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Abstract The main focus of this paper is a pair of new approximation algorithms for
certain integer programs. First, for covering integer programs{mincx : Ax≥ b,0 ≤
x ≤ d} whereA has at mostk nonzeroes per row, we give ak-approximation algo-
rithm. (We assumeA,b,c,d are nonnegative.) For anyk≥ 2 andε > 0, if P 6= NP this
ratio cannot be improved tok− 1− ε, and under the unique games conjecture this
ratio cannot be improved tok− ε. One key idea is to replace individual constraints
by others that have better rounding properties but the same nonnegative integral solu-
tions; another critical ingredient is knapsack-cover inequalities. Second, for packing
integer programs{maxcx : Ax≤ b,0≤ x≤ d} whereA has at mostk nonzeroes per
column, we give a(2k2+2)-approximation algorithm. Our approach builds on the it-
erated LP relaxation framework. In addition, we obtain improved approximations for
the second problem whenk = 2, and for both problems when everyAi j is small com-
pared tobi . Finally, we demonstrate a 17/16-inapproximability for covering integer
programs with at most two nonzeroes per column.

Keywords Integer programming· Approximation algorithms· LP rounding

1 Introduction

We investigate the following problem: what is the best possible approximation ratio
for integer programs where the constraint matrix is sparse?To put this in context we
recall a famous result of Lenstra [31]: integer programs with a constant number of
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variables or a constant number of constraints can be solved in polynomial time. Our
investigations analogously ask what is possible if each constraint involves at mostk
variables, or if each variable appears in at mostk constraints.

Rather than consider all integer programs, we consider onlypacking and cover-
ing problems. Such programs have only positive quantities in their parameters. One
reason for this is thateveryinteger program can be rewritten (possibly with additional
variables) in such a way that each constraint contains at most 3 variables and each
variable appears in at most 3 constraints, if both positive and negative coefficients are
allowed. Aside from this, packing programs and covering programs capture a sub-
stantial number of combinatorial optimization problems and are interesting in their
own right.

A covering(resp.packing) integer program, shorthanded as CIP (resp. PIP) hence-
forth, is an integer program of the form{mincx : Ax≥ b,0≤ x≤ d} (resp.{maxcx :
Ax≤ b,0≤ x≤ d}) with A,b,c,d nonnegative and rational. Note that CIPs are some-
times calledmultiset multicoverwhenA andb are integral. We call constraintsx≤ d
multiplicity constraints(also known ascapacity constraints). We allow for entries of
d to be infinite, and without loss of generality, all finite entries ofd are integral. An
integer program with constraint matrixA is k-row-sparse, or k-RS, if each row ofA
has at mostk entries; we definek-column-sparse (k-CS)similarly. As a rule of thumb
we ignore the casek = 1, since such problems trivially admit fully polynomial-time
approximation schemes (FPTAS’s) or poly-time algorithms.The symbol0 denotes
the all-zero vector, and similarly1 denotes the all-ones vector. For covering problems
anα-approximation algorithmreturns a feasible solution with objective value at most
α times optimal; for packing, the algorithm returns a feasible solution with objective
value is at least 1/α times optimal. We usen to denote the number of variables and
m the number of constraints (i.e. the number of columns and rows ofA, respectively).
Throughout the paper,A will be used as a matrix. We letA j denote thejth column of
A, and letai denote theith row ofA.

1.1 k-Row-Sparse Covering IPs

The special case of 2-RS CIP whereA,b,c,d are 0-1 is the same as Min Vertex
Cover, which isAPX-hard. More generally, 0-1k-RS CIP is the same ask-Bounded
Hypergraph Min Vertex Cover (a.k.a. Set Cover with maximum frequencyk) which
is not approximable tok− 1− ε for any fixedε > 0 unlessP=NP [9] (k− ε under
the unique games conjecture [23]). This special case is known to admit a matching
positive result: set cover with maximum frequencyk can bek-approximated by direct
rounding of the naive LP [16] or local ratio/primal-dual methods [2].

The following results are known for other special cases ofk-RS CIP with multi-
plicity constraints: Hochbaum [13] gave ak-approximation in the special case thatA
is 0-1; Hochbaum et al. [18] and Bar-Yehuda & Rawitz [3] gave pseudopolynomial
2-approximation algorithms for the case thatk = 2 andd is finite. For the special
cased = 1, Carr et al. [5, §2.6] gave ak-approximation, and Fujito & Yabuta [10]
gave a primal-dualk-approximation. Moreover [5,10] claim a k-approximation for
generald, however, the papers do not give a proof and we do not see a straightfor-
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ward method of extending their techniques to the generald case. Our first main result,
given in Section2, is a simple proof of the same claim.

Theorem 1. There is a polynomial time k-approximation algorithm for k-RS CIPs
with multiplicity constraints.

Our approach is to first consider the special case that there are no multiplicity
constraints (i.e.d j = +∞ for all j); we then extend to the case of finited viaknapsack-
cover inequalities, using linear programming (LP) techniques from Carr et al. [5].
A (k+ 1)-approximation algorithm is relatively easy to obtain using LP rounding;
in order to get the tighter ratiok, we replace constraints by other “Z+-equivalent”
constraints (see Definition8) with better rounding properties. The algorithm requires
a polynomial-time linear programming subroutine.

Independent simultaneous work of Koufogiannakis & Young [30,28,29] also
gives a full and correct proof of Theorem1. Their approach works for a broad gen-
eralization ofk-RS CIPs and runs in strongly polynomial time. Our approach has
the generic advantage of giving new ideas that can be used in conjunction with other
LP-based methods, and the specific advantage of giving integrality gap bounds (see
Section2.2).

1.2 k-Column-Sparse Packing IPs

Before 2009, no constant-factor approximation was known for k-CS PIPs, except in
special cases. If every entry ofb is Ω(logm) then randomized rounding provides
a constant-factor approximation.Demand matchingis the special case of 2-CS PIP
where (i) in each column ofA all nonzero values in that column are equal to one
another and (ii) no two columns have their nonzeroes in the same two rows. Shep-
herd & Vetta [35] showed demand matching isAPX-hard but admits a(11

2 −
√

5)-
approximation algorithm whend = 1; their approach also gives a72-approximation
for 2-CS PIP instances satisfying (i). Results of Chekuri etal. [8] yield a 11.542k-
approximation algorithm fork-CS PIP instances satisfying (i) and such that the max-
imum entry ofA is less than the minimum entry ofb.

The special case ofk-CS PIP whereA,b are 0-1 is the same asmin-weight k-set
packing, hypergraph matching with edges of size≤ k, andstrong independent sets in
hypergraphs with degree at most k. The best approximation ratio known for this prob-
lem is(k+1)/2+ ε [4] for general weights, andk/2+ ε whenc = 1 [19]. The best
lower bound is due to Hazan et al. [15], who showedΩ(k/ lnk)-inapproximability
unlessP=NP, even forc = 1.

Our second main result, given in Section3, is the following result.

Theorem 2. There is a polynomial time(2k2+2)-approximation algorithm for k-CS
PIPs with multiplicity constraints.

We use theiterated LP relaxation[36] technique to find an integral solution
whose objective value is larger than the optimum, but violates some constraints. How-
ever the violation can be bounded. Then we use a colouring argument to decompose
the violating solution intoO(k2) feasible solutions giving us theO(k2)-factor algo-
rithm.
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The original arXiv eprint and conference version [33] of this work gave aO(k22k)-
approximation fork-CS PIP using iterated relaxation plus a randomized decomposi-
tion approach; that was the first approximation algorithm for this problem with ratio
that depends only onk. Subsequently in April 2009, C. Chekuri, A. Ene and N. Korula
(personal communication) obtained anO(k2k) algorithm using randomized rounding,
and anO(k2)-approximation in May 2009. The latter method was independently re-
derived by the authors, which appears in this version. Finally, Bansal et al. [1], in
August 2009, gave a simple and elegantO(k)-approximation algorithm based on ran-
domized rounding with a careful alteration argument.

1.3 k-Column-Sparse Covering IPs

Srinivasan [37,38] showed thatk-CS CIPs admit aO(logk)-approximation. Kol-
liopoulos and Young [25] extended this result to handle multiplicity constraints.There
is a matching hardness result: it isNP-hard to approximatek-Set Cover, which is the
special case whereA,b,c are 0-1, better than lnk−O(ln lnk) for any k ≥ 3 [39].
Hence fork-CS CIP the best possible approximation ratio isΘ(logk). A (k+ ε)-
approximation algorithm can be obtained by separately applying an approximation
scheme to the knapsack problem corresponding to each constraint. Although 0-1 2-
CS CIP is Edge Cover which lies inP, general 2-CS CIP isNP-hard due to Hochbaum
[17], who also gave a bicriteria approximation algorithm. Here, we give a stronger in-
approximability result.

Theorem 3. For everyε > 0 it is NP-hard to approximate 2-CS CIPs of the form
{minc · x | Ax≥ b,x is0-1} and {minc · x | Ax≥ b,x ≥ 0,x integral} within ratio
17/16− ε even if the nonzeroes of every column of A are equal and A is of the block
form

[A1
A2

]
where each Ai is 1-CS.

Our proof modifies a construction of [6]; we also note a construction of [35] can
be modified to proveAPX-hardness for the problem.

1.4 Other Work

The special case of 2-RS PIP whereA,b,c are 0-1 is the same as Max Independent

Set, which is not approximable withinn/2log3/4+ε n unlessNP ⊂ BPTIME(2logO(1) n)
[22]. On the other hand,n-approximation of any packing problem is easy to ac-
complish by looking at the best singleton-support solution. A slightly bettern/t-
approximation, for any fixedt, can be accomplished by exhaustively guessing the
t most profitable variables in the optimal solution, and then solving the resultingt-
dimensional integer program to optimality via Lenstra’s result [31].

A closely related problem isk-Dimensional Knapsack, which are PIPs or CIPs
with at mostk constraints (in addition to nonnegativity and multiplicity constraints).
For fixedk, such problems admit a PTAS and pseudo-polynomial time algorithms,
but are weaklyNP-hard; see [21] and [34, Ch. 9] for detailed references.

Whend = 1, a natural way to generalize CIP/PIPs is to allow the objective func-
tion to be submodular (rather than linear). For minimizing asubmodular objective
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subject tok-row sparse covering constraints, the framework of Koufogiannakis &
Young [30,28,29] gives ak-approximation; if alsoA,b are 0-1 (i.e. submodular set
cover) Iwata and Nagano [20] give a k-approximation for allk and Goel et al. [12]
give a 2-approximation fork = 2. For maximizing a monotone submodular function
subject tok-column sparse packing constraints, the algorithm of Bansal et al. [1] gives
a O(k)-approximation algorithm.

1.5 Summary

We summarize our results and preceding ones in Table1; recall also the follow-up
O(k) approximation fork-CS PIPs [1]. Note that in all four cases, the strongest known
lower bounds are obtained even in the special case thatA,b,c,d are 0-1.

k-Column-Sparse k-Row-Sparse
lower bound upper bound lower bound upper bound

Packing Ω (k/ lnk) 2k2 +2 n1−o(1) εn
Covering lnk−O(ln lnk) O(lnk) k− ε k

Table 1 The landscape of approximability of sparse integer programs. Our main results are in boldface.

2 k-Approximation for k-Row-Sparse CIPs

By scaling rows suitably and clipping coefficients that are too high (i.e. settingAi j =
min{1,Ai j}), we may make the following assumption without loss of generality.

Definition 4. A k-RS CIPis an integer program{minc·x : Ax≥ 1,0≤ x≤ d,x∈ Z}
where A is k-RS and all entries of A are at most 1.

To begin with, we focus on the cased j = +∞ for all j, which we call theun-
bounded k-RS CIP, since it illustrates the essence of our new technique. Letx be a
n-dimensional vector of variables andα is a vector of real coefficients. Throughout,
we assume coefficients are nonnegative. When we apply⌊·⌋ to vectors we mean the
component-wise floor. That is, thejth coordinate of⌊α⌋ is ⌊α j⌋.
Definition 5. A constraintα ·x≥ 1 is ρ-roundablefor someρ > 1 if for all nonneg-
ative real x, (α ·x≥ 1) implies(α · ⌊ρx⌋ ≥ 1).

Note thatρ-roundability impliesρ ′-roundability forρ ′ > ρ . The relevance of this
property is explained by the following proposition.

Proposition 6. If every constraint in an unbounded covering integer program isρ-
roundable, then there is aρ-approximation algorithm for the program.

Proof. Let x∗ be an optimal solution to the program’s linear relaxation. Thenc ·x∗ is
a lower bound on the cost of any optimal solution. Thus,⌊ρx∗⌋ is a feasible integral
solution with cost at mostρ times optimal.
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We make another simple observation.

Proposition 7. The constraintα ·x≥ 1 is (1+ ∑i αi)-roundable.

Proof. Let ρ = (1+ ∑i αi). Since⌊t⌋ > t −1 for anyt, if α ·x≥ 1 for a nonnegative
x, then

α · ⌊ρx⌋ ≥ ∑
i

αi(ρxi −1) = ρ ∑
i

αixi −∑
i

αi ≥ ρ − (ρ −1) = 1,

as needed.

Now consider an unboundedk-RS CIP. Since each constraint has at mostk coef-
ficients, each less than 1, it follows from Proposition7 that every constraint in these
programs is(k+1)-roundable, and so such programs admit a(k+1)-approximation
algorithm by Proposition6. It is also clear that we can tighten the approximation ra-
tio to k for programs where the sum of the coefficients in every constraint (row) is at
mostk−1. We now show that rows with sum in(k−1,k] can be replaced by other
rows which arek-roundable.

Definition 8. Two constraintsα · x ≥ 1 and α ′ · x ≥ 1 are Z+-equivalentif for all
nonnegative integral x,(α ·x≥ 1) ⇔ (α ′ ·x≥ 1).

In other words, replacing a constraint by anZ+-equivalent constraint doesn’t af-
fect the value of the CIP.

Proposition 9. Every constraintα ·x≥ 1 with at most k nonzero coefficients isZ+-
equivalent to a k-roundable constraint.

Before proving Proposition9, let us illustrate its use.

Theorem 10. There is a polynomial time k-approximation algorithm for unbounded
k-RS CIPs.

Proof. Using Proposition9 we replace each constraint with aZ+-equivalentk-roundable
one. The resulting IP has the same set of feasible solutions and the same objective
function. Therefore, Proposition6 yields ak-approximately optimal solution.

With the framework set up, we begin the technical part: a lemma, then the proof
of Proposition9.

Lemma 11. For any positive integers k and v, the constraint∑k−1
i=1 xi +

1
vxk ≥ 1 is

k-roundable.

Proof. Let α · x ≥ 1 denote the constraint, i.e.αk = 1
v , αi = 1 for 1≤ i < k. If x

satisfies the constraint, then the maximum ofx1, x2, . . . ,xk−1 and1
vxk must be at least

1/k. If xi ≥ 1/k for somei 6= k then⌊kxi⌋≥ 1 and soα ·⌊kx⌋≥ 1 as needed. Otherwise
xk must be at leastv/k and so⌊kxk⌋ ≥ v which impliesα · ⌊kx⌋ ≥ 1 as needed.
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Proof of Proposition9. If the sum of coefficients in the constraint isk−1 or less, we
are done by Proposition7, hence we assume the sum is strictly greater thank− 1.
Without loss of generality (by renaming) such a constraint is of the form

k

∑
i=1

xiαi ≥ 1 (1)

where0 < α ≤ 1, k−1 < ∑i αi ≤ k, and theαi ’s are nonincreasing ini.
Define thesupportof x to besupp(x) := {i | xi > 0}. We claim that for any two

distinct j, ℓ, α j + αℓ > 1. Otherwise, the∑i αi ≤ (k−2)+ 1 = k−1. Thus, for any
feasible integralx with |supp(x)| ≥ 2, we haveα · x ≥ 1. To express the set ofall
feasible integral solutions, lett be the maximumi for which αi = 1 (or t = 0 if no
suchi exists), letei denote theith unit basis vector, and letv = ⌈1/αk⌉. Then it is not
hard to see that the nonnegative integral solution set to constraint (1) is the disjoint
union

{x | x≥ 0, |supp(x)| ≥ 2}⊎{zei | 1≤ i ≤ t,z≥ 1,z∈ Z}
⊎{zei | t < i < k,z≥ 2,z∈ Z}⊎{zek | z≥ v,z∈ Z}. (2)

The special caset = k (i.e.α1 = α2 = · · ·= αk = 1) is alreadyk-roundable by Lemma
11, so assumet < k. Consider the constraint

t

∑
i=1

xi +
k−1

∑
i=t+1

v−1
v

xi +
1
v

xk ≥ 1. (3)

Every integralx≥ 0 with |supp(x)| ≥ 2 satisfies constraint (3). By also considering
the cases|supp(x)| ∈ {0,1}, it is easy to check that constraint (3) has precisely Equa-
tion (2) as its set of feasible solutions, i.e. constraint (3) is Z+-equivalent toαx≥ 1.
If t < k− 1, the sum of the coefficients of constraint (3) is k− 1 or less, so it isk-
roundable by Proposition7. If t = k−1, constraint (3) is k-roundable by Lemma11.
Thus in either case we have what we wanted.

2.1 Multiplicity Constraints

We next obtain approximation guaranteek even with multiplicity constraintsx≤ d.
For this we useknapsack-cover inequalities. These inequalities represent residual
covering problems when a set of variables is taken at maximummultiplicity. Wolsey
[40] studied inequalities like this for 0-1 problems to get a primal-dual approximation
algorithm for submodular set cover. The LP we use is similar to what appears in Carr
et al. [5] and Kolliopoulos & Young [25], but we first replace each row with ak-
roundable one.

Specifically, given a CIP{minc·x | Ax≥ 1,0≤ x≤ d,x∈ Z} with A,d nonnega-
tive, we now define the knapsack cover LP. Note that we allowd to contain some en-
tries equal to+∞; if d j = +∞ and somei hasAi j = 0 our convention is thatAi j d j = 0.
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Recall,ai is the ith row of A andsupp(ai) denotes the set{ j : Ai j > 0}. For a sub-

setF of supp(ai) such that∑ j∈F Ai j d j < 1, defineA(F)
i j = min{Ai j ,1−∑ j∈F Ai j d j}.

Following [5,25] we define theknapsack cover LPfor our problem to be

KC-LP =
{

minc ·x : 0≤ x≤ d;

∀i,∀F ⊂ supp(ai) s.t. ∑
j∈F

Ai j d j < 1 : ∑
j 6∈F

A(F)
i j x j ≥ 1− ∑

j∈F
Ai j d j

}
.

It is not too hard to check that any integral solution to the CIP satisfies the con-
straints of KC-LP, and thus the solution to the latter is a lower bound on the value of
the CIP.

Theorem1. There is a polynomial time k-approximation algorithm for k-RS CIPs.

Proof. Using Proposition9, we assume all rows ofA are k-roundable. Letx∗ be
the optimal solution to KC-LP. Definêx = min{d,⌊kx∗⌋}, where min denotes the
component-wise minimum. We claim thatx̂ is a feasible solution to the CIP, which
will complete the proof since the objective value ofx̂ is at mostk times the objective
value of KC-LP. In other words, we want to show for each rowi thatai · x̂≥ 1.

Fix any rowi and defineF = { j ∈ supp(ai) | x∗j ≥ d j/k}, i.e.F is those variables
in the constraint that were rounded to their maximum multiplicity. If F = ∅ then, by
thek-roundability ofai ·x≥ 1, we have thatai · x̂= ai ·⌊kx∗⌋≥ 1 as needed. So assume
F 6= ∅. Note that forj ∈ F , we havêx j = d j and for j /∈ F , we havêx j = ⌊kx∗j ⌋.

If ∑ j∈F Ai j d j ≥ 1 then the constraintai · x̂ ≥ 1 is satisfied; consider otherwise.
Since⌊kx∗j ⌋ > kx∗j −1 for j 6∈ F , sincex∗ satisfies the knapsack cover constraint fori

andF, and sinceA(F)
i j ≤ 1−∑ j∈F Ai j d j for eachj, we have

∑
j 6∈F

A(F)
i j x̂ j = ∑

j 6∈F

A(F)
i j ⌊kx∗j ⌋ ≥ k ∑

j 6∈F

A(F)
i j x∗j − ∑

j 6∈F

A(F)
i j

≥ k
(

1− ∑
j∈F

Ai j d j

)
−

∣∣∣{ j : j ∈ supp(ai)\F}
∣∣∣
(

1− ∑
j∈F

Ai j d j

)

= k
(

1− ∑
j∈F

Ai j x̂ j

)
−

∣∣∣{ j : j ∈ supp(ai)\F}
∣∣∣
(

1− ∑
j∈F

Ai j x̂ j

)

SinceF 6= ∅ and|supp(ai)| ≤ k, this gives∑ j 6∈F A(F)
i j x̂ j ≥ 1−∑ j∈F Ai j x̂ j . Rear-

ranging, and using the fact(∀ j : Ai j ≥ A(F)
i j ), we deduceai · x̂≥ 1, as needed.

For fixedk, we may solve KC-LP explicitly, since it has polynomially many con-
straints. For generalk, no method is currently known to solve KC-LP in polynomial
time. However, one can use the ellipsoid method to find a solution x∗ whose objective
is lower than that of KC-LP, and which satisfies the knapsack-cover constraints cor-
responding to the setF = { j : x∗j ≥ d j/k}. Note that this is all we need for the above
analysis. Details of how the ellipsoid method finds such a solution are given in [5,
25].
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2.2 Integrality Gap Bounds

In discussing integrality gaps fork-RS CIP problems, we say that thenaive LP re-
laxationof {minc ·x | Ax≥ b,0≤ x≤ d,x∈ Z} is the LP obtained by removing the
restriction of integrality. Earlier, we made the assumption thatAi j ≤ bi for all i, j;
let us call this theclipping assumption. The clipping assumption is without loss of
generality for the purposes of approximation guarantees, however, it affects the inte-
grality gap of the naive LP for unboundedk-RS CIP, as we now illustrate. Without
the clipping assumption, the integrality gap ofk-RS CIP problems can be unbounded
as a function ofk; indeed for any integerM ≥ 1 the well-known covering problem
{minx1 | [M]x1 ≥ 1,0≤ x1} has integrality gapM. In instances with the clipping as-
sumption and without multiplicity constraints, the previous methods in this section
establish that the integrality gap of the naive LP is at mostk+1.

Even under the clipping assumption, it is well-known thatk-RS CIPs withmulti-
plicity constraintscan have large integrality gaps — e.g.{minx2 | [M

M ]x≥ M +1, 0≤
x, x1 ≤ 1} has integrality gapM. For bounded instances, the knapsack-cover inequali-
ties represent a natural generalization of the clipping assumption, namely, we perform
a sort of clipping even considering that any subset of the variables are chosen to their
maximum extent.

We have seen that KC-LP has integrality gap at mostk+1 onk-RS CIP instances.
Our methods also show that if we replace each row with ak-roundable one (Proposi-
tion 9), then the corresponding KC-LP has integrality gap at mostk. We are actually
unaware of anyk-RS CIP instance withk > 1 where the integrality gap of KC-LP
(without applying Proposition9) is greater thank; resolving whether such an instance
exists would be interesting. Some special cases are understood, e.g. Koufogiannakis
and Young [29] give a primal-dualk-approximation fork-CS PIP in the caseA is 0-1,
also known as hypergraphb-matching.

3 Column-Sparse Packing Integer Programs

In this section we give an approximation algorithm fork-column-sparse packing in-
teger programs with approximation ratio 2k2 + 2. We better results fork = 2, and
for programs with high width (we defer the definition to a later subsection). The re-
sults hold even in the presence of multiplicity constraintsx ≤ d. Broadly speaking,
our approach is rooted in the demand matching algorithm of Shepherd & Vetta [35];
their path-augmenting algorithm can be viewed as a restricted form of iterated re-
laxation, which is the main tool in our new approach. Iterated relaxation yields a
solution whose objective value islarger than the optimum, however, the solution vio-
lates some constraints. We then decompose this infeasible solution to a collection of
feasible solutions while retaining at least a constant fraction of the objective value.

For ak-CS PIPP let L (P) denote its linear relaxation{maxc ·x | Ax≤ b,0≤
x ≤ d}. We use the setI to index the constraints andJ to index the variables in
our program. We note a simple assumption that is without lossof generality for the
purposes of obtaining an approximation algorithm:Ai j ≤ bi for all i, j. To see this,
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note that ifAi j > bi , then every feasible solution hasx j = 0 and we can simply delete
x j from the instance.

Now we give our iterated rounding method. Let the termentrymean a pair(i, j) ∈
I × J such thatAi j > 0. Our iterated rounding algorithm computes a setSof special
entries; for such a set we letAS→0 denote the matrix obtained fromA by zeroing out
the special entries.

Lemma 12. Given a k-CS PIPP, we can, in polynomial time, find S and nonnegative
integral vectors x0,x1 with x0 +x1 ≤ d and x1 ≤ 1 such that

(a) c· (x0+x1) ≥ OPT(L (P))
(b) ∀i ∈ I, we have|{ j : (i, j) ∈ S}| ≤ k
(c) Ax0 +AS→0x1 ≤ b.

In particular, sincex1 is 0-1,(x0 + x1) is a solution such that for each rowi, we
haveai · (x0 +x1) ≤ bi +kmaxj Ai j . We now give the proof of the above lemma.

Proof of Lemma12. First, we give a sketch. Recall thatA j denote thejth column of
A andai denotes theith row of A. Let supp(A j) := {i ∈ I | Ai j > 0}, which has size
at mostk, and similarlysupp(ai) := { j ∈ J | Ai j > 0}. Let x∗ be an extreme opti-
mal solution toL (P). The crux of our approach is as follows: ifx∗ has integral
values we have made progress. If not,x∗ is a basic feasible solutionso there is a
set ofsupp(x∗) = |J| linearly independent tight constraints forx∗, so the total num-
ber of constraints|I | satisfies|I | ≥ |J|. By double-counting there is somei ∈ I with
|supp(ai)| ≤ k, which is what permits iterated relaxation: we discard the constraint
for i and go back to the start.

Figure1 contains pseudocode for our iterated rounding algorithm, ITERATED-
SOLVER.

ITERATEDSOLVER(A,b,c,d)

1: Let x∗ be an extreme optimum of{maxcx | x∈ RJ;0≤ x≤ d;Ax≤ b}
2: Let x0 = ⌊x∗⌋,x1 = 0,J′ = { j ∈ J | x∗j 6∈ Z}, I ′ = I , S= ∅.
3: loop
4: Let x∗ be an extreme optimum of{maxcx | x∈ [0,1]J

′
;Ax0 +AS→0(x+x1) ≤ b}

5: For eachj ∈ J′ with x∗j = 0, deletej from J′

6: For eachj ∈ J′ with x∗j = 1, setx1
j = 1 and deletej from J′

7: If J′ = ∅, terminate and returnS,x0,x1

8: for eachi ∈ I ′ with |supp(ai)∩J′| ≤ k do
9: Mark each entry{(i, j) | j ∈ supp(ai)∩J′} special and add it inSand deletei from I ′

10: end for
11: end loop

Fig. 1 Algorithm for k-CS PIP.

Now we explain the pseudocode. Thex0 term can be thought of as a preprocessing
step which effectively reduces the general case to the special case thatd = 1. The term
x1 ∈ {0,1}J grows over time. The setJ′ represents allj that could be added tox1 in
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the future, but have not been added yet. The setI ′ keeps track of constraints that have
not been dropped from the linear program so far.

Sincex∗ is a basic feasible solution we have|I ′| ≥ |J′| in Step8. Beingk-CS, each
set|supp(A j)∩ I ′| for j ∈ J′ has size at mostk. By double-counting,∑i∈I ′ |supp(ai)∩
J′| ≤ k|J′| ≤ k|I ′| and so somei ∈ I ′ has|supp(ai)∩ J′| ≤ k. Thus|I ′| decreases in
each iteration, and the algorithm has polynomial running time. (In fact, it is not hard
to show that there are at mostO(k log|I |) iterations.)

The algorithm has the property thatc · (x0 +x1 +x∗) does not decrease from one
iteration to the next, which implies property (a). Properties (b) and (c) can be seen
immediately from the definition of the algorithm.

Now we give the proof of the main result in this section. Here and later we abuse
notation and identify vectors in{0,1}J with subsets ofJ, with 1 representing con-
tainment. That is, if we have two 0,1 vectorsy andx we lety⊂ x denote the fact that
yi = 1 impliesxi = 1.

Theorem2. There is a polynomial time(2k2+2)-approximation algorithm for k-CS
PIPs with multiplicity constraints.

Proof. We use Lemma12 to obtainx0 andx1. The main idea in the proof is to par-
tition the setx1 into 2k2 + 1 sets which are all feasible (i.e., we getx1 = ∑2k2+1

j=1 y j

for 0-1 vectorsy j each withAyj ≤ b). If we can establish the existence of such a
partition, then we are done as follows: the total profit of the2k2 + 2 feasible solu-
tions x0,y1, . . . ,y2k2+1 is c · (x0 + x1) ≥ OPT, so the most profitable is a(2k2 + 2)-
approximately optimal solution.

Call j, j ′ ∈ x1 in conflict at i if Ai j > 0,Ai j ′ > 0 and at least one of(i, j) or (i, j ′)
is special. We claim that ify⊂ x1 and no two elements ofy are in conflict, theny is
feasible; this follows from Lemma12(c) together with the fact thatAi j ≤ bi for all
i, j. (Explicitly, for each constraint we either just load it with a single special entry, or
all non-special entries, both of which are feasible.) In theremainder of the proof, we
find a (2k2 + 1)-colouring of the setx1 such that similarly-coloured items are never
in conflict; then the colour classes give the needed setsy j and we are done.

To find our desired colouring, we create aconflict digraphwhich has node setx1

and an arc (directed edge) fromj to j ′ wheneverj, j ′ are in conflict ati and(i, j) is
special. Rewording, there is an arc( j, j ′) iff some(i, j) ∈ SandAi j ′ > 0. (If (i, j ′) is
also special, this also implies an arc( j ′, j).) The key observation is that each node
j ∈ x1 has indegree bounded byk2, i.e. there are at mostk2 choices of j such that
( j, j ′) is an arc: to see this note #{i | Ai j ′ > 0} ≤ k, and eachi in this set has #{ j |
(i, j) ∈ S} ≤ k. Now we use the following lemma, which completes the proof.

Lemma 13. A digraph with maximum indegree d has a2d+1-colouring.

Proof. We use induction on the number of nodes in the graph, with the base case
being the empty graph. Now suppose the graph is nonempty. Theaverage indegree
is at mostd, and the average indegree equals the average outdegree. Hence some
noden has outdegree at most the average, which isd. In total, this node has at most
2d neighbours. By induction there is a(2d + 1)-colouring when we deleten, then
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we can extend it to the whole digraph by assigningn any colour not used by its
neighbours.

(We remark that Lemma13 is tight, e.g. arrange 2d+ 1 vertices on a circle and
include an arc from each vertex to itsd clockwise-next neighbours; this directed
K2d+1 cannot be 2d-coloured.) This ends the proof of Theorem2.

3.1 Improvements fork = 2

We give some small improvements for the casek = 2, using some insights due to
Shepherd & Vetta [35]. A 2-CS PIP isnon-simpleif there exist distinctj, j ′ with
supp(A j) = supp(A j ′) and |supp(A j)| = 2. Otherwise, it is simple. Shepherd and
Vetta consider the case when all non-zero entries of a columnare equal. Under this
assumption, they get a 3.5 approximation for 2-CS PIPs, and a11

2 −
√

5 ≈ 3.26 ap-
proximation for such simple 2-CS PIPs, whend = 1. We extend their theorem as
follows.

Theorem 14. There is a deterministic4-approximation algorithm for 2-CS PIPs.
There is also a randomized6−

√
5≈ 3.764-approximation algorithm for simple 2-

CS PIPs with d= 1.

(Sketch).Since we are dealing with a 2-CS PIP, eachsupp(A j) is an edge or a loop
on vertex setI ; we abuse notation and directly associatej with an edge/loop. Consider
the initial value ofJ′, i.e. after executing Step2. Then we claim that the graph(I ,J′)
has at most one cycle per connected component; to see this, note that any connected
component with two cycles would have more edges than vertices, which contradicts
the linear independence of the tight constraints for the initial basic solutionx∗.

We modify ITERATEDSOLVER slightly. Immediately after Step2, let M ⊂ J′ con-
sist of one edge from each cycle in(I ,J′), and setJ′ := J′\M. ThenM is a matching
(hence a feasible 0-1 solution) and the newJ′ is acyclic. Modify the cardinality condi-
tion in Step8 to |supp(ai)∩J′| ≤ 1 (instead of≤ 2); sinceJ′ is acyclic, it is not hard
to show the algorithm will still terminate, and∀i ∈ I , we have|{ j : (i, j) ∈ S}| ≤ 1.

To get the first result, we use a colouring argument from [35, Thm. 4.1] which
shows thatx1 can be decomposed into two feasible solutionsx1 = y1 + y2. We find
that the most profitable ofx0,M,y1,y2 is a 4-approximately optimal solution.

For the second result, we instead apply a probabilistic technique from [35, §4.3].
They define a distribution over subsets of the forestx1; let z be the random variable
indicating the subset. Letp = 1

20(5+
√

5). Say that an edgeii ′ is compatiblewith z if
z neither contains an edge with a special endpoint ati, nor ati′. The distribution has
the properties thatz is always feasible for the PIP, Pr[ j ∈ z] = p for all j ∈ x1, and
Pr[supp(A j) compatible withz] ≥ p for all j ∈ x0. (Simplicity implies thatx0 andx1

have no edge in common, except possibly loops, which is needed here.) Finally, let
w denote the subset ofx0 compatible withz. Thenz+ w is a feasible solution, and
E[c(z+ w)] ≥ pc(x1 + x0). Hence the better solution ofz+ w andM is a 1+ 1/p =
(6−

√
5)-approximately optimal solution.
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3.2 Improvements For High Width

Thewidth W of an integer program is mini j bi/Ai j , taking the inner term to be+∞
whenAi j = 0. Note that without loss of generality,W ≥ 1. From now on let us nor-
malize each constraint so thatbi = 1; then a program has width≥W iff every entry
of A is at most 1/W.

In many settings better approximation can be obtained asW increases. For exam-
ple in k-RS CIPs withb = 1, the sum of each row ofA is at mostk/W, so Proposi-
tions6 and7 give a(1+ k/W)-approximation algorithm. Srinivasan [37,38] gave a
(1+ ln(1+k)/W)-approximation algorithm for unboundedk-CS CIPs. Usinggroup-
ing and scalingtechniques introduced by Kolliopoulos and Stein [24], Chekuri et al.
[8] showed that no-bottleneck demand multicommodity flow in a tree, and certain
other problems, admit approximation ratio 1+ O(1/

√
W). Multicommodity flow in

a tree (without demands) admits approximation ratio 1+O(1/W) [26]. Motivated by
these results, we will prove the following theorem.

Theorem 15. There is a polynomial time1+ 2k
W−k-approximation algorithm to solve

k-column-sparse PIPs with W> k.

ForW ≥ 2k, Theorem15 implies a 1+ O(k/W)-approximation. For fixedk ≥ 4
and largeW this is asymptotically tight since 1+o(1/W)-approximation isNP-hard,
by results from [11,26] on multicommodity flows in trees. After the initial publication
of Theorem15[33], Bansal et al. [1] gave an algorithm with ratio 16e·k1/⌊W⌋, where
e= 2.718....

Proof of Theorem15. Run ITERATEDSOLVER. From Lemma12we see thatc· (x0 +
x1) ≥ OPT and, using the width bound,

A(x0 +x1) ≤ (1+k/W)1. (4)

DefineV (x) by V (x) := {i ∈ I | ai · x > 1}, e.g. the set of violated constraints in
Ax≤ 1.

We want to reduce(x0+x1) so that no constraints are violated. In order to do this
we employ a linear program. Letχ(·) denote the characteristic vector. Our LP, which
takes a parameter̂x, is

R(x̂) : max{cx | 0≤ x≤ x̂,Ax≤ 1− k
W

χ(V (x̂))}.

We can utilize this LP in an iterated rounding approach, described by the following
pseudocode.

ITERATEDREDUCER

1: Let x̂ := x0 +x1

2: while V (x̂) 6= ∅ do
3: Let x∗ be an extreme optimum ofR(x̂)
4: Let x̂ = ⌈x∗⌉
5: end while
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We claim that this algorithm terminates, and that the value of cx̂ upon termination
is at least

1−k/W
1+k/W

c · (x0 +x1) ≥ 1−k/W
1+k/W

OPT.

Once we show these facts, we are done, since the for the finalx̂, V (x̂) = ∅ implies
x̂ is feasible. As an initial remark, note that each coordinateof x̂ is monotonically
nonincreasing, and soV (x̂) is also monotonically nonincreasing.

Observe thatR in the first iteration has1−k/W
1+k/W (x0 + x1) as a feasible solution,

by Equation (4). Next, note thatx which is feasible forR in one iteration is also
feasible forR in the next iteration sinceV (x̂) is monotonically nonincreasing; hence
the value ofc ·x∗ does not decrease between iterations.

To show the algorithm terminates, we will show thatV (x̂) becomes strictly smaller
in each iteration. Note first that ifi 6∈ V (x̂), the constraintai ·x≤ 1 is already implied
by the constraintx ≤ x̂. HenceR(x̂) may be viewed as having only|V (x̂)| many
constraints other than the box constraints 0≤ x≤ x̂. Thenx, a basic feasible solution
to R(x̂), must have at most|V (x̂)| non-integral variables. In particular, using the fact
that the program isk-CS, by double counting, there exists somei ∈ V (x̂) such that
#{ j | x∗j 6∈ Z,Ai j > 0} ≤ k. Thus (using the fact that all entries ofA are at most 1/W)
we haveai · ⌈x∗⌉ < ai ·x∗ +k(1/W) ≤ 1: soi 6∈ V (⌈x∗⌉), andV (x̂) is strictly smaller
in the next iteration, as needed.

4 Hardness of Column-Restricted 2-CS CIP

Theorem 3. It is NP-hard to approximate 2-CS CIPs of the form{mincx | Ax≥
b,x is0-1} and{mincx | Ax≥ b,x≥ 0,x integral} within ratio 17/16− ε even if the
nonzeroes of every column of A are equal and A is of the block form

[A1
A2

]
where each

Ai is 1-CS.

Proof. Our proof is a modification of a hardness proof from [6] for a budgeted al-
location problem. We focus on the version wherex is 0-1; the other version follows
similarly with only minor modifications to the proof. The specific problem described
in the statement of the theorem is easily seen equivalent to the following problem,
which we calldemand edge cover in bipartite multigraphs: given a bipartite multi-
graph(V,E) where each vertexv has a demandbv and each edgee has a costce and
valuede, find a minimum-cost setE′ of edges so that for each vertexv its demand is
satisfied, meaning that∑e∈E′∩δ (v) de≥ bv. Our construction also has the property that
ce = de for each edge — so from now on we denote bothde.

The proof uses a reduction from Max-3-Lin(2), which is the following optimiza-
tion problem: given a collection{xi}i of 0-1 variables and a family of three-variable
modulo-2 equalities calledclauses(for example,x1 +x2 +x3 ≡ 1 (mod 2)), find an
assignment of values to the variables which satisfies the maximum number of clauses.
Håstad [14] showed that for anyε > 0, it is NP-hard to distinguish between the two
cases that (1) a(1−ε) fraction of clauses can be satisfied and (2) at most a(1/2+ε)
fraction of clauses can be satisfied.
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Given an instance of Max-3-Lin(2) we construct an instance of demand edge
cover as follows. For each variablexi there are three vertices “xi”, “ xi = 0” and “xi =
1”; these vertices haveb-value 4deg(xi) where deg(xi) denotes the number of clauses
containingxi . For each clause there are four vertices labelled by the fourassignments
to its variables that donot satisfy it; for example for the clausex1 + x2 + x3 ≡ 1
(mod 2) we would introduce four vertices, one of which would be named“x1 =
0,x2 = 0,x3 = 0.” These vertices haveb-value equal to 3. Each vertex “xi = C” is
connected to “xi” by an edge withd-value 4deg(xi); each vertexv of the form “xi1 =
C1,xi2 = C2,xi3 = C3” is incident to a total of nine edges each withd-value 1: three
of these edges go to “xi j = Cj ” for each j = 1,2,3. The construction is illustrated in
Figure2.

xi

xi = 0

xi = 1

xi = 0

xi = 1

xj = 0

xj = 1

xk = 0

xk = 1

xi = 1,xj = 1,xk = 1

xi = 1,xj = 0,xk = 0

xi = 0,xj = 1,xk = 0

xi = 0,xj = 0,xk = 1

Fig. 2 Left: the gadget constructed for each variablexi . The vertices shown as rectangles haveb-value
4deg(xi ); the thick edges haved-value and cost 4deg(xi). Right: the gadget constructed for the clause
xi + xj + xk ≡ 0 (mod 2). The vertices shown as rounded boxes haveb-value 3; the thin edges each have
unit d-value and cost.

Let m denote the total number of clauses; so∑i deg(xi) = 3m. We claim that
the optimal solution to this demand edge cover instance has cost 24m+ 3t wheret
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is the least possible number of unsatisfied clauses for the underlying Max-3-Lin(2)
instance. If we can show this then we are done since Håstad’sresult shows we cannot
distinguish whether the optimal cost is≥ 24m+3m(1/2−ε) or≤ 24m+3(εm); this

gives an inapproximability ratio of24+3/2−3ε
24+3ε = 17/16− ε ′ for someε ′ > 0 such that

ε ′ → 0 asε → 0, which will complete the proof.
Let x∗ denote a solution to the Max-3-Lin(2) instance witht unsatisfied clauses;

we show how to obtain a demand edge coverE′ of cost 24m+ 3t. We include inE′

the edge between “xi” and “xi = x∗i ” for eachi; this has total cost∑i 4deg(xi) = 12m.
For each satisfied clausexi + x j + xk ≡ C (mod 2), we include inE′ all three edges
between “xi = 1−x∗i ” and “xi = 1−x∗i ,x j = x∗j ,xk = x∗k” and similarly for j,k, and one
of each of the parallel triples incident to “xi = 1− x∗i ,x j = 1− x∗j ,xk = 1− x∗k”; this
has cost 12 for that clause. For each unsatisfied clausexi +x j +xk ≡C (mod 2), we
include inE′ any three unit-cost edges incident to “xi = x∗i ,x j = x∗j ,xk = x∗k,” as well
as twelve more unit-cost edges: namely in the six nodes consisting of “xi = 1− x∗i ,”
“xi = 1− x∗i ,x j = 1− x∗j ,xk = x∗k” and their images under swappingi with j and
k, the induced subgraph is a 6-cycle of parallel triples, and we take two edges out
of each triple. Thus the chosen edges have total cost 15 for that clause. It is not
hard to see that this solution is feasible — e.g. vertices of the form “xi = 1− x∗i ”
are covered by 4 edges for each clause containing them. The total cost isc(E′) =
12m+12(m− t)+15t = 24m+3t.

To finish the proof we show the following.

Claim 16. Given a feasible demand edge cover E′, we can find a solution x∗ such
that t, the number of unsatisfied clauses for x∗, satisfies24m+3t ≤ c(E′).

Proof. First we claim it is without loss of generality that for eachi, E′ contains ex-
actly one of the edges incident to “xi”. Clearly at least one of these two edges lies in
E′; if both do, then remove one (say, the edge between “xi” and “xi = 0”) and add to
E′ any subset of the other 6deg(xi) edges incident to “xi = 0” so that the total number
of edges incident on “xi = 0” in E′ becomes at least 4deg(xi). The removed edge has
d-value 4deg(xi) and all other incident edges haved-value 1, so clearly the solution
is still feasible and the cost has not increased.

Definex∗ so that for eachi, E′ contains the edge between “xi” and “xi = x∗i .”
Let E′′ denote the edges ofE′ incident on clause vertices (i.e. the edges ofE′ with
unit d-value). ForF ⊂ E′′ their left-contribution, denotedℓ(F), is the number of
them incident on vertices of the form “xi = 1− x∗i .” Note thatℓ(F) ≤ |F | for any
F . Furthermore for each unsatisfied clause, all edges incident on its vertex “xi =
x∗i ,x j = x∗j ,xk = x∗k” have zero left-contribution, butE′ contains at least three of these
edges. Thus the edges ofE′′ incident on that clause’s vertices haveℓ(F) ≤ |F |−3.
Finally, considerℓ(E′′). Each edge ofE′′ is in the gadget for a particular clause,
and it follows thatℓ(E′′) ≤ |E′′| − 3t wheret is the number of unsatisfied clauses
for x∗. However,E′′ needs to have 4deg(xi) edges incident on each “xi = 1−x∗i ” so
ℓ(E′′)≥∑i 4deg(xi) = 12m. Thus|E′′| ≥ 12m+3t and considering the edges incident
on the vertices “xi” we see thatc(E′) ≥ 24m+3t.

This completes the proof of the reduction.



17

5 Open Problems

It is natural to conjecture thatk-CS CIP with a submodular objective admits an ap-
proximation ratio depending only onk, perhapsO(lnk) matching the best ratio known
for linear objectives.

Although 2-RS IPs are very hard to optimize (at least as hard as Max Indepen-
dent Set), the problem of finding afeasiblesolution to a 2-RS IP is still interesting.
Hochbaum et al. [18] gave a pseudopolynomial-time 2-SAT-based feasibility algo-
rithm for 2-RS IPs with finite upper and lower bounds on variables. They asked if
there is a pseudopolynomial-time feasibility algorithm when the bounds are replaced
by just the requirement of nonnegativity, which is still open as far as we know. It is
stronglyNP-hard to determine if IPs of the form{x≥ 0 | Ax= b} are feasible when
A is 2-CS [17], e.g. by a reduction from 3-Partition; but for IPs where each variable
appears at most twiceincludingin upper/lower bounds, it appears all that is known is
weakNP-hardness (for example, via theunbounded knapsack problem[32]).
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This appendix was included with the original conference submission for the sake of the referees, and
we are including it again to clarify our claims. We do not wantit included in the actual journal article.

A Discussion of Issues In [5,10]

In this appendix we give a discussion of the apparent problems with the papers [5,10]; this discussion is
meant to describe evidence for these bugs to the referees, but is not meant to appear in the proceedings.
We allege that there are bugs in their claimedk-approximation algorithms fork-RS CIPs with arbitrary
d. We give excerpts from their papers but paraphrasing and with variable names translated so as to be
consistent with our own paper. For reference, what we denote{mincx : Ax≥ b,0 ≤ x ≤ d} is denoted

{mincx : Ux≥ d,0≤ x≤ b} by [5] and{minwx : Cx≥ b,0≤ x≤ u} by [10]. What we callA(F)
i j is denoted

uA(i, j) by [5] (whereA is a set of variables) andcD
i j by [10] (whereD is a set of variables).

A correct preliminary remark made in both [5, §2.2] and [10, §1.3] is that we can assume without
loss of generality thatd has no infinite entries, since there is no loss of generality in assumingdj ≤
maxi:Ai j >0⌈bi/Ai j ⌉. Call this thefinite-d assumption.

A.1 Carr et al. 2000

There is a correct proof of Theorem1 in the special cased = 1 in [5, §2.6] (“Theorem 2.9” in their paper).
The same section reads “By the discussion in Section 2.2, we can restrict our discussion to the case when
d = 1.” In turn [5, §2.2], contains
(i) the phrase “All of the results in this paper extend to the setting where edge [variable]j may be selected

up todj times.”
(ii) the finite-d assumption,

(iii) discussion for the general-d case whenA has one row (i.e. min-knapsack). They propose a technique
which does work whenA has one row. The extension of this technique to multiple rowsleads to
“KC-LP” in Section2.1(see also an essentially identical LP in [25])

(iv) the phrase “The same technique works for all problems discussed in this paper, since all our approx-
imation guarantees are insensitive to multiple edges [variables]. Hence while our proofs discuss the
0/1 problem, the theorems hold for general upper bounds.”

We illustrate a few reasonable approaches that we think the authors might have intended, none of which
seem to work.

A.1.1 Sensitivity to multiple edges

Perhaps the most straightforward interpretation of claim (iv) is that, in order to show thatd = 1 is without
loss of generality ink-RS CIPs, we replace each variablej with dj copies, each with unit capacity (d
value). But such a reduction increases the number of variables in a given constrainti from |suppAi | ≤ k to
∑ j∈suppAi

dj . Since the target result is an approximation ratio equal to the maximum number of variables
per constraint, this approach is not without loss of generality.

A.1.2 KC-LP

The item (iii) suggests that the authors of [5] had KC-LP in mind. Even guessing optimistically that the
authors of [5] were aware of the simple direct-rounding-based(k+1)-approximation algorithm described
in Section2 of this paper, it seems new ideas (for example, roundabilityandZ+-equivalence) are needed to
reduce the approximation ratio tok, which [5] does not provide. We now give an example of a situation not
covered by just using KC-LP. The proof method of [5] (like our own proofs in Section2) considers only a
single constraint of the LP at a time. Now suppose for a given row i that eachj ∈ supp(i) hasAi j dj ≥ bi .
(It is not too hard to see that this could happen even under thefinite-d assumption.) In this case there are
no new knapsack constraints that can be added for that row, since we only obtain meaningful knapsack
constraints from rowi and subsetsF ⊂ supp(i) of variables with∑ j∈F Ai j dj < bi . This seems to break the
obvious analogue of [5, Thm. 2.9]’s proof for generald.
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A.1.3 Knapsack inequalities parameterized by vectors

In investigating this problem there is another reasonably simple and natural extension of the knapsack-
cover inequalities which one might try, but also seems insufficient. Namely, one might generalize the
constraint to allow for a particular number of copies of eachitem j — instead of a setF of variables, we

would have an integral vector 0≤ f ≤ d. For a vectorf and rowi such that∑ j Ai j f j < 1, defineA( f )
i j =

min{Ai j ,1−∑ j Ai j f j}, then the following inequality is a valid generalization of the KC-LP inequalities:

∑
j

A( f )
i j max{0,xj − f j} ≥ 1−∑

j
Ai j f j . (5)

However, note that the “max” makes this a nonlinear constraint, and there is no obvious way to rewrite
(5) in terms of linear constraints. Moreover, replacing max{0,xj − f j} with just (xj − f j ) in (5) produces
invalid inequalities, e.g. ifA = [2111], b = [3] then the constraint obtained forf = [0011] is 1·x1 + 1 ·
x2 +1·(x3 −1)+1·(x4 −1) ≥ 1, which is not valid for the feasible solutionx = [1100] of the original IP.

In discussing [5] with one of its authors, L. Fleischer, (who wished not to be used as a personal
reference in the actual paper since she has not had time to fully check the alleged problems) she mentioned
her first approach to filling in the missing details from [5] would be similar to the inequalities (5), and upon
some discussion she concurred that the 4-variable example just above means this particular interpretation
does not seem to work.

A.2 Fujito & Yabuta 2004

We discuss the paper [10] next. That paper casts CIP as part of a more general framework they call ca-
pacitated supply-demand (CSD). They use MMC (multiset multicover) to mean the same as CIP. In [10,
§1.3] they say (paraphrasing in square brackets) “In MMC, explicit upper boundsx ≤ d are called mul-
tiplicity constraints, and if it is non-existent, a trivialupper bound onxi is [obtained from the finite-d
assumption]. When cast in CSD, eachi is replaced (not explicitly) bydi copies,i1, . . . , iui , eachAi l j is set
to min{Ai j ,max{0,bj −∑l−1

k=1 Aik j}} and [another parameterκ for the capacitated supply-demand problem
is set in a natural way]. (We remark that possibly non-polynomial expansion of problem instances in this
reduction causes no trouble in our algorithm.)” The full justification of these remarks relies in more than
one place on details deferred to the full version of the paper, in particular including [10, §1.4 item 3] when
discussing MMC. They seem to be implicitly referring to the problematic approach we have outlined in
SectionA.1.1.

A.2.1 Submodular Integer Cover

It is interesting to note, for the sake of checking whether previous ideas could give ak-approximation for
k-RS CIPs, that MMC/CIP directly (i.e. without intermediatetechniques) falls into the central problem of
[10] — submodular integer cover(SIC), which is{mincx|g(x) = g(+∞)} for submodularg. Specifically,
the CIP{mincx|Ax≥ b,0 ≤ x ≤ d} is the same as a SIC forg(x) = ∑i min{bi ,∑ j Ai j min{dj ,xj}} (à la
[30,40]). Under the additional assumptiond = 1, it is not hard to determine that the bound in [10, Thm.
9] is at mostk on instances derived fromk-CS CIP. However for generald the guarantee in [10, Thm.
9] can be arbitrarily large even on SIC instances derived from 2-RS CIPs. E.g. consider the unbounded
2-CS CIP

[
1 1
M M

]
x≥

[
2M
M

]
whereM is any integer, which corresponds to SIC forg = min{2M,x1 +x2}+

min{M,Mx1 + Mx2}. Thenx = [M M] is a “minimal feasible solution” which shows that the ratio in [10,
Thm. 9] (with S= ∅) is 2(M + 1)M/3M or greater. Thus, like [5], it seems that [10] does not contain
sufficient ideas to obtain ak-approximation algorithm fork-RS CIP.


	Introduction
	k-Approximation for k-Row-Sparse CIPs
	Column-Sparse Packing Integer Programs
	Hardness of Column-Restricted 2-CS CIP
	Open Problems
	Discussion of Issues In CFLP00,FY04

