David Kotz and Preston Crow. The Expected Lifetime of Single-Address-Space Operating Systems. Computing Systems, 9(3):155-178, Summer 1996.

Abstract: Trends toward shared-memory programming paradigms, large (64-bit) address spaces, and memory-mapped files have led some to propose the use of a single virtual-address space, shared by all processes and processors. To simplify address-space management, some have claimed that a 64-bit address space is sufficiently large that there is no need to ever re-use addresses. Unfortunately, there has been no data to either support or refute these claims, or to aid in the design of appropriate address-space management policies. In this paper, we present the results of extensive kernel-level tracing of the workstations on our campus, and discuss the implications for single-address-space operating systems. We found that single-address-space systems will probably not outgrow the available address space, but only if reasonable space-allocation policies are used, and only if the system can adapt as larger address spaces become available.

Keywords: distributed computing, operating system

BibTeX

PDF (795K)

Copyright © 1996 by USENIX Association.

The copy made available here is the authors' version; for a definitive copy see the publisher's version described above.

See also earlier version kotz:addrtrace.