
ratio exceeds a certain function of the fraction of the knapsack filled. The precise function, in fact,
can be obtained by solving a linear program, however, we only present the final algorithm for the
sake of brevity.

2

Algorithm 1 ON-KP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
When item j arrives, let zj be the fraction of capacity filled, pick element j iff j doesn’t overfill the
knapsack and

vj

wj

≥ Ψ(zj).

The algorithm is presented in Algorithm 1 ON-KP-Threshold. Observe that for z ∈ [0, c] where
c ≡ 1

1+ln(U/L) , Ψ(z) ≤ L, thus the algorithm will pick all items available until c fraction of the

knapsack is filled. In fact, we will assume henceforth Ψ(z) = L for z ∈ [0, c]. When z = 1, Ψ(z) = U ,
and since Ψ is strictly increasing, the algorithm will never over-fill the knapsack.

Theorem 2.1 ON-KP-Threshold has a competitive ratio of ln(U/L) + 1.

Proof: Fix an input sequence σ. Let the algorithm terminate filling Z fraction of the knapsack and
obtaining a value of A(σ). Let S and S∗ respectively be the set of items picked by the Algorithm
ON-KP-Threshold and the optimum. Denote the weight and the value of the common items by
W ≡

∑

j∈(S∩S∗) wj and P ≡
∑

j∈(S∩S∗) vj . For each item j not picked by the algorithm, its efficiency

is < Ψ(zj) ≤ Ψ(Z) since Ψ(z) is a monotone increasing function of z. Thus,

OPT(σ) ≤ P + Ψ(Z)(B − W)

where OPT(σ) is the maximum value obtained by an offline algorithms given input σ. Let
v(S \ S∗) ≡

∑

j∈(S\S∗) vj , then A(σ) = P + v(S \ S∗). The above inequality implies that

OPT(σ)

A(σ)
≤

P + Ψ(Z)(B − W)

P + v(S \ S∗)
. (1)

Since each item j picked in S must have efficiency at least Ψ(zj) where zj is the fraction of the
knapsack filled when the jth item arrives, we have

P ≥
∑

j∈S∩S∗

Ψ(zj)wj , call this P1 (2)

v(S \ S∗) ≥
∑

j∈S\S∗

Ψ(zj)wj , call this P2. (3)

Since OPT(σ) ≥ A(σ), Eq.(1) implies

OPT(σ)

A(σ)
≤

P + Ψ(Z)(B − W)

P + v(S \ S∗)
≤

P1 + Ψ(Z)(B − W)

P1 + v(S \ S∗)
≤

P1 + Ψ(Z)(B − W)

P1 + P2
(4)

By monotonicity of Ψ(), we get P1 ≤ Ψ(Z)w(S ∩ S∗) = Ψ(Z)W . Note that P1 + P2 =
∑

j∈S Ψ(zj)wj . Plugging in the values of P1 and P2 we get

OPT(σ)

A(σ)
≤

Ψ(Z)B
∑

j∈S Ψ(zj)wj
≤

Ψ(Z)
∑

j∈S Ψ(zj)∆zj
(5)

where ∆zj = zj+1 − zj = wj/B for all j.
Based on the assumption that the weights are much smaller than B, we can approximate the

summation via an integration (refer to the remark following the proof). Thus,

3

∑

j∈S

Ψ(zj)∆zj ≈

∫ Z

0

Ψ(z)dz

=

∫ c

0

Ldz +

∫ Z

c

Ψ(z)dz

= cL +
L

e

(Ue/L)Z − (Ue/L)c

ln(Ue/L)

=
L

e

(Ue/L)Z

ln(Ue/L)
=

Ψ(Z)

ln(U/L) + 1
.

Along with Eq.(5), this completes the proof. 2

Remark: For the above approximation equation, we rely on assumption 1 (the weights are much

smaller than the capacity). To be precise, since zj+1−zj ≤ ǫ, we get
∑

j∈S Ψ(zj)∆zj ≥
∫ Z−ǫ

0 Ψ(z)dz =
Ψ(Z)

ln(U/L)+1 ·(Ue/L)−ǫ. Thus, the competitive factor must be multiplied by error(ǫ) := (Ue/L)ǫ which

tends to 1 as ǫ tends to 0. As mentioned in the introduction, we will assume ǫ = 0 and avoid multi-
plying this factor everywhere to decrease notation.

2.1 A Matching Lower Bound

In this section we use Yao’s minimax technique [13] to get a lower bound on the competitive ratio of
the online knapsack problem, matching the upper bound given in Theorem 2.1.

Theorem 2.2 The competitive ratio of any (possibly randomized) online algorithm for the online
knapsack problem is at least (ln(U/L) + 1).

Proof: Yao’s minimax principle says for any input distribution D and any γ-competitive randomized
algorithm A,

1

γ
≤ min

σ

E[A(σ)]

OPT(σ)
≤ max

deterministic A
Eσ←D

[

A(σ)

OPT(σ)

]

To prove the theorem we specify a distribution D such that

max
deterministic A

Eσ←D

[

A(σ)

OPT(σ)

]

≤
1

ln(U/L) + 1
. (6)

Fix a parameter η > 0. Let k be the largest integer such that (1 + η)k ≤ U/L, i.e., k =

⌊ ln(U/L)
ln(1+η) ⌋. The support of the input distribution D consists of the instances I0, I1, · · · , Ik, where I0

is a stream of B identical items each with weight 1 and value L. I1 is I0 followed by a stream of
B identical items each with weight 1 and value (1 + η)L, and in general Ij+1 is Ij followed by B
items with weight 1 and value (1 + η)j+1L. The distribution D is specified by giving probability pj

to instance Ij (we specify pj’s later).
Given knowledge of this distribution, any deterministic algorithm A can be fully specified by the

vector (f0, f1, · · · , fk), where fi is the fraction of the knapsack it fills with items having efficiency

ratio (1 + η)iL. Note that the fj’s could depend on the pj’s. Also note that
∑k

j=0 fj ≤ 1 as the
algorithm can not over-fill the knapsack. Thus we have

Eσ←D

[

A(σ)

OPT(σ)

]

=

k
∑

i=0

pi

∑i
j=0(1 + η)jfj

(1 + η)i
=

k
∑

j=0

fj

k
∑

i=j

pi(1 + η)j−i

4

Now we specify the pj ’s, pk ≡ 1+η
(k+1)η+1 and p0 = p1 = · · · = pk−1 ≡ η

(k+1)η+1 . Note that
∑

j pj = 1.

Let X ≡ (k + 1)η + 1. For any j,

k
∑

i=j

pi(1 + η)j−i = pk(1 + η)j−k +

k−1
∑

i=j

pi(1 + η)j−i

=
(1 + η)j−k+1

X
+

η

X

k−1
∑

i=j

(1 + η)j−i

=
(1 + η)j−k+1

X
+

η

X
(
(1 + η) − (1 + η)j−k+1

η
)

=
1 + η

X
=

1 + η

(k + 1)η + 1

Thus we get

Eσ←D

[

A(σ)

OPT(σ)

]

=
1 + η

(k + 1)η + 1

k
∑

j=0

fj ≤
1 + η

(k + 1)η + 1
≤

(1 + η)

η ln(U/L)
ln(1+η) + 1

where the inequality uses the fact that
∑k

i=0 fi ≤ 1 and k + 1 ≥ ln(U/L)
ln(1+η) . The proof completes by

setting η → 0 and noting that limη→0
η

ln(1+η) = 1. 2

3 Extensions to Online Knapsack Variants

In this section we extend the algorithm for Online-KP to variants of online knapsack problems,
particularly, the multiple knapsack problem, the generalized assignment problem, and the multiple-
choice knapsack problem.

3.1 The Online Multiple Knapsack Problem

In the multiple knapsack problem, there are n knapsacks (or bins), with capacities B1, · · · , Bn. The
values and weights of items are independent of the bins. For the online version (ON-MKP), one item
arrives at one time and has to be either discarded or put into one of the bins.

The Algorithm ON-MKP-Threshold for ON-MKP works similarly to Algorithm 1. When an
item j arrives, it is put into bin i if its efficiency satisfies the efficiency threshold of that bin at that
instant (i.e., vj/wj ≥ Ψ(zij)), with ties broken arbitrarily. The proof of the following theorem is very
similar to the proof of Theorem 2.1.

Theorem 3.1 ON-MKP-Threshold is (ln(U/L) + 1)-competitive for ON-MKP.

Proof: Let σ be a fixed input sequence and let the algorithm terminate filling Z1, Z2, · · · , Zn fraction
respectively of the n knapsacks obtaining a value of A(σ). Let S be the set of items picked by the
algorithm and let S1, S2, · · · , Sn be the natural partition of S: Si is set of items the algorithm picks
in the ith knapsack.

Let Wi ≡
∑

j∈(Si∩S∗) wj and Pi ≡
∑

j∈(Si∩S∗) vj . As before we have that for each item j not

picked by the algorithm, its efficiency is ≤ Ψ(Zi), for all i. Thus we get

OPT(σ)

A(σ)
≤

∑n
i=1(Pi + Ψ(Zi)(Bi − Wi))
∑n

i=1(Pi + v(Si \ S∗))
.

As in the proof of Theorem 2.1, we have for all i, Pi ≥
∑

j∈Si∩S∗ Ψ(zij)wj where zij is the fraction
of the capacity of the ith knapsack filled when item j arrives. Thus,

OPT(σ)

A(σ)
≤

∑n
i=1(

∑

j∈Si∩S∗ Ψ(zij)wj + Ψ(Zi)(Bi − Wi))
∑n

i=1(
∑

j∈Si∩S∗ Ψ(zij)wj + v(Si \ S∗))
. (7)

5

The numerator is less than
∑n

i=1(Ψ(Zi)Wi + Ψ(Zi)(Bi − Wi) =
∑n

i=1 Ψ(Zi)Bi.

The denominator is equal to
∑n

i=1

(

∑

j∈Si
Ψ(zij) · ∆zij

)

Bi, where ∆zij ≡ zi,j+1 − zij = wj/Bi.

As in the proof of Theorem 2.1, each of the ratios (Ψ(Zi)/
∑

j∈Si
Ψ(zij)∆zij) is less than 1

(ln (U/L)+1)

implying the RHS of Eq.(7) is less than 1
(ln (U/L)+1) . This completes the proof. 2

Since KP is a special case of MKP, thus the lower bound of ln(U/L) + 1 in Theorem 2.2 also
applies to ON-MKP. Therefore Algorithm ON-MKP-Threshold gives the optimal competitve ratio
of ln(U/L) + 1 for ON-MKP.

3.2 The Online Generalized Assignment Problem

In the online generalized assignment problem (ON-GAP), there are n bins with capacities B1, · · · , Bn.
At each time instant, an item j comes with value vij and weight wij for bin i. The goal is to allocate
the item to a bin or discard it. The algorithm ON-GAP-Threshold works as follows: for each
item, pick the bins which satisfy the threshold constraint of the single knapsack algorithm and assign
it to the bin to which it gives the highest value.

Algorithm 2 ON-GAP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
Whenever item j arrives, let z1, z2, · · · , zn be the fraction of the bins filled already.

Ej ≡

{

i ∈ [n] |
vij

wij

≥ Ψ(zi)

}

,

allocate item j to the bin i in Ej with maximum vij , as long as it doesn’t overshoot the capacity.

Theorem 3.2 Algorithm ON-GAP-Threshold is (ln(U/L) + 2)-competitive for ON-GAP.

Proof: Fix an input sequence σ of the item set Q. Suppose the algorithm ON-GAP-Threshold fills
the bins to capacity Z1, Z2, · · · , Zn. Let Si, S

∗
i ⊂ Q be the subset of items allocated by the algorithm

and optimum respectively to bin i. Also let S ≡ ∪iSi and S∗ ≡ ∪iS
∗
i . Then OPT(σ) =

∑

i vi(Si)
and A(σ) =

∑

i vi(S
∗
i).

We partition the set S∗i \ S into X∗i and Y ∗i . X∗i contains all items j which are not picked in Si

since its efficiency is less than Ψ(zij) < Ψ(Zi), zij be the fraction of the ith bin filled when the jth
item arrived. Y ∗i are all those elements which satisfy the efficiency condition but is allocated to a
different bin since it gives more value in that bin. Thus for all i, the items in Y ∗i are allocated by
the algorithm but not in bin i.

Observe that the value obtained by the algorithm on allocating items of Y ∗i (call it vi(Y
∗
i)) is

more than that obtained by the optimum algorithm. This is because the algorithm had an option of
allocating these items to the bin to which the optimum algorithm allocated (that is i) but chose a
more valuable bin instead. Thus,

n
∑

i=1

vi(Y
∗
i) ≤

n
∑

i=1

vi(Si) = A(σ). (8)

As in the proof of Theorems 2.1 and 3.1, we have the following bound on the remaining items
picked by the optimum algorithm,

∑n
i=1(vi(S

∗
i) − vi(Y

∗
i))

∑n
i=1 vi(Si)

≤

∑n
i=1 Ψ(Zi)Bi

∑n
i=1

(

∑

j∈Si
Ψ(zij) · ∆zij

)

Bi

≤ ln (U/L) + 1.

Along with Eq.(8), we complete the proof. 2

6

3.3 The Online Multiple-Choice Knapsack Problem

The online multiple choice knapsack problem (ON-MCKP) is a generalization of the online knapsack
problem. At each time instant t, a set of items Nt arrives and the algorithm has to choose at most one
item from the set. The goal again is to get as high a value without violating the capacity constraint
of the knapsack. The algorithm for ON-MCKP is a simple modification of the algorithm ON-KP-

Threshold: for every set Nt, find the elements which satisfy the efficiency threshold as per the
online knapsack algorithm, and choose the one with maximum value.

Algorithm 3 ON-MCKP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) denote the fraction of capacity filled,

Et ≡

{

s ∈ Nt |
vs

ws

≥ Ψ(z(t))

}

,

pick element s ∈ Et with maximum vs and add it to the knapsack as long as it doesn’t overshoot the
capacity.

The above algorithm has a competitive ratio of ln(U/L) + 2, stated as the following theorem.

Theorem 3.3 Algorithm ON-MCKP-Threshold has a competitive ratio of (ln(U/L) + 2).

Proof: The proof is similar to that of Theorem 3.2. For any input sequence of sets σ, let A(σ) be
the value obtained by the above algorithm and OPT(σ) be the maximum value obtainable. We claim
that for any σ,

OPT(σ) −A(σ) ≤ (ln(U/L) + 1)A(σ).

Let S and S∗ be the set of items picked by the algorithm and the optimum, respectively. Let
V = v(S ∩S∗) denote the value of the common items, W = w(S ∩S∗) denote the weight. As before,
we want to bound the value of the items picked by OPT but not by ALG. We partition the items
picked by OPT and not by ALG into two: items which do not satisfy the efficiency condition, and the
items which do. Thus the first kind of items have efficiency less than Ψ(z(t)), while for the second
kind of items, the total value of these items is less than A(σ) since ALG picks the most valuable item
from the same set which satisfy the efficiency condition. We can exclude the second type of items
from further consideration since they in total result in at most a value of A(σ). Now we can assume
that all items have efficiency < Ψ(z(t)) at time t, thus it returns to a similar situation as in the proof
of Theorem 2.1. A similar proof shows that the above claim holds. 2

4 Applications and Concluding Remarks

Since many real-world discrete decision problems can be modeled as variants of knapsack problems,
we believe online algorithms we designed in this paper can be applied broadly. Particularly, we
mention some applications to Internet advertising.

As an example, suppose we want to devise an online ad-serving algorithm for the auctioneer
to maximize its revenue. There are a set of advertisers (bidders) while each of them has her own
budget. Each time when a query arrives, advertisers will bid on different prices for this query and
the auctioneer will select one ad to serve the user query. We can treat each bidder as a knapsack
with its capacity as the bidder’s budget. In such cases, the value (to the auctioneer, here) vij and the
weight wij both equal to the bid of bidder i on query j. The problem can be modeled as an ON-GAP
with L = U = 1. Algorithm ON-GAP-Threshold reduces to the following greedy algorithm: give
the item to the highest bidder with sufficient budget remaining. The competitive ratio of this greedy
algorithm is known to be 2 and this is implied by Theorem 3.2.

As another example, keyword auctions are used by Internet search engines like Google, Yahoo!
and MSN to sell advertising positions in the search engine results page to advertisers. In fact, this

7

work was motivated by this application and details can be found in [3]. For any given keyword,
hundreds of bidders bid on it and are allowed to dynamically revise their bids. Usually there is a
minimum bid bmin (specified by the system) for each keyword. At any moment of time a query is
made for the keyword, the search engine allocates the highest S bidders (b1 to bS , say) to the S slots
and displays their ads. The click-through-rate (CTR) of a slot s, denoted as α(s), is the probability
for an ad on slot s to be clicked. If an advertisement on slot s is clicked, the advertiser is charged
the bid of the bidder bs+1.

Suppose we want to devise a bidding strategy for an advertiser in keyword auctions. The default
advertiser usually associates a value-per-click V (eg. expected revenue) for the keyword. It also has
a budget B over a time period T (24 hours if the budget is daily).

We discretize the time T into periods {1, 2, · · · , T } so that no bidder changes his bid in the time
interval [t, t + 1). Let X(t) denote the expected number of queries for the keyword in this interval.
Thus, if at time t the advertiser bids minimum ps(t) to get slot s, thus she pays ps(t)X(t)α(s) and
his expected value is (V − ps(t))X(t)α(s). Our problem can be stated thus: At each time t, bid
appropriately to obtain position s, so as to maximize revenue while keeping total cost within budget.
This can be modeled as an online multiple-choice knapsack problem (ON-MCKP) where at time t a
set of items arrive:

Nt = {s ∈ S | vts ≡ (V − ps(t))X(t)α(s), wts ≡ ps(t)X(t)α(s)} .

If there are multiple keywords, we can model each keyword at each time interval as an itemset,
while Vk denotes the expected value-per-click for keyword k. In the case where there is one ad
slot in the search engine result page, it degenerates into the online knapsack problem (ON-KP).
Bidding algorithms corresponding to online algorithms for ON-MCKP (or ON-KP) can be designed
accordingly.

As a concluding remark, the upper and lower bounds of competitive ratios for both MCKP and
GAP differ by 1, and it will be interesting to close the gap.

References

[1] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing problems.
In Proc. ESA, pages 689–701, 2005.

[2] N. Buchbinder and J. Naor. Improved bounds for online routing and packing via a primal-dual
approach. In Proc. FOCS, pages 293–304, 2006.

[3] D. Chakrabarty, Y. Zhou, and R. Lukose. Budget constrained bidding in keyword auctions
and online knapsack problems. Workshop on Sponsored Search Auctions, 2007. Available at
http://www.hpl.hp.com/personal/Rajan Lukose/papers/WWW2007-SSA.pdf

[4] C. Chekuri and S. Khanna. A polynomial time approximation scheme for the multiple knapsack
problem. SIAM Journal on Computing, 35(3):713–728, 2005.

[5] K. Iwama and S. Taketomi. Removable online knapsack problems. In Proc. ICALP, pages
293–305, 2002.

[6] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[7] A. J. Kleywegt and J. D. Papastavrou. The dynamic and stochastic knapsack problem. Opera-
tions Research, 46(1):17–35, 1998.

[8] G. S. Lueker. Average-case analysis of off-line and on-line knapsack problems. Journal of
Algorithms, 29(2):277–305, 1998.

[9] A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. Mathematical
Programming, 68:73–104, 1995.

[10] J. Noga and V. Sarbua. An online partially fractional knapsack problem. In Proc. 8th Sym.
Parallel Architectures, Algorithms and Networks, pages 108–112, 2005.

8

[11] J. D. Papastavrou, S. Rajagopalan, and A. J. Kleywegt. The dynamic and stochastic knapsack
problem with deadlines. Management Science, 42(12):1706–1718, 1996.

[12] R. van Slyke and Y. Young. Finite horizon stochastic knapsacks with applications to yield
management. Operations Research, 48:155–172, 2000.

[13] A. C.-C. Yao. Probabilistic computations: towards a unified measure of complexity. In Proc.
FOCS, pages 222–227, 1977.

9

