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Abstract The main focus of this paper is a pair of new approximation@tigms for
certain integer programs. First, for covering integer paogs{mincx: Ax>b,0 <

x < d} whereA has at mosk nonzeroes per row, we givekaapproximation algo-
rithm. (We assum@, b, c,d are nonnegative.) For aty> 2 andes > 0, if P £ NP this
ratio cannot be improved th— 1 — &, and under the uniqgue games conjecture this
ratio cannot be improved to— €. One key idea is to replace individual constraints
by others that have better rounding properties but the semeegative integral solu-
tions; another critical ingredient is knapsack-cover imdiies. Second, for packing
integer programgmaxcx: Ax< b,0 < x < d} whereA has at mosk nonzeroes per
column, we give d2k? + 2)-approximation algorithm. Our approach builds on the it-
erated LP relaxation framework. In addition, we obtain ioyed approximations for
the second problem whén= 2, and for both problems when evely is small com-
pared tob;. Finally, we demonstrate a 1¥6-inapproximability for covering integer
programs with at most two nonzeroes per column.

Keywords Integer programmingApproximation algorithms LP rounding

1 Introduction

We investigate the following problem: what is the best passapproximation ratio
for integer programs where the constraint matrix is spafsgiut this in context we
recall a famous result of Lenstra1]: integer programs with a constant number of
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variables or a constant number of constraints can be sofvpdlynomial time. Our
investigations analogously ask what is possible if eaclsiraimt involves at mosk
variables, or if each variable appears in at nfogbnstraints.

Rather than consider all integer programs, we consider jpatking and cover-
ing problems. Such programs have only positive quantitigbéir parameters. One
reason for this is thaveryinteger program can be rewritten (possibly with additional
variables) in such a way that each constraint contains at feariables and each
variable appears in at most 3 constraints, if both positicereegative coefficients are
allowed. Aside from this, packing programs and coveringgpains capture a sub-
stantial number of combinatorial optimization problemsl ame interesting in their
own right.

A covering(resp packing integer programshorthanded as CIP (resp. PIP) hence-
forth, is an integer program of the forfmincx: Ax> b,0 < x < d} (resp.{maxcx:
Ax<b,0< x<d})with A b, c,d nonnegative and rational. Note that CIPs are some-
times calledmultiset multicovewwhenA andb are integral. We call constraints< d
multiplicity constraintgalso known agapacity constraings We allow for entries of
d to be infinite, and without loss of generality, all finite eéetrofd are integral. An
integer program with constraint matriis k-row-sparseor k-RS if each row ofA
has at mosk entries; we defin&-column-sparse (k-CS)milarly. As a rule of thumb
we ignore the cask= 1, since such problems trivially admit fully polynomiairte
approximation schemes (FPTAS's) or poly-time algorithifise symbol0 denotes
the all-zero vector, and similarlydenotes the all-ones vector. For covering problems
ana-approximation algorithnmeturns a feasible solution with objective value at most
o times optimal; for packing, the algorithm returns a feas#mlution with objective
value is at least Ao times optimal. We usa to denote the number of variables and
mthe number of constraints (i.e. the number of columns and i, respectively).
Throughout the papeA will be used as a matrix. We Iét; denote theth column of
A, and leta; denote théth row of A.

1.1 k-Row-Sparse Covering IPs

The special case of 2-RS CIP whekeb,c,d are 0-1 is the same as Min Vertex
Cover, which isAPX-hard. More generally, 0-&8-RS CIP is the same &sBounded
Hypergraph Min Vertex Cover (a.k.a. Set Cover with maximuegtiencyk) which

is not approximable t& — 1 — € for any fixede > 0 unlessP=NP [9] (k— &€ under
the unique games conjectured). This special case is known to admit a matching
positive result: set cover with maximum frequerkayan bek-approximated by direct
rounding of the naive LPI1[] or local ratio/primal-dual method<].

The following results are known for other special casek-BS CIP with multi-
plicity constraints: Hochbauni f] gave ak-approximation in the special case tiat
is 0-1; Hochbaum et al1[f] and Bar-Yehuda & Rawitzd] gave pseudopolynomial
2-approximation algorithms for the case ttkat 2 andd is finite. For the special
cased = 1, Carr et al. b, §2.6] gave &-approximation, and Fujito & Yabutal[]
gave a primal-dugk-approximation. Moreovers 10] claim ak-approximation for
generald, however, the papers do not give a proof and we do not seeighfoa-



ward method of extending their techniques to the gerecake. Our first main result,
given in Sectior?, is a simple proof of the same claim.

Theorem 1. There is a polynomial time k-approximation algorithm foRIS CIPs
with multiplicity constraints.

Our approach is to first consider the special case that theraamultiplicity
constraints (i.ed; = +oo for all j); we then extend to the case of finiteia knapsack-
cover inequalitiesusing linear programming (LP) techniques from Carr et @l. [
A (k+ 1)-approximation algorithm is relatively easy to obtain gsktP rounding;
in order to get the tighter ratik, we replace constraints by othéef {-equivalent”
constraints (see Definitios) with better rounding properties. The algorithm requires
a polynomial-time linear programming subroutine.

Independent simultaneous work of Koufogiannakis & Youfi@, 28,29 also
gives a full and correct proof of TheoremTheir approach works for a broad gen-
eralization ofk-RS CIPs and runs in strongly polynomial time. Our approaa$ h
the generic advantage of giving new ideas that can be usexhjorection with other
LP-based methods, and the specific advantage of givingradtgggap bounds (see
Section2.2).

1.2 k-Column-Sparse Packing IPs

Before 2009, no constant-factor approximation was knowkfGS PIPs, except in
special cases. If every entry ofis Q(logm) then randomized rounding provides
a constant-factor approximatioDbemand matchings the special case of 2-CS PIP
where (i) in each column oA all nonzero values in that column are equal to one
another and (ii) no two columns have their nonzeroes in theesavo rows. Shep-
herd & Vetta [35] showed demand matching APX-hard but admits &171 —/5)-
approximation algorithm whed = 1; their approach also gives%}approximation
for 2-CS PIP instances satisfying (i). Results of Chekuale{s] yield a 1154%-
approximation algorithm fok-CS PIP instances satisfying (i) and such that the max-
imum entry ofA is less than the minimum entry of

The special case &¢CS PIP wheré\ b are 0-1 is the same asin-weight k-set
packing hypergraph matching with edges of si&, andstrong independent sets in
hypergraphs with degree at mostlkhe best approximation ratio known for this prob-
lem is(k+1)/2+ ¢ [4] for general weights, ankl/2+ € whenc = 1[19). The best
lower bound is due to Hazan et al.q), who showedQ (k/Ink)-inapproximability
unlessP=NP, even forc = 1.

Our second main result, given in Sectignis the following result.

Theorem 2. There is a polynomial timék? 4 2)-approximation algorithm for k-CS
P1Ps with multiplicity constraints.

We use theterated LP relaxation[36] technique to find an integral solution
whose objective value is larger than the optimum, but vesabme constraints. How-
ever the violation can be bounded. Then we use a colouringeegt to decompose
the violating solution intd(k?) feasible solutions giving us th®(k?)-factor algo-
rithm.



The original arXiv eprint and conference versian]of this work gave @(k?2)-
approximation fok-CS PIP using iterated relaxation plus a randomized decsimpo
tion approach; that was the first approximation algorithmtlids problem with ratio
that depends only ok Subsequently in April 2009, C. Chekuri, A. Ene and N. Korula
(personal communication) obtained@¢k2¥) algorithm using randomized rounding,
and anO(k?)-approximation in May 2009. The latter method was indepatigee-
derived by the authors, which appears in this version. BinBansal et al. J], in
August 2009, gave a simple and eleg@xik)-approximation algorithm based on ran-
domized rounding with a careful alteration argument.

1.3 k-Column-Sparse Covering IPs

Srinivasan $7,3¢] showed thatk-CS CIPs admit a&D(logk)-approximation. Kol-
liopoulos and Youngi5] extended this result to handle multiplicity constraifitsere
is a matching hardness result: itN$-hard to approximatk-Set Cover, which is the
special case wherA b,c are 0-1, better than kn— O(InInk) for any k > 3 [39).
Hence fork-CS CIP the best possible approximation rati®@fogk). A (k+ €)-
approximation algorithm can be obtained by separatelyyapgplan approximation
scheme to the knapsack problem corresponding to each aonstlthough 0-1 2-
CS CIP is Edge Cover which lies iy general 2-CS CIP idP-hard due to Hochbaum
[17], who also gave a bicriteria approximation algorithm. Heve give a stronger in-
approximability result.

Theorem 3. For everye > 0 it is NP-hard to approximate 2-CS CIPs of the form
{minc-x| Ax> b,xis0-1} and {minc-x | Ax > b,x > 0,x integral} within ratio
17/16— ¢ even if the nonzeroes of every column of A are equal and A iedflock
form [ﬁﬂ where each Ais 1-CS.

Our proof modifies a construction of]f we also note a construction ¢if] can
be modified to prové\PX-hardness for the problem.

1.4 Other Work

The special case of 2-RS PIP wheké, c are 0-1 is the same as Max Independent

Set, which is not approximable withity2/°9”**n unlessNP ¢ BPTIME(2°9°"'n)
[27]. On the other handp-approximation of any packing problem is easy to ac-
complish by looking at the best singleton-support solutiérslightly bettern/t-
approximation, for any fixed, can be accomplished by exhaustively guessing the
t most profitable variables in the optimal solution, and thelwiag the resulting-
dimensional integer program to optimality via Lenstrasuie[31].

A closely related problem ik-Dimensional Knapsack, which are PIPs or CIPs
with at mostk constraints (in addition to nonnegativity and multip§c@tonstraints).
For fixedk, such problems admit a PTAS and pseudo-polynomial timerigtgos,
but are weaklyNP-hard; seef1] and [34, Ch. 9] for detailed references.

Whend = 1, a natural way to generalize CIP/PIPs is to allow the objedtinc-
tion to be submodular (rather than linear). For minimizingudmodular objective



subject tok-row sparse covering constraints, the framework of Kowdogakis &
Young [30,28,29)] gives ak-approximation; if alsoA, b are 0-1 (i.e. submodular set
cover) lwata and Nagan@ (] give ak-approximation for alk and Goel et al.17]
give a 2-approximation fok = 2. For maximizing a monotone submodular function
subject tdk-column sparse packing constraints, the algorithm of Biaetsd. [1] gives
aO(k)-approximation algorithm.

1.5 Summary

We summarize our results and preceding ones in Tabtecall also the follow-up
O(k) approximation fok-CS PIPs []. Note that in all four cases, the strongest known
lower bounds are obtained even in the special caseittat, d are 0-1.

k-Column-Sparse k-Row-Sparse

lower bound upper bound lower bound  upper bound
Packing Q(k/Ink) 2k? 42 ni-o() en
Covering | Ink—O(InInk) O(Ink) k—¢ k

Table 1 The landscape of approximability of sparse integer progradur main results are in boldface.

2 k-Approximation for k-Row-Sparse CIPs

By scaling rows suitably and clipping coefficients that @ igh (i.e. settingh; =
min{1,A;}), we may make the following assumption without loss of gatit

Definition 4. A k-RS CIPis an integer prograr{minc-x: Ax>1,0<x<d,xe Z}
where A is k-RS and all entries of A are at most 1.

To begin with, we focus on the casg = + for all j, which we call theun-
bounded k-RS ClRsince it illustrates the essence of our new techniquexlet a
n-dimensional vector of variables amdis a vector of real coefficients. Throughout,
we assume coefficients are nonnegative. When we dpplp vectors we mean the
component-wise floor. That is, tjéh coordinate of a| is | a;j].

Definition 5. A constrainta - x > 1 is p-roundabldor somep > 1 if for all nonneg-
ative real x (a -x> 1) implies(a - |[px| > 1).

Note thatp-roundability impliesp’-roundability forp’ > p. The relevance of this
property is explained by the following proposition.

Proposition 6. If every constraint in an unbounded covering integer pragria p-
roundable, then there is p-approximation algorithm for the program.

Proof. Letx* be an optimal solution to the program'’s linear relaxatidmefic- x* is
a lower bound on the cost of any optimal solution. Thyss* | is a feasible integral
solution with cost at mogt times optimal. O



We make another simple observation.

Proposition 7. The constraintr - x > 1is (14 ¥; aj)-roundable.

Proof. Letp = (1+ 3 a;). Since|t] >t — 1 for anyt, if a -x > 1 for a nonnegative
X, then

a-[px] =Y ai(pxi—L)=pyax—Yyai>p—(p—-1)=1,
| I I
as needed. O

Now consider an unbound&eRS CIP. Since each constraint has at nkosbef-
ficients, each less than 1, it follows from Propositibthat every constraint in these
programs igk+ 1)-roundable, and so such programs adnii & 1)-approximation
algorithm by Propositiof®. It is also clear that we can tighten the approximation ra-
tio to k for programs where the sum of the coefficients in every cairgt(row) is at
mostk — 1. We now show that rows with sum (i — 1,k] can be replaced by other
rows which are&k-roundable.

Definition 8. Two constraintsa -x > 1 and a’ - x > 1 are Z -equivalentif for all
nonnegative integral X,a - x> 1) < (a’-x > 1).

In other words, replacing a constraint by An-equivalent constraint doesn’t af-
fect the value of the CIP.

Proposition 9. Every constraintr - x > 1 with at most k nonzero coefficientsZs -
equivalent to a k-roundable constraint.

Before proving Propositiof, let us illustrate its use.

Theorem 10. There is a polynomial time k-approximation algorithm fotbaninded
k-RS CIPs.

Proof. Using Propositio® we replace each constraint wittZa -equivalenk-roundable
one. The resulting IP has the same set of feasible solutiothdhee same objective
function. Therefore, Propositidghyields ak-approximately optimal solution. [

With the framework set up, we begin the technical part: a lamitmen the proof
of Propositiord.

Lemma 11. For any positive integers k and v, the constrajffti x + x> 1is
k-roundable.

Proof. Let a - x > 1 denote the constraint, i.ey = \—1, o=1for1<i<k Ifx
satisfies the constraint, then the maximumQio, ..., X1 and\—l,xk must be at least
1/k.If x; > 1/kfor somei # kthen|kx | > 1 and sax - |kx| > 1 as needed. Otherwise
X, must be at least/k and so| kx| > v which impliesa - |kx] > 1 as needed. O



Proof of Propositiord. If the sum of coefficients in the constraintds- 1 or less, we
are done by Proposition, hence we assume the sum is strictly greater thari.
Without loss of generality (by renaming) such a constramfithe form

k

_;Xi ai>1 (1)

where0 < a <1,k—1< 50 <k, and then;’s are nonincreasing in

Define thesupportof x to besupp(x) := {i | xi > 0}. We claim that for any two
distinct j,¢, aj + a, > 1. Otherwise, th§; a; < (k—2) +1=k—1. Thus, for any
feasible integrak with | supp(x)| > 2, we havea - x > 1. To express the set al
feasible integral solutions, Iétbe the maximum for which aj = 1 (ort =0 if no
suchi exists), lete denote théth unit basis vector, and let= [1/ai]. Then itis not
hard to see that the nonnegative integral solution set tstcaint (L) is the disjoint
union

{X|x>0,|supp(X)| > 2}w{zgq|1<i<t,z>1zeZ}

2
w{zg |t<i<kz>2,zeZ}W{za|z>V,ze Z}. @
The special case=k (i.e.a1 = ap = --- = ax = 1) is alreadyk-roundable by Lemma
11, so assume< k. Consider the constraint
t k—1
v—1 1
Xi + — X+ =X >1 (3)
i; i:Zrl v v

Every integralk > 0 with | supp(x)| > 2 satisfies constrain8). By also considering
the casessupp(x)| € {0,1}, it is easy to check that constraif®) has precisely Equa-
tion (2) as its set of feasible solutions, i.e. constrad)ti§ Z . -equivalent toax > 1.
If t < k—1, the sum of the coefficients of constraifi) (s k— 1 or less, so it ik-
roundable by Proposition If t = k— 1, constraint§) is k-roundable by LemmaZl
Thus in either case we have what we wanted. O

2.1 Multiplicity Constraints

We next obtain approximation guaranteeven with multiplicity constraintg < d.
For this we useknapsack-cover inequalitie§hese inequalities represent residual
covering problems when a set of variables is taken at maximuitiplicity. Wolsey
[40) studied inequalities like this for 0-1 problems to get anl-dual approximation
algorithm for submodular set cover. The LP we use is similavhat appears in Carr
et al. 5] and Kolliopoulos & Young P5], but we first replace each row withla
roundable one.

Specifically, given a CIRminc-x | Ax> 1,0 < x < d,x € Z} with A d nonnega-
tive, we now define the knapsack cover LP. Note that we afidevcontain some en-
tries equal tor-oo; if dj = 400 and somé hasAj; = 0 our convention is thajjdj = 0.
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Recall,a; is theith row of A andsupp(a;) denotes the seftj : Ajj > 0}. For a sub-

setF of supp(a;) such t_hatzje,: Ajdj <1, defineAi(jF) =min{Ajj,1—-Ycr Aijdj}.
Following [5,25] we define th&knapsack cover LFor our problem to be

KC-LP:{minc-x:nggd;
Vi,VF C supp(a) st. § Ajdj <1: ;:Ai(-F)szlf Aijd; b
2 AT 21 5 A

It is not too hard to check that any integral solution to th® Gétisfies the con-
straints of KC-LP, and thus the solution to the latter is adotound on the value of
the CIP.

Theorem 1. There is a polynomial time k-approximation algorithm foRIS CIPs.

Proof. Using Propositior9, we assume all rows oA are k-roundable. Letx* be
the optimal solution to KC-LP. Defing€ = min{d, |kx* |}, where min denotes the
component-wise minimum. We claim thais a feasible solution to the CIP, which
will complete the proof since the objective valuexag at mosk times the objective
value of KC-LP. In other words, we want to show for each idhata; - X > 1.

Fix any rowi and defind= = {j € supp(a&) | Xj > dj/k}, i.e.F is those variables
in the constraint that were rounded to their maximum muttityl. If F = & then, by
thek-roundability ofa; - x > 1, we have thag; -X=g; - |kx* | > 1 as needed. So assume
F # @. Note that forj € F, we havex; = dj and forj ¢ F, we havexj = |kx |.

If ¥jcr Aijdj > 1 then the constrairg; - X > 1 is satisfied; consider otherwise.
Sincekaj*J >kx; —1forj ¢ F, sincex” satisfies the knapsack cover constraintifor

andF, and since'-\fj':) < 1-73cr Aijd; for eachj, we have

>k(1- jgpAijdj) - ‘{J' Hie supp(ai)\F}‘(l— jgpAijdj)

=k(1—j;AinJ) - ’{J’ L€ supp(ai)\F}’(l— ;Aij?j)

J

SinceF # o and|supp(a)| <k, this givesy ¢ Ai(j':)?j > 1-75cr AjXj. Rear-
ranging, and using the fa¢tj : Ajj > Ai(j':)), we deducey - X> 1, as needed.

For fixedk, we may solve KC-LP explicitly, since it has polynomially nyecon-
straints. For generd&, no method is currently known to solve KC-LP in polynomial
time. However, one can use the ellipsoid method to find aiselut whose objective
is lower than that of KC-LP, and which satisfies the knapsamker constraints cor-
responding to the sé&t = {j : Xj > d;/k}. Note that this is all we need for the above
analysis. Details of how the ellipsoid method finds such atgmi are given in ',

] O



2.2 Integrality Gap Bounds

In discussing integrality gaps f&&RS CIP problems, we say that thaive LP re-
laxationof {minc-x | Ax>b,0 < x < d,x € Z} is the LP obtained by removing the
restriction of integrality. Earlier, we made the assumptibatA;; < b for all i, j;
let us call this theclipping assumptionThe clipping assumption is without loss of
generality for the purposes of approximation guarantemsekier, it affects the inte-
grality gap of the naive LP for unbound&eRS CIP, as we now illustrate. Without
the clipping assumption, the integrality gapkelRS CIP problems can be unbounded
as a function ok; indeed for any integelM > 1 the well-known covering problem
{minxz | [M]x1 > 1,0 < x; } has integrality ga. In instances with the clipping as-
sumption and without multiplicity constraints, the pravsomethods in this section
establish that the integrality gap of the naive LP is at nkostL.

Even under the clipping assumption, it is well-known tkd®S CIPs withmulti-
plicity constraintscan have large integrality gaps — e{gninx; | [M]x>M+1, 0 <
X, X1 < 1} has integrality ga. For bounded instances, the knapsack-cover inequali-
ties represent a natural generalization of the clippingmggion, namely, we perform
a sort of clipping even considering that any subset of theubas are chosen to their
maximum extent.

We have seen that KC-LP has integrality gap at rkasi onk-RS CIP instances.
Our methods also show that if we replace each row wikiraundable one (Proposi-
tion 9), then the corresponding KC-LP has integrality gap at rko¥te are actually
unaware of ank-RS CIP instance witlk > 1 where the integrality gap of KC-LP
(without applying Propositiof) is greater thak; resolving whether such an instance
exists would be interesting. Some special cases are unddrs.g. Koufogiannakis
and Young P9 give a primal-duak-approximation fok-CS PIP in the casa&is 0-1,
also known as hypergrafmhmatching.

3 Column-Sparse Packing Integer Programs

In this section we give an approximation algorithm kecolumn-sparse packing in-
teger programs with approximation rati&?2- 2. We better results fok = 2, and
for programs with high width (we defer the definition to a tadabsection). The re-
sults hold even in the presence of multiplicity constraints d. Broadly speaking,
our approach is rooted in the demand matching algorithm epBérd & Vetta §5;
their path-augmenting algorithm can be viewed as a resttitdrm ofiterated re-
laxation, which is the main tool in our new approach. Iterated relaxayields a
solution whose objective valuelasrger than the optimum, however, the solution vio-
lates some constraints. We then decompose this infeasihitos to a collection of
feasible solutions while retaining at least a constantifvacf the objective value.
For ak-CS PIPZ let £ (£?) denote its linear relaxatiofmaxc- x| Ax< b,0 <
x < d}. We use the set to index the constraints anfito index the variables in
our program. We note a simple assumption that is withoutddggenerality for the
purposes of obtaining an approximation algoritty): < b; for all i, j. To see this,
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note that ifA;; > by, then every feasible solution has= 0 and we can simply delete
Xj from the instance.

Now we give our iterated rounding method. Let the temmtrymean a paifi, j) €
I x J such thatd;; > 0. Our iterated rounding algorithm computes aSef special
entries; for such a set we I8t .o denote the matrix obtained frofby zeroing out
the special entries.

Lemma 12. Given a k-CS PIRZ, we can, in polynomial time, find S and nonnegative
integral vectors & x* with X2 + x! < d and ¥ < 1 such that

@ c- (L +xt) >0oPT(Z(2))
(b) Vi el,we have{j: (i,j) €S} <k
(c) A)p—i-AS_@Xl <bh.

In particular, sincec is 0-1, (x° +x1) is a solution such that for each raywwe
haveg; - (XO +xb) <+ kmax; Ajj. We now give the proof of the above lemma.

Proof of Lemmaél2. First, we give a sketch. Recall tha denote thejth column of
A anda; denotes théth row of A. Let supp(A)) := {i € | | A;j > 0}, which has size
at mostk, and similarlysupp(a) := {j € J | Aj > 0}. Let x* be an extreme opti-
mal solution to.Z (). The crux of our approach is as follows:xf has integral
values we have made progress. If ndt,is a basic feasible solutioso there is a
set of supp(x*) = |J] linearly independent tight constraints fof, so the total num-
ber of constraintdl | satisfies||| > |J|. By double-counting there is some | with
| supp(ai)| < k, which is what permits iterated relaxation: we discard tbestraint
for i and go back to the start.

Figure 1 contains pseudocode for our iterated rounding algorithtERATED-
SOLVER.

I TERATEDSOLVER(A, b, c,d)

1: Letx" be an extreme optimum d¢fmaxcx | x € RI0<x<d;Ax< b}

2 Letx = x| xt =07 = {jed[x ¢Z},I'=1,S= .

3: loop

4:  Letx* be an extreme optimum d@haxcx | x € [0,1]"'; A¥ + Ag_o(x+x1) < b}
5 For eachj € J' with Xj = 0, deletej from J’

6:  Foreachj € Y withx; =1, setxj1 =1 and deletq from J’

7:  IfJ =g, terminate and returs,x°,x!

8:  for eachi € I” with | supp(a)NJ'| < kdo

9: Mark each entry{(i, j) | j € supp(a;j) NJ'} special and add it iSand delete from I’
10:  endfor
11: end loop

Fig. 1 Algorithm for k-CS PIP.

Now we explain the pseudocode. TXfe¢erm can be thought of as a preprocessing
step which effectively reduces the general case to theapmse thatl = 1. The term
x! € {0,1}" grows over time. The se represents al] that could be added t¢* in
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the future, but have not been added yet. The'dateps track of constraints that have
not been dropped from the linear program so far.

Sincex* is a basic feasible solution we ha¥g > |J'| in Step8. Beingk-CS, each
set| supp(A;j)NI’| for j € J' has size at mo&t By double-countingy i/ | supp(ai) N
J| < k|| <K|I'| and so somé e I’ has|supp(a) NJ'| < k. Thus|l’| decreases in
each iteration, and the algorithm has polynomial runnimgeti(In fact, it is not hard
to show that there are at ma3tklog|l|) iterations.)

The algorithm has the property that(x’ + x* 4-x*) does not decrease from one
iteration to the next, which implies property (a). Propest{b) and (c) can be seen
immediately from the definition of the algorithm. O

Now we give the proof of the main result in this section. Herd ater we abuse
notation and identify vectors if0,1}? with subsets of], with 1 representing con-
tainment. That is, if we have twa 0 vectorsy andx we lety C x denote the fact that
y; = limpliesx; = 1.

Theorem?2. There is a polynomial timék? 4- 2)-approximation algorithm for k-CS
P1Ps with multiplicity constraints.

Proof. We use Lemmad 2 to obtainx® andx!. The main idea in the proof is to par-
tition the setx! into 2k? + 1 sets which are all feasible (i.e., we gét= ijfflyj

for 0-1 vectorsy! each withAy! < b). If we can establish the existence of such a
partition, then we are done as follows: the total profit of #é+ 2 feasible solu-
tionsx?,yL, ... ,y2*+Lis c. (x% 4+ x1) > OPT, so the most profitable is(@k2 + 2)-
approximately optimal solution.

Call j, j’ € xt in conflict at iif Aij > 0,Aj; > 0 and at least one df, j) or (i, ')
is special. We claim that if ¢ x* and no two elements ofare in conflict, thery is
feasible; this follows from Lemma?2(c) together with the fact thaj; < by; for all
i, J. (Explicitly, for each constraint we either just load it v single special entry, or
all non-special entries, both of which are feasible.) Inrfr@ainder of the proof, we
find a (2k? + 1)-colouring of the sex! such that similarly-coloured items are never
in conflict; then the colour classes give the neededydeaisd we are done.

To find our desired colouring, we createanflict digraphwhich has node se¢
and an arc (directed edge) frojtio j’ wheneverj, j’ are in conflict ai and(i, j) is
special. Rewording, there is an dic ') iff some (i, j) € SandAjj; > 0. (If (i, }’) is
also special, this also implies an &g, j).) The key observation is that each node
j € x! has indegree bounded Iy, i.e. there are at mo$f choices ofj such that
(J,j") is an arc: to see this notgi{ Ajj; > 0} <k, and each in this set has §j |
(i,]) € S} < k. Now we use the following lemma, which completes the proof.

Lemma 13. A digraph with maximum indegree d hagé+ 1-colouring.

Proof. We use induction on the number of nodes in the graph, with #se lzase
being the empty graph. Now suppose the graph is nonemptyalé¢rage indegree
is at mostd, and the average indegree equals the average outdegreese kieme
noden has outdegree at most the average, whidah is total, this node has at most
2d neighbours. By induction there is(&d + 1)-colouring when we delets, then



12

we can extend it to the whole digraph by assignimgny colour not used by its
neighbours. O

(We remark that Lemma3is tight, e.g. arranged4+ 1 vertices on a circle and
include an arc from each vertex to itisclockwise-next neighbours; this directed
Kog+1 cannot be 8-coloured.) This ends the proof of Theor@m O

3.1 Improvements fok = 2

We give some small improvements for the c&se 2, using some insights due to
Shepherd & Vettads]. A 2-CS PIP isnon-simpleif there exist distinctj, j’ with
supp(Aj) = supp(Aj) and|supp(A;)| = 2. Otherwise, it is simple. Shepherd and
Vetta consider the case when all non-zero entries of a commamqual. Under this
assumption, they get aBapproximation for 2-CS PIPs, andlzla— V5 ~ 3.26 ap-
proximation for such simple 2-CS PIPs, wheénr= 1. We extend their theorem as
follows.

Theorem 14. There is a deterministid-approximation algorithm for 2-CS PIPs.
There is also a randomizedl— /5 ~ 3.764-approximation algorithm for simple 2-
CS PIPs with d= 1.

(Sketch).Since we are dealing with a 2-CS PIP, eaafpp(A)) is an edge or a loop
on vertex sek; we abuse notation and directly associpbégth an edge/loop. Consider
the initial value ofY', i.e. after executing Steh Then we claim that the gragh,J')
has at most one cycle per connected component; to see thesthad any connected
component with two cycles would have more edges than vertighich contradicts
the linear independence of the tight constraints for thigairthasic solutionc*.

We modify ITERATEDSOLVER slightly. Immediately after Step, letM c J’ con-
sist of one edge from each cycle(hJ'), and set)’ := J’\M. ThenM is a matching
(hence afeasible 0-1 solution) and the rvs acyclic. Modify the cardinality condi-
tion in Step8to | supp(a) NJ'| < 1 (instead oK 2); sincel’ is acyclic, it is not hard
to show the algorithm will still terminate, and € I, we have{j : (i,j) € S}| < 1.

To get the first result, we use a colouring argument frGm Thm. 4.1] which
shows thax! can be decomposed into two feasible solutighs- y* + y2. We find
that the most profitable of,M,y!,y? is a 4-approximately optimal solution.

For the second result, we instead apply a probabilistiatiegte from 5, §4.3].
They define a distribution over subsets of the foréstet z be the random variable
indicating the subset. Let= - (5+ 1/5). Say that an edgé is compatiblewith zif
z neither contains an edge with a special endpointr ati’. The distribution has
the properties that is always feasible for the PIP, [Prc Z = p for all j € x, and
Prisupp(A;) compatible withg] > p for all j € x0. (Simplicity implies that? andx*
have no edge in common, except possibly loops, which is rekdere.) Finally, let
w denote the subset of compatible withz. Thenz+ w is a feasible solution, and
E[c(z+w)] > pe(xt +x0). Hence the better solution af-w andM is a 14+ 1/p =
(6 — v/5)-approximately optimal solution. O



13

3.2 Improvements For High Width

Thewidth W of an integer program is mirb; /Ajj, taking the inner term to be-c
whenAjj = 0. Note that without loss of generalityy > 1. From now on let us nor-
malize each constraint so that= 1; then a program has width W iff every entry
of Alis at most JW.

In many settings better approximation can be obtain® asreases. For exam-
ple ink-RS CIPs withb = 1, the sum of each row ck is at mostk/W, so Proposi-
tions6 and7 give a(1+ k/W)-approximation algorithm. Srinivasafi [, 3¢] gave a
(14 In(1+k)/W)-approximation algorithm for unbound&eCS CIPs. Usingrroup-
ing and scalingechniques introduced by Kolliopoulos and Steir][ Chekuri et al.
[8] showed that no-bottleneck demand multicommodity flow imeeet and certain
other problems, admit approximation ratie-10(1/v/W). Multicommodity flow in
atree (without demands) admits approximation ratieQ(1/W) [2€]. Motivated by
these results, we will prove the following theorem.

Theorem 15. There is a polynomial tim&+ Wz—'fk-approximation algorithm to solve
k-column-sparse PIPs with \3 k.

ForW > 2k, Theoreml5implies a 14 O(k/W)-approximation. For fixet > 4
and larga\ this is asymptotically tight since{ o(1/W)-approximation iNP-hard,
by results from [ 1,26] on multicommodity flows in trees. After the initial publitan
of Theoreml5[33), Bansal et al. [] gave an algorithm with ratio 16&Y/ V!, where
e=2718...

Proof of Theoremi5. Run ITERATEDSOLVER. From Lemmal2we see that- (x°+
x!) > OPT and, using the width bound,

A +xb) < (14k/W)1. (4)

Define ¥ (x) by ¥ (x) :={i €l | & -x > 1}, e.g. the set of violated constraints in
Ax< 1.

We want to reducéx® +-x*) so that no constraints are violated. In order to do this
we employ a linear program. Lgt(-) denote the characteristic vector. Our LP, which
takes a parametéy is

Z(X) : max{cx| 0 < x <X AX< 1—V£vx(”//(i))}.

We can utilize this LP in an iterated rounding approach, dieed by the following
pseudocode.

I TERATEDREDUCER
1: Letx:=x0+xt
: while 7(X) # @ do
Let x* be an extreme optimum &% (X)
Letx= [x*]
end while

a RN
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We claim that this algorithm terminates, and that the vafueX@pon termination

is at least
1-k/W
1+k/W

¢ (@+xt) > 1 kW

= TrgworT

Once we show these facts, we are done, since the for thexfinfalX) = @ implies
X is feasible. As an initial remark, note that each coordimditg is monotonically
nonincreasing, and s¢'(X) is also monotonically nonincreasing.

Observe thatZ in the first iteration ha ;gw (x% +x1) as a feasible solution,
by Equation €). Next, note thak which is feasible forZ in one iteration is also
feasible forZ in the next iteration sinc# (X) is monotonically nonincreasing; hence
the value oft- x* does not decrease between iterations.

To show the algorithm terminates, we will show thaix) becomes strictly smaller
in each iteration. Note first thatiiZ ¥'(X), the constraing; - x < 1 is already implied
by the constraink < X. HenceZ(X) may be viewed as having only'(X)| many
constraints other than the box constraints 8 < X. Thenx, a basic feasible solution
to Z(X), must have at mos¥ (X)| non-integral variables. In particular, using the fact
that the program i&-CS, by double counting, there exists soime ¥ (X) such that
#J | X € Z,Aj > 0} <k. Thus (using the fact that all entries&fare at most W)
we haveg; - [X*] < & -X* +k(1/W) < 1: soi & ¥ ([x*]), and¥'(X) is strictly smaller
in the next iteration, as needed. O

4 Hardness of Column-Restricted 2-CS CIP

Theorem 3. It is NP-hard to approximate 2-CS CIPs of the fofmincx | Ax >
b,xis0-1} and{mincx| Ax> b,x > 0, x integral} within ratio 17/16— € even if the
nonzeroes of every column of A are equal and A is of the blook Fﬁﬂ where each
A is 1-CS.

Proof. Our proof is a modification of a hardness proof frodh for a budgeted al-
location problem. We focus on the version wheiis 0-1; the other version follows
similarly with only minor modifications to the proof. The sjiféc problem described
in the statement of the theorem is easily seen equivaletitetdailowing problem,
which we calldemand edge cover in bipartite multigraplggven a bipartite multi-
graph(V,E) where each vertexhas a demanb, and each edgehas a cost. and
valuedg, find a minimum-cost sef’ of edges so that for each verteits demand is
satisfied, meaning thatecg/n5() de > by. Our construction also has the property that
Ce = de for each edge — so from now on we denote baith

The proof uses a reduction from Max-3-Lin(2), which is thidwing optimiza-
tion problem: given a collectiofix; }; of 0-1 variables and a family of three-variable
modulo-2 equalities calledausedfor examplex; + X2 +x3 =1 (mod 2), find an
assignment of values to the variables which satisfies themmaw number of clauses.
Hastad [ 4] showed that for ang > 0, it is NP-hard to distinguish between the two
cases that (1) é1 — ) fraction of clauses can be satisfied and (2) at mdsya+ ¢)
fraction of clauses can be satisfied.
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Given an instance of Max-3-Lin(2) we construct an instanteemand edge
cover as follows. For each variablethere are three verticeg;", “x; = 0" and “x; =
1”; these vertices havevalue 4 de@x ) where degx;) denotes the number of clauses
containingx;. For each clause there are four vertices labelled by thegfesignments
to its variables that dmot satisfy it; for example for the clausg +x; +x3 =1
(mod 2 we would introduce four vertices, one of which would be narfirgd=
0,x2 = 0,x3 = 0.” These vertices havie-value equal to 3. Each vertex;“=C" is
connected toX” by an edge withd-value 4 degx ); each vertex of the form “;, =
C1,x, = Cp,xi; = Cg” is incident to a total of nine edges each witkvalue 1: three
of these edges go tog; = C;” for eachj = 1,2,3. The construction is illustrated in
Figure2.

L7
cf"ﬁ'ﬁ X =1 =0 =0

Fig. 2 Left: the gadget constructed for each variakleThe vertices shown as rectangles havealue
4degX); the thick edges have-value and cost 4dég). Right: the gadget constructed for the clause
X +Xj +x =0 (mod 2. The vertices shown as rounded boxes Hawalue 3; the thin edges each have
unit d-value and cost.

Let m denote the total number of clauses; sadegx) = 3m. We claim that
the optimal solution to this demand edge cover instance bsis2m+ 3t wheret
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is the least possible number of unsatisfied clauses for therlying Max-3-Lin(2)
instance. If we can show this then we are done since Hasesl}t shows we cannot
distinguish whether the optimal costs24m+3m(1/2— €) or < 24m+ 3(em); this
gives an inapproximability ratio o% =17/16— €’ for somege’ > 0 such that
& — 0 ase — 0, which will complete the proof.

Let x* denote a solution to the Max-3-Lin(2) instance withnsatisfied clauses;
we show how to obtain a demand edge cdweof cost 24n+ 3t. We include inE’
the edge betweerx” and “x; = X for eachi; this has total cosy;4dedx;) = 12m.
For each satisfied clause+x; +x =C (mod 2), we include inE’ all three edges
between% =1—x"and“x =1-X",x; = Xj s X =% and similarly forj,k, and one
of each of the parallel triples incident ta; "= 1 — X, Xj = 1 —Xj, X = 1 —X"; this
has cost 12 for that clause. For each unsatisfied clgusg; +x. =C (mod 2), we
include inE’ any three unit-cost edges incident tg = X, xj = Xj, X = X," as well
as twelve more unit-cost edges: namely in the six nodes simgiof “x, = 1 — X",
‘% =1-xX =1-x,% =x" and their images under swappingvith j and
k, the induced subgraph is a 6-cycle of parallel triples, aedake two edges out
of each triple. Thus the chosen edges have total cost 15 &brcthuse. It is not
hard to see that this solution is feasible — e.g. verticeiefform % = 1 —x*"
are covered by 4 edges for each clause containing them. Talectzst isc(E’) =
12m-+12(m—t) + 15t = 24m+- 3t.

To finish the proof we show the following.

Claim 16. Given a feasible demand edge covér e can find a solution*xsuch
that t, the number of unsatisfied clauses farsatisfie24m+ 3t < c(E’).

Proof. First we claim it is without loss of generality that for eaglt’ contains ex-
actly one of the edges incident tg™. Clearly at least one of these two edges lies in
E’; if both do, then remove one (say, the edge betwegrahd “x; = 0”) and add to
E’ any subset of the other 6 deg) edges incident tox; = 0” so that the total number
of edges incident on¥ = 0" in E’ becomes at least 4deg). The removed edge has
d-value 4deg¢x;) and all other incident edges hastevalue 1, so clearly the solution
is still feasible and the cost has not increased.

Definex* so that for each, E’ contains the edge betweer™and “x = X"
Let E” denote the edges &' incident on clause vertices (i.e. the edge&bfvith
unit d-value). ForF C E” their left-contribution denoted/(F), is the number of
them incident on vertices of the form“= 1 — X" Note that/(F) < |F| for any
F. Furthermore for each unsatisfied clause, all edges intiderits vertex % =
XX = X] X = X" have zero left-contribution, blE’ contains at least three of these
edges. Thus the edges®Bf incident on that clause’s vertices hat(é&) < |F| — 3.
Finally, consider/(E"). Each edge oE” is in the gadget for a particular clause,
and it follows that/(E”) < |E”| — 3t wheret is the number of unsatisfied clauses
for x*. However,E” needs to have 4dég) edges incident on each;‘=1— X" so
((E") > y4dedx ) =12m. Thus|E"| > 12m+ 3t and considering the edges incident
on the verticesX” we see that(E’) > 24m+ 3t. O

This completes the proof of the reduction. O
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5 Open Problems

It is natural to conjecture th&CS CIP with a submodular objective admits an ap-
proximation ratio depending only dqperhap©(Ink) matching the best ratio known
for linear objectives.

Although 2-RS IPs are very hard to optimize (at least as harllax Indepen-
dent Set), the problem of findingfaasiblesolution to a 2-RS IP is still interesting.
Hochbaum et al. ][] gave a pseudopolynomial-time 2-SAT-based feasibilityoal
rithm for 2-RS IPs with finite upper and lower bounds on vadgabThey asked if
there is a pseudopolynomial-time feasibility algorithmentthe bounds are replaced
by just the requirement of nonnegativity, which is still opes far as we know. It is
stronglyNP-hard to determine if IPs of the forgx > 0| Ax= b} are feasible when
Ais 2-CS [L7], e.g. by a reduction from 3-Partition; but for IPs wherelegariable
appears at most twidacludingin upper/lower bounds, it appears all that is known is
weakNP-hardness (for example, via tk@bounded knapsack problg6i]).
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This appendix was included with the original conferencensisbion for the sake of the referees, and
we are including it again to clarify our claims. We do not wairiicluded in the actual journal article.

A Discussion of Issues In, 10]

In this appendix we give a discussion of the apparent prabheith the papersd, 10]; this discussion is
meant to describe evidence for these bugs to the refereeis hot meant to appear in the proceedings.
We allege that there are bugs in their claimedpproximation algorithms fok-RS CIPs with arbitrary
d. We give excerpts from their papers but paraphrasing anld vétiable names translated so as to be
consistent with our own paper. For reference, what we defwiacx: Ax> b,0 < x < d} is denoted
{mincx:Ux>d,0 < x< b} by [5] and{minwx: Cx>b,0 < x < u} by [10]. What we caIIAij) is denoted
ua(i, ) by [5] (whereA is a set of variables) aref by [10] (whereD is a set of variables).

A correct preliminary remark made in bot#, [§2.2] and [L0, §1.3] is that we can assume without
loss of generality thatl has no infinite entries, since there is no loss of generatitassumingd; <
max:a; ~o[bi/Aij1. Call this thefinite-d assumption

A.1 Carr et al. 2000

There is a correct proof of Theorehrin the special casé = 1in [5, §2.6] (“Theorem 2.9” in their paper).

The same section reads “By the discussion in Section 2.2 aweestrict our discussion to the case when

d=1."Inturn [5, §2.2], contains

(i) the phrase “All of the results in this paper extend to tbiisg where edge [variablg]may be selected
up tod; times.”

(i) the finite-d assumption,

(iii) discussion for the general-case wher has one row (i.e. min-knapsack). They propose a technique
which does work wherA has one row. The extension of this technique to multiple rteasls to
“KC-LP” in Section2.1 (see also an essentially identical LP #5])

(iv) the phrase “The same technique works for all problenssudised in this paper, since all our approx-
imation guarantees are insensitive to multiple edgesdi#es]. Hence while our proofs discuss the
0/1 problem, the theorems hold for general upper bounds.”

We illustrate a few reasonable approaches that we thinkutt®es might have intended, none of which

seem to work.

A.1.1 Sensitivity to multiple edges

Perhaps the most straightforward interpretation of claunig that, in order to show that = 1 is without
loss of generality irk-RS CIPs, we replace each varialjlavith d; copies, each with unit capacityl (
value). But such a reduction increases the number of vagabla given constraintfrom | supp Aj| < kto

Y jesuppa; 0j- Since the target result is an approximation ratio equahéontaximum number of variables
per constraint, this approach is not without loss of geitgral

A.1.2 KC-LP

The item (iii) suggests that the authors 6F had KC-LP in mind. Even guessing optimistically that the
authors of f] were aware of the simple direct-rounding-bagkd- 1)-approximation algorithm described
in Section2 of this paper, it seems new ideas (for example, roundalaifiyZ . -equivalence) are needed to
reduce the approximation ratio kpwhich [5] does not provide. We now give an example of a situation not
covered by just using KC-LP. The proof method of (like our own proofs in Sectiof) considers only a
single constraint of the LP at a time. Now suppose for a giwswirthat eachj € supp(i) hasAjjd; > b;.

(It is not too hard to see that this could happen even undédirtie-d assumption.) In this case there are
no new knapsack constraints that can be added for that roee sve only obtain meaningful knapsack
constraints from row and subsets C supp(i) of variables withy ;¢ Ajjd;j < bi. This seems to break the
obvious analogue ofsf Thm. 2.9]'s proof for general.
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A.1.3 Knapsack inequalities parameterized by vectors

In investigating this problem there is another reasonaimhpke and natural extension of the knapsack-
cover inequalities which one might try, but also seems figafht. Namely, one might generalize the
constraint to allow for a particular number of copies of esiem j — instead of a sef of variables, we

would have an integral vector9Q f < d. For a vectorf and rowi such thaty ; Ajj fj < 1, defineAi<jf> =
min{Ajj,1— 3 ; Ajj f; }, then the following inequality is a valid generalization bétKC-LP inequalities:

S A max0,x - i} = 1- Y Ay fj. (5)
] ]

However, note that the “max” makes this a nonlinear con#raind there is no obvious way to rewrite
(5) in terms of linear constraints. Moreover, replacing fx; — f;} with just (x; — f;) in (5) produces
invalid inequalities, e.g. iA=[2111, b = [3] then the constraint obtained fér=[0017 is 1-x; +1-
X2+1-(x3—1)+1- (x4 — 1) > 1, which is not valid for the feasible solution=[1100 of the original IP.

In discussing §] with one of its authors, L. Fleischer, (who wished not to tsedias a personal
reference in the actual paper since she has not had timeyelidck the alleged problems) she mentioned
her first approach to filling in the missing details frofj fvould be similar to the inequalitie$), and upon
some discussion she concurred that the 4-variable exanmgil@lpove means this particular interpretation
does not seem to work.

A.2 Fujito & Yabuta 2004

We discuss the papet ] next. That paper casts CIP as part of a more general frankethiey call ca-
pacitated supply-demand (CSD). They use MMC (multiset icnuter) to mean the same as CIP. )]
§1.3] they say (paraphrasing in square brackets) “In MMClJieitpupper boundx < d are called mul-
tiplicity constraints, and if it is non-existent, a triviapper bound ong is [obtained from the finitet
assumption]. When cast in CSD, eddb replaced (not explicitly) by copies,is, ..., iy, eachA j is set

to min{A;j,max{0,bj — zlk;JiAjkj }} and [another parameterfor the capacitated supply-demand problem
is set in a natural way]. (We remark that possibly non-poiyia expansion of problem instances in this
reduction causes no trouble in our algorithm.)” The fulltiisation of these remarks relies in more than
one place on details deferred to the full version of the papguarticular including {0, §1.4 item 3] when
discussing MMC. They seem to be implicitly referring to thelgematic approach we have outlined in
SectionA.1.1

A.2.1 Submodular Integer Cover

It is interesting to note, for the sake of checking whethewjmus ideas could give laapproximation for
k-RS CIPs, that MMC/CIP directly (i.e. without intermediaéehniques) falls into the central problem of
[10] — submodular integer coveSIC), which is{mincxg(x) = g(+)} for submodulag. Specifically,
the CIP{mincxAx > b,0 < x < d} is the same as a SIC fg(x) = yimin{b;, 3 ; Aj min{d;,xj}} (& la
[30,40)). Under the additional assumptiah= 1, it is not hard to determine that the bound i) Thm.

9] is at mostk on instances derived fromCS CIP. However for general the guarantee inlp, Thm.

9] can be arbitrarily large even on SIC instances derivethf®sRS CIPs. E.g. consider the unbounded
2-CS CIP[} &]x> [3] whereM is any integer, which corresponds to SIC épe min{2M,x; + X} +
min{M,Mx; +Mxz}. Thenx = [MM] is a “minimal feasible solution” which shows that the ratio[i0,
Thm. 9] (with S= @) is 2(M + 1)M/3M or greater. Thus, liked], it seems that[(] does not contain
sufficient ideas to obtainleapproximation algorithm fok-RS CIP.
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