
Context Aggregation and Dissemination
in Ubiquitous Computing Systems

Guanling Chen and David Kotz

Dartmouth College

{glchen, dfk}@cs.dartmouth.edu

http://www.cs.dartmouth.edu/˜solar/

Dartmouth Computer Science Technical Report TR2002-420

February 28, 2002

Abstract

Many “ubiquitous computing” applications need a con-
stant flow of information about their environment to be
able to adapt to their changing context. To support these
“context-aware” applications we propose a graph-based
abstraction for collecting, aggregating, and disseminat-
ing context information. The abstraction models context
information asevents, produced bysourcesand flowing
through a directed acyclic graph of event-processingop-
eratorsand delivered to subscribing applications. Appli-
cations describe their desired event stream as a tree of op-
erators that aggregate low-level context information pub-
lished by existing sources into the high-level context in-
formation needed by the application. The operator graph
is thus the dynamic combination of all applications’ sub-
scription trees.

In this paper, we motivate and describe our graph ab-
straction, and discuss a variety of critical design issues.
We also sketch our Solar system, an implementation that
represents one point in the design space for our graph ab-
straction.

1 Introduction

In a ubiquitous computing environment (sometimes called
pervasive computing), in which a user may interact with
dozens or hundreds of computationally enhanced devices,
user attentionbecomes a scarce resource. It is unreason-
able to expect a user to configure and manage these de-
vices, particularly when the devices and their interactions
change as the environment changes around them. “Ubi-

This research has been supported by DARPA contract F30602-98-
2-0107, by DoD MURI contract F49620-97-1-03821, by Microsoft Re-
search, by the Cisco Systems University Research Program, and by the
USENIX Scholars Program.

comp” applications must be aware of the context in which
they run [29]. Thesecontext-awareapplications can re-
duce user distraction by dynamically adjusting their be-
haviors to the current context, that is, the current state of
the user, the current computational environment, and the
current physical environment [30].

Context information is derived from an array of diverse
information sources, such as location sensors, weather or
traffic sensors, computer-network monitors, and the sta-
tus of computational or human services. A fundamental
challenge in ubiquitous computing, then, is tocollect raw
data from thousands of diverse sensors,processthe data
into context information, anddisseminatethe information
to hundreds of diverse applications running on thousands
of devices, whilescalingto large numbers of sources, ap-
plications, and users,securingcontext information from
unauthorized uses, and respecting individuals’privacy.
In this paper we address this fundamental challenge by
proposing a graph abstraction for context information col-
lection, aggregation, and dissemination, and show how it
meets the flexibility and scalability challenges. Its secu-
rity and privacy features are beyond the scope of this pa-
per.

We discuss the motivation and justification of the graph
abstraction in Section2. In Section3 we describe the
specifics of the graph abstraction. Section4 discusses the
many design decisions involved in realizing the graph ab-
straction, and Section5 gives overview about the specific
choices we made in our prototype “Solar system”. We
mention related work in Section6 and summarize in Sec-
tion 7.

2 Motivation

We arrived at our graph abstraction by considering the
structure of applications that consume context informa-

1

http://www.cs.dartmouth.edu/~solar/

tion, the proper location for processing sensor data into
context information, and structures that can encourage re-
use of code and of derived context information. The struc-
ture must be flexible and extensible to meet the fundamen-
tal challenge of diversity. The structure must also be scal-
able. Figure1 sketches an evolution of alternative struc-
tures.

A context-aware application attempts to adapt to its
changing context by monitoring a variety of sensors. Fig-
ure 1a depicts an application receiving sensor data from
three sources. The application runs on one platform, com-
monly a mobile or embedded host. The sensors are lo-
cated in the infrastructure. This arrangement sends all of
the sensor data across the network link to the application
platform, and expects the application and its platform to
be capable of transforming the raw data into the desired
context information. In a situation with slow or unreli-
able networks, and low-capability mobile platforms, this
arrangement is unworkable. With hundreds or thousands
of applications and platforms sharing a network connec-
tion, it is impossible.

A common approach is to construct a “context service”
that receives all of the raw source data, and supplies in-
formation about the current context, and changes to the
context, to interested applications. (The “location ser-
vice” seen in many systems is a special case of this ap-
proach.) Figure1b shows that much of the processing
has been moved off of the application platform, and may
be shared by multiple applications. The context service
provider defines the semantics of the context information
it provides. While it is possible that the information meets
the needs of some applications, in general the applications
must process the output of the context service.

Alternatively, the application could push its
application-specific processing into the network as a
proxy, essentially an application-specific context service.
Figure 1c demonstrates this approach. Note, however,
that there will be one application-specific proxy for each
application, which does not scale well.

We need a compromise that encourages sharing of fun-
damental transformations of sensor data into context in-
formation, but allows application-specific operations in
the network. One possibility (not shown) is to supply a
shared context service and install a proxy for each appli-
cation. Figure1d takes this approach one step further, de-
composing the context service into smaller modules that
produce context information of various types and forms.
Application-specific proxies may now select the most ap-
propriate inputs to begin their processing.

Finally, in Figure1e we see that when there are many
applications needing context information, they may be
able to share both the application-specific as well as the
generic processing steps. In the next section, we call this
abstraction anoperator graph. The burden of converting

source data into context information is on servers in the
network, not on application platforms. The decomposed
graph structure improves flexibility, compared to a mono-
lithic context service, and improves scalability, by avoid-
ing a centralized context service, avoiding the transmis-
sion of unnecessary data to application platforms, and by
sharing context processing across applications wherever
possible.

3 The abstraction

Ubicomp researchers have long recognized the need for
context collection, aggregation, and dissemination [9, 12,
32]. The challenge is to allow applications to define their
own operations, to describe flexible compositions of op-
erations, and to support many such applications with scal-
able performance. Based on our observations in the pre-
ceding section, we propose an abstraction for context col-
lection, aggregation, and dissemination based on a di-
rected acyclic graph (DAG). This abstraction can meet
the fundamental challenges of flexibility, scalability, and
security, although a discussion of security is beyond the
scope of this paper.

In this section, we introduce the operator-graph abstrac-
tion. Then we classify several types of commonly used
operators and sketch an example operator graph for an of-
fice scenario. Finally, we discuss the subtle semantics of
operator state and “one-time” subscription requests.

3.1 Events, operators, and graphs

Context-aware applications respond to context changes
by adapting to the new context. These applications are
likely to have an “event-driven” structure, where context
changes are represented asevents. In our graph abstrac-
tion, then, we represent context information as events.

We treat sensors of contextual data asinformation
sources, whether they sense physical properties such as
location, or computational properties such as network
bandwidth. Information sources produce their data as
events. The sequence of events produced are anevent
stream, which is inherently unidirectional. An eventpub-
lisher produces an event stream, and an eventsubscriber
consumes an event stream.1

An operator is an object that subscribes to and pro-
cesses one or more input event streams, and publishes an-
other event stream. Since the inputs and output of an oper-
ator are all event streams, the operators can be connected
recursively to form a directed acyclic graph, an event-flow
graph that we call theoperator graph.

1Notice that there is a one-to-one relationship between publishers
and event streams. In some other event systems, more than one entity
may publish events into an event stream.

2

S

S

S

S

S

S

S

App App

(a)

(b)

(c)

(d) (e)

S

S

Context
Service App

S

S

S

App

S

S

S

App

App

App

AppS

Figure 1: The circles are information sources, the white squares are operators, and the dark rectangles represent
application-specific processing. (a) Send raw data from the sources to the application, which converts the data into the
context information it needs. (b) A “context service,” receives all raw source data, and provides higher-level context in-
formation to applications, but some application-specific processing is still necessary. (c) Push the application-specific
processing into the network as a proxy. (d) Decompose the processing into application-independent portions and
application-specific portions. (e) Allow multiple applications to share data streams where possible.

Our operator graph consists of three kinds of nodes:
sources, operators, and applications. Thesourceshave no
subscriptions. They are wrappers for context sensors.Op-
eratorsare deterministic functions of their input events.
They only publish an event when they receive an input
event.Applicationsare sinks of the graph. They subscribe
to one or more event streams and react to incoming events
(and possibly other stimuli, such as interactions with the
user).

In our operator graph, a directed edge from node A
to node B represents that node B subscribes to the event
stream published by node A. The operator graph may not
be a tree because an operator may subscribe to multiple
streams, and its published output stream may have more
than one subscriber. In summary, thepublishersin the
graph are the sources and operators, and thesubscribers
in the graph are the operators and applications.

There are four common categories of operators (see
Figure 2). A filter outputs a subset of its input events.
(For example, a sensor publishes the temperature every
10 seconds while one application needs alerts only when
the reading exceeds 90 degrees.) Atransformer inputs
events of type E1 and outputs events of type E2. E2 may
be the same as E1 if the transformer only changes some
attribute values. (For example, a location sensor reports
coordinates, but the application needs a symbolic value
such as “Lobby.”) Themergersimply outputs every event
it receives. (For example, an active-map application that

T
E1 E2

M
E1 E1

E1

F
E1 E1

A
E1 E3

E2

Figure 2: Four types of operators: T as Transformer, F as
Filter, M as Merger, and A as Aggregator.

displays the current location of all employees merges the
readings from all location sensors.) While mergers are not
strictly necessary, since any of the merger’s subscribers
could directly subscribe to the same inputs, a merger aids
re-use of event streams. Anaggregatoroutputs an ar-
bitrary type event stream based on the events in one or
more input event streams. (For example, a “max-min ther-
mometer” operator outputs an event when it detects a new
maximum or new minimum on its input stream of current
temperature readings.)

3.2 An example operator graph

Figure3 presents an example operator graph to show how
the raw events from information sources flow through the
operators to become directly usable by the applications.
Circles represent event publishers; the letter inside indi-
cates its category (S stands for source). Squares represent
applications that consume the events.

3

007 Loc
 Sensor

Building
Locator

215 Loc
 Sensor

Active Map

Bob’s
Locator

Bob’s
Messenger

Bob’s
Guide

007
Monitor

Lab
Log

007 Equip
Alerter

215
People

TS

A

.

..

S

M

F

A

007
People

A

T

A F

F

215
Monitor

Figure 3: An example operator graph.

Suppose we have location-tracking sensors installed in
each room and badges attached to people and devices.
Each time a sensor detects a signal from a badge, it sends
out an event containing the badge ID and the timestamp.
In the figure these sources are labeled “Loc Sensor” with
a room number; each has a transforming operator to map
the badge ID to the person or device’s name associated
with it.

TheBuilding Locatoroperator subscribes to the current
location of every badge, based on the transformed and
merged events that originate from the location sensors.
It records the current location in its internal state. (We
discuss stateful operators below.) It generates a “location
change” event whenever it sees a badge change location.
This output event stream can be used by theActive Map
application (such as [27]) to display the badges’ current
location in real time. Another subscriber,Bob’s Locator,
filters for changes in Bob’s location. Using this informa-
tion, aGuideapplication [1, 11] running on Bob’s PDA
can display information related to his current location.

Another reasonable structure, not shown, is to first
merge the events from all location sensors and then trans-
form them using only one transformer, to which the Build-
ing Locator subscribes. Any application that cares about
location events only in one particular room can filter the
Building Locator’s output. Although that approach seems
awkward, it allows the Building Locator to resolve sensor
conflicts (where multiple location sensors report seeing a
badge at the same time).

Returning to our example, the operator007 Monitor
tracks the set of badges currently in the lab. When a new
badge is sensed, it generates a “badge entering” event.
When a badge has not been sensed in the past few sen-
sor reports, this operator outputs a “badge leaving” event.
The filter007 Peopleemits events about people only, not
devices. The applicationLab Logsubscribes to that event
stream and records the events with timestamp for future
reference.

If the 007 Equipment Alerterreceives a “leaving” event
for certain equipment, without receiving a “leaving” event

for authorized personnel at about the same time, it pub-
lishes an alarm event that should be sent to the lab ad-
ministrator (Bob), whoseMessengerapplication displays
these alarms on his PDA. If there is nobody in the room
with Bob, the Messenger beeps and displays the message.
If there are other people in the room, the Messenger vi-
brates instead. Notice the Messenger subscribes to “215
People” operator (the dashed arrow) because Bob is in
room 215 now. This subscription is dynamic and will
change as Bob moves around. We discuss the concept of
context-sensitive subscriptions in Section3.5.

There are several advantages of the operator graph ab-
straction. First, applications receive events semantically
closer to their needs than those produced by the sources.
Second, due to the modular, object-oriented design we
benefit from operator reusability, data abstraction, and
maintainability. Third, due to the modular design this op-
erator graph can be deployed across a network and achieve
the benefits of parallelism and distribution. Fourth, since
filters and aggregators can dramatically reduce traffic
along the graph edges, they reduce inter-process (and of-
ten inter-host) communication requirements. Finally, by
sharing the common operators and event streams the sys-
tem can support more such applications and more users.

3.3 Operator state

Many operators need to keep internal state information to
be used when processing events. The state may be simple,
as in an aggregator that simply records the previous event
to detect changes. The state may be complex, as in an op-
erator that tracks the current location of many users or the
current value of every stock on the market. Filter, trans-
formation, and merger operators are stateless; aggregators
may have state.

Our graph abstraction allows the subscriber to choose
one of two possible semantics for a new subscription to
a stateful operator: 1) the subscription is treated as for
stateless operators, or 2) the operator should “push” its
current state to the subscriber before any new events are
published. In the latter semantics the operator publishes
a special sequence of events to the new subscriber only,
events that are marked as “state-pushing events” and when
considered together represent the current state of the op-
erator. (This feature is reminiscent of the Gryphon expan-
sion operation [3].)

Consider Figure3. The 007 Monitor maintains a list of
badges currently in the lab and publishes changes to this
list. The Lab Log logs all the change events, and never
needs the original state. The Active Map, on the other
hand, needs a “state push” when it first subscribes to the
Building Locator, so it can properly locate slow-moving
devices like printers.

4

3.4 One-time subscription requests

The operator graph is an event-oriented abstraction that
has publish-and-subscribe interfaces for disseminating in-
formation to applications. Occasionally an application
may not need the ongoing event stream, but simply needs
to obtain the current value. In another system, the applica-
tion might query the information source. In the operator
graph we retain the publish-and-subscribe abstraction by
permitting “one-time” subscriptions of stateful operators.
An application that needs to obtain the current value of the
information published by an operator makes a one-time
subscription to that operator. The operator “pushes” its
state, as described above, and then cancels the subscrip-
tion.

The one-time subscription approach has several ad-
vantages, largely resulting from its simplicity. There
is only one abstraction: publish and subscribe, which
streams events from publisher to subscriber. This simplic-
ity avoids the need for additional interfaces and maintains
the unidirectional data flow. The subscriber’s control flow
remains event-oriented rather than blocking for the results
of a query. The programmer of the subscriber can choose
one-time or permanent subscriptions based on their needs.
The programmer of the publisher need not know anything
about queries or one-time subscriptions, only about state
push.

3.5 Context-sensitive subscriptions

Many context-aware applications use one aspect of the
context (such as the user’s location) to subscribe to other
information about that context (such as the set of peo-
ple, devices, or sensors in that location). As the user
changes location, the application must cancel its subscrip-
tions, then locate and subscribe to appropriate sources for
the new location. These location-sensitive subscriptions
are a general case of what we callcontext-sensitive sub-
scriptions.

It is possible for the application to actively monitor the
user’s location (for example), and when the user moves
to manually adjust its other subscriptions. To reduce pro-
grammer effort and to avoid redundant monitoring of the
same context by many applications, we aim to support
context-sensitive subscriptions directly in the infrastruc-
ture. From the viewpoint of the graph, the links repre-
senting a context-sensitive subscription are dynamic and
the events may flow through different paths as the context
changes. We discuss the potential for context-sensitive
names to represent context-sensitive subscriptions in Sec-
tions4.2and5.

4 Design space

There are many design issues involved in realizing the
operator-space abstraction. In this section we consider
the representation of events, how to name operators or
event streams, how to route events from publishers to sub-
scribers, and the operator programming model.

4.1 Event representation

Events are passed from publisher to subscriber, typically
across a network connection of some kind. Ultimately,
any representation agreeable to both publisher and sub-
scriber will work, but there are three typical approaches
used by event-distribution systems. The event may be
a typed object appropriate to a particular object-oriented
language, a set of attribute-value pairs (usually repre-
sented as lines in an ASCII string), or more recently a
small XML document. Each representation has advan-
tages and disadvantages.

An object representation allows the event to include a
complex data structure, if desired. The inherent type hi-
erarchy an object-oriented language can be used for type-
checking when matching subscribers to publishers. Fur-
thermore, type inheritance allows subscribers to process
a general class of events even when publishers may send
events of more refined subclasses. For example, a location
aggregator can receive any location event regardless of
whether it is a GPSLocationEvent, ActiveBadgeLocation-
Event, or CricketLocationEvent, if they are all subclasses
of LocationEvent. On the other hand, an object represen-
tation is usually tied to a particular language, such as Java.

An attribute-value representation is typically more lim-
ited than an object representation, although some hierar-
chical representations (such as INS [2]) do provide struc-
ture, and the use of wildcards and implicit fields provide
a limited form of inheritance. The simpler representation
greatly facilitates content-based event routing (see Sec-
tion 4.3), and is language- and platform-independent.

Although XML encoding provides more opportunities
for structure, XML adds substantial overhead. Parsing ev-
ery incoming event, constructing every outgoing event,
and transmitting information in the verbose XML for-
mat, reduces event throughput and adds substantial la-
tency along the event flow. While compressing the XML
reduces bandwidth consumption [33], it adds more pro-
cessing overhead.

4.2 Operator naming

A primary feature of the graph abstraction is the opportu-
nity to re-use the event streams between applications and
between users. It is always possible for an application
to construct its event flow from basic sources and a tree

5

of generic and custom operators. When an application de-
scribes such a tree and asks the infrastructure to deploy the
operators, the supporting infrastructure can match the new
description against the existing graph to identify whether
any existing event streams can be used to satisfy all or part
of the new request. To make life easier for application pro-
grammers, however, it would be helpful if common event
streams could be constructed and named by an adminis-
trator, or by other users, and then new applications can
subscribe to these event streams by name.

So, we need a method to name event streams (or equiv-
alently, the operator that publishes the stream). Inciden-
tally, we must also name sources. There are many possible
approaches to naming.

The name space could be organized as a tree, as in
many file systems. For those publishers given names,
the name describes a path from the root to a leaf in the
tree. For example, a temperature sensor in Sudikoff room
215 might be named [/Sudikoff/2F/215/temp-sensor/]. To
enhance scalability, multiple levels of naming may be
helpful; although many examples exist [25, 4], perhaps
the most common example is the two-level name (host-
name:filename) used in URLs.

The name space may be less structured. Each
named publisher could be given a set of descriptive
attribute-value pairs [2, 18]. The above temperature
sensor might be named [sensor=temperature, room=215,
floor=2, building=Sudikoff].

It is arguable whether one approach has clear advan-
tages over the other. In either case the name should be a
descriptive handle. In one case the description is a tuple
of attributes and values, and in the other case the same at-
tributes may be implicit in the structure of the tree. Both
depend heavily on conventions that define the names of
the attributes (or structure of the tree) and the range of
values (or names of tree links). The conventions used to
structure the tree are likely stricter than those in a set of
attributes, which may make the tree less attractive in a dy-
namic ubicomp environment.

Another important role for naming is to facilitate re-
source discovery. In tree-based names a wildcard allows
an application to easily describe a large set of publishers,
e.g., [/Sudikoff/*/*/temp-sensor/]. The same effect might
be obtained in an attribute-based system that allows partial
matches, e.g., [sensor=temperature, building=Sudikoff].

We are intrigued by the potential forcontext-
sensitive names, that is, names whose binding
changes when the context changes. For example,
[/people/profs/Bob/location/temp-sensor] might refer
to the temperature sensor in the same room as Bob. A
subscription to that name would dynamically be rebound
to a subscription to the appropriate publisher when Bob
changes location. It is not clear how to encode this level
of indirection in an attribute-based approach.

Finally, it is a challenge to implement a large name
space efficiently. The tree structure leads to efficient
name resolution but may encounter a bottleneck at the
root. Some structural conventions may be imposed on
an attribute-based approach to improve resolution scala-
bility [2]. While some recent peer-to-peer systems hash a
full name as the first step in locating the object associated
with a name [10, 13, 23], it is not clear how that approach
might support wildcards and context-sensitive names.

4.3 Event routing

Although the graph abstraction links publishers directly
to subscribers, routing events from a publisher to its set
of subscribers is essentially a multicast problem that may
be implemented in many ways. The simplest approach is
to use unicast, to send a copy of the event to each sub-
scriber. This approach will not scale when there are many
subscribers. Where IP multicast is supported, applica-
tions might subscribe and unsubscribe to event streams
by joining or leaving particular multicast groups. This ap-
proach requires one IP-multicast group for each publisher,
however, which is not scalable. An overlay network can
use an application-level multicast protocol among a set of
servers acting as multicast routers, based either on tradi-
tional multicast groups [20] or based on groups defined by
names [2].

We can take the multicast concept one step farther to
content-based event routing [3, 7, 33]. These systems also
use an overlay network of servers, often calledbrokers,
which route events to subscribers based on the content (at-
tributes) of the events, not simply based on the destination
group or name. In effect, all publishers send events to the
global event stream, and subscribers describe the events
they want to receive as filters. Siena filters can even rec-
ognize event sequences. Some of the systems can encode
simple transform operations.

Since event brokers implement simple merge, filter, and
transform operators, it is tempting to add complex oper-
ators like aggregators. Since the brokers are essentially
pattern-matching engines, it is unclear whether they might
be extended to implement complex operators. All such
systems must balance expressiveness with scalability [6].

A reasonable compromise is to use content-based rout-
ing as the routing substrate of the operator graph. Im-
plement merge and simple filter operations in the event
broker layer, and the more complicated operators remain
independent operators that subscribe to the routing system
and publish events back into the routing system.

4.4 Programming model

What abstraction do we provide to the application pro-
grammer? The programmer may deal explicitly with the

6

operator-graph abstraction, composing an event stream by
describing an operator tree based in named sources, and
using generic and custom operator classes. Or, the pro-
grammer may describe the desired events from named
sources using a descriptive higher-level language, which
is translated by a compiler into the appropriate operator
tree.

Theexplicitapproach exposes the operator-tree abstrac-
tion to the programmer. The programmer manually de-
rives an event flow that produces context information from
named event streams using generic and custom operator
classes. Then she uses a subscription language to describe
the structure of the tree. She may optionally name the in-
termediate or final event stream, for others to use.

We speculate that the act of manually deriving an event
flow, and the temptation to use existing operator classes
where available, will encourage programmers to derive
similar trees in similar situations, increasing the opportu-
nities for re-use of event streams. Similarly, programmers
will be likely to name event streams for use by other users
or in other applications.

With a more complex subscription language, the
operator-tree abstraction may betransparentto the pro-
grammer. Using the language to describe the aggregation
of events from named publishers into the desired context,
the programmer encodes all of the necessary logic in one
program. A compiler translates the subscription into a tree
of operators, which is deployed in the same way as in the
explicit programming model. The challenge is to invent
a subscription language sufficiently powerful to encode
complicated aggregations, and yet simple enough to effi-
ciently parse into an operator tree. A language like Java
is highly expressive, but a language like SQL or XQuery
may offer more structure. The language needs a struc-
ture that encourages the programmer to describe the event
flow in a way that is easily decomposable and likely to
match other applications’ operator trees. With sophisti-
cated compiler analysis, it may be possible to define finer-
grain operators and support finer-grain sharing within the
graph. With knowledge of the semantics, the compiler
may also be possible to rearrange operator trees to allow
matches that would otherwise not have occurred.

4.5 Summary

We discuss several design issues for realizing the
operator-graph abstraction. The combination of different
choices will result in different systems. For example, if
events are represented as XML documents, the applica-
tion programmer might use the XQuery programming lan-
guage to describe its subscription for a compiler to trans-
late into an operator tree and a set of filter expressions to
provide to an XML-based event-routing overlay network.

In next section we discuss the prototype of our Solar

system, which represents another combination of design
choices. While Solar has many interesting characteristics,
we hope to explore some of the other design choices in
related prototypes.

5 The Solar system

We are building a prototype infrastructure for context
collection, aggregation, and dissemination, based on the
operator-graph abstraction. We describe our prototype,
the “Solar” system, in detail in a technical report [8]. In
this paper we focus on the graph abstraction and related
design choices.

Our Solar prototype is implemented in Java. It models
events as Java objects and uses Java serialization for event
transmission. The operators are small Java objects that
implement a simple publish/subscribe interface.

Solar names sources and operators in a tree-structured
name space. Thus, operators have path names like
[/Sudikoff/2F/215/temp-sensor]. We extend the tree ab-
straction with two types ofsoft links. Alias nodes
bind one name to another. Unlike a Unix symbolic
link, however, most alias nodes are designed to change
their binding when certain context changes. Thus,
the alias [/people/profs/Bob/location] may be bound to
[/Sudikoff/2F/215] now, then later to [/Sudikoff/0F/007]
when Bob walks to room 007.Dynamic directoriesdy-
namically compute their set of children based on con-
text. For example, [/Sudikoff/0F/007/people] is a direc-
tory whose children are other nodes in the tree, nodes that
represent people. The combination can be quite powerful;
for example, [/people/profs/Bob/location/people], is a di-
rectory containing a list of people co-located with Bob.
The list changes when Bob moves or when people enter
or leave Bob’s current room.

Solar’s naming conventions thus encode context in the
name space. Dynamic context is captured with the dy-
namic soft links. To enable applications to monitor
changes to the namespace, and hence changes to the en-
coded context, all namespace nodes are publishers. Direc-
tories publish changes to their set of children, and aliases
publish changes to their binding. Aliases and dynamic
directories are operators that subscribe to the context in-
formation necessary to change their binding or set of chil-
dren.

Given this context-sensitive namespace, we then en-
courage applications to subscribe to context-sensitive
names. Thus, an application desiring to track the set of
people Bob meets in a given day, subscribes to the oper-
ator at name [/people/profs/Bob/location/people], and re-
ceives an event about changes to the set of people sur-
rounding Bob. We show below how Solar supports sub-
scriptions to context-sensitive names.

7

At the center of any Solar system is aStar, which keeps
a reference to the root of naming tree, maintains the op-
erator graph, and services requests for new subscriptions.
When the Star receives a new subscription-tree descrip-
tion, it parses the description, checks the name space,
and matches the subscription tree against its internal data
structure representing the operator graph. When it decides
to deploy an operator, it instantiates the operator’s object
on one of manyPlanets. Each Planet is an execution plat-
form for Solar sources and operators. Applications run
outside the Solar system and use a small Solar library that
allows them to send requests to the Star, and to manage
their subscriptions, over standard network protocols.

Planets play a key role in the subscriptions of resident
operators. When deploying new subscriptions, the Star
tells the Planets to record a subscription from one of its
operators to an operator in another Planet. In our imple-
mentation there is at most one network (TCP/IP) connec-
tion between any two Planets, regardless of the number of
operators on or subscriptions between the two Planets.

Planets support subscription requests that involve
context-sensitive names (CSNs). These subscription re-
quests are mapped to subscriptions, which need to be
changed when the CSN binding changes. Consider an
operator X that records the name of every person Bob
meets. The operator requests subscription to the CSN
[/people/profs/Bob/location/people], currently bound to
an operator P. X’s Planet subscribes to the name [/peo-
ple/profs/Bob/location]. The Planet receives the current
binding and subscribes X to P. When Bob moves, suppose
the binding changes to operator Q. X’s Planet contacts P’s
Planet to remove X from P’s data structure, and contacts
Q’s Planet to add X to the Q’s data structure. All the work
is done by planets and the namespace operators; P, Q, and
X are never involved.

These and other aspects of the Solar architecture are
key to its scalability and flexibility. Our next step is to
experiment with the use of Solar in several real-world
context-sensitive mobile applications to determine the
value of the abstraction and the performance of the sys-
tem. We installed an IR-based location system from Ver-
sus Technologies,2 to supply location context to our Solar
system and its applications. We plan to add more infor-
mation sources to enrich the context space and to explore
the performance and flexibility of the operator graph ab-
straction. Finally, Solar has unique mechanisms for access
control and authorization, but their description is beyond
the scope of this paper.

2http://www.versustech.com/

6 Related work

Many have studied context-aware applications and their
support systems. In Xerox Parc’s distributed architecture
each user’s “agent” collects context (location) about that
user, and decides to whom the context can be delivered
based on that user’s policy [31, 34]. AT&T Laboratories
at Cambridge built a dense network of location sensors to
maintain a world model shared between users and appli-
cations [17]. Location context can be used to select on-
the-spot information for tourist guide applications [1, 11].
HP’s Cooltown project adds Web context to the environ-
ment by allowing mobile users to receive URLs sent by
ubiquitous beacons [22]. HP’s Easyliving focuses on a
smart space that is aware of the user’s presence and ad-
justs environmental settings to suit her needs [5].

A few projects specifically address the flexibility and
scalability of context aggregation and dissemination. Like
Solar, the Context Toolkit is also a distributed architec-
ture supporting context fusion and delivery [12]. It uses a
widgetto wrap a sensor, through which the sensor can be
queried about its state or activated. Applications can sub-
scribe to pre-defined aggregators that compute commonly
used context. Solar allows applications to dynamically
insert operators into the system and compose refined con-
text that can be shared by other applications. The Context
Toolkit allows applications to supply filters for their sub-
scriptions, while Solar introduces general filter operators
to maintain a simple abstraction.

Given the type of desired data, some systems automati-
cally construct a data-flow path from sources to requesting
applications, by selecting and chaining appropriate com-
ponents from a system repository [21, 19]. CANS can
further replace or rearrange the components to adapt to
changes in resource usage [16]. To apply this approach to
support context-aware applications, the system manager
must foresee the necessary event transformations and in-
stall them in the component repository. These systems
offer no specific support for applications to provide cus-
tom operators. Active Names, on the other hand, allow
clients to supply a chain of generic or custom compo-
nents through which the data from a service must pass
[35]. Also, Active Streams support event-oriented inter-
process communication, and allow application-supplied
streamletsto be dynamically inserted into the data path
[14].

All of these approaches encourage the re-use of stan-
dard components to construct custom event flows. None,
to our knowledge, specifically encourage the dynamic and
transparent re-use of event streams across applications
and users. Solar’s re-use of operator instances, and their
event streams, avoids redundant computation and data
transmission, and improves scalability.

Solar is designed to support a wide variety of sensor

8

http://www.versustech.com/

data, including computational as well as physical param-
eters. Solar may then be the delivery mechanism for sys-
tems that allow mobile applications to adapt to changes in
computational resources. For example, Odyssey applica-
tions are aware of the state of resources and can adapt to
variations in bandwidth [28] and battery power [15].

As we discuss in Section4.3, there are many options for
event routing. Solar currently uses a point-to-point links
between a publisher and its subscribers. Although the im-
plementation multiplexes links on Planet-to-Planet socket
connections, and implements multicast within a Planet,
we may eventually construct an overlay multicast network
on the Planets. We may also consider using content-based
event routing [7, 3, 33] to support the operator graph. Ulti-
mately, we need to evaluate whether Solar’s explicit filter
operators will be more or less efficient than the implicit
filtering in content-based event routing system like Siena.

Solar names many of its publishers. We may be able to
use names instead of addresses for routing [24, 2]. Peer-
to-peer systems typically hash the full text name into an
ID for the purpose of routing [10, 13, 23]. These ap-
proaches do not easily support context-sensitive subscrip-
tions, however.

7 Summary
To support context-aware mobile applications, we pro-
pose a graph-based abstraction for context aggregation
and dissemination. The abstraction models the contex-
tual information sources as event publishers. The events
flow through a graph of event-processing operators and
become customized context for individual applications.
This graph-based structure is motivated by the observa-
tion that context-aware applications have diverse needs,
requiring application-specific production of context infor-
mation from source data. On the other hand, applications
do not haveuniqueneeds, so we expect there is substantial
opportunity to share some of the processing between ap-
plications or users. The situation calls for both flexibility
and scalability, and our proposed operator-graph abstrac-
tion meets both challenges. It allows the flexible construc-
tion of event streams through composition of generic and
custom operators. It encourages scalability through re-use
of event streams across applications and users wherever
possible, by migrating the load off weak mobile applica-
tion platforms and into powerful network servers, and by
distributing that load among many network servers.

We discuss the details of the operator graph abstrac-
tion, the four types of the operators, the semantics of
stateful operators and one-time subscriptions, and the
context-sensitive subscriptions that make the graph dy-
namic. There are many ways to realize the graph ab-
straction in a supporting system, and we discuss design
issues involved with event representation, operator nam-

ing, event routing, and programming models. We give an
overview of our Solar system that implements the graph
abstraction. Interested readers can find more details in
technical reports about Solar [8] and about a smart re-
minder application built on top of Solar [26].

References
[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,

and M. Pinkerton. Cyberguide: A mobile context-aware
tour guide. Wireless Networks, 3(5):421–433, October
1997.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The design and implementation of an intentional
naming system. InProceedings of the 17th ACM Sympo-
sium on Operating Systems Principles, pages 186–201, Ki-
awah Island Resort, South Carolina, December 1999.

[3] G. Banavar, M. Kaplan, K. Shaw, R. E. Strom, D. C. Stur-
man, and W. Tao. Information flow based event distribu-
tion middleware. InProceedings of the Middleware Work-
shop at the 19th IEEE International Conference on Dis-
tributed Computing Systems, Austin, Texas, May 1999.
IEEE Computer Society Press.

[4] A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Schroeder. Grapevine: An exercise in distributed comput-
ing. Communication of ACM, 25(4):260–274, April 1982.

[5] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer.
EasyLiving: Technologies for intelligent environments. In
Proceedings of the Second International Symposium on
Handheld and Ubiquitous Computing, pages 12–29, Bris-
tol, UK, September 2000. Springer-Verlag.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an Internet-scale event
notification service. InProceedings of the Nineteenth An-
nual ACM Symposium on Principles of Distributed Com-
puting, pages 219–227, Portland OR, USA, July 2000.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Transactions on Computer Systems, 19(3):332–383,
August 2001.

[8] G. Chen and D. Kotz. Supporting adaptive ubiquitous
applications with the SOLAR system. Technical Report
TR2001-397, Dept. of Computer Science, Dartmouth Col-
lege, May 2001.

[9] N. H. Cohen, A. Purakayastha, J. Turek, L. Wong, and
D. Yeh. Challenges in flexible aggregation of pervasive
data. Technical Report RC21942, IBM TJ Watson Re-
search Center, January 2001.

[10] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Mor-
ris, I. Stoica, and H. Balakrishnan. Building peer-to-peer
systems with Chord, a distributed lookup service. InPro-
ceedings of the 8th Annual Workshop on Hot Topics in Op-
erating Systems, Elmau, Germany, May 2001.

[11] N. Davies, K. Cheverst, K. Mitchell, and A. Friday. Caches
in the air: Disseminating tourist information in the GUIDE

9

system. InProceedings of the Second IEEE Workshop
on Mobile Computing Systems and Applications, New Or-
leans, Louisiana, February 1999.

[12] A. K. Dey. Providing Architectural Support for Building
Context-Aware Applications. PhD thesis, College of Com-
puting, Georgia Institute of Technology, December 2000.

[13] P. Druschel and A. Rowstron. PAST: A large-scale, per-
sistent peer-to-peer storage utility. InProceedings of the
8th Annual Workshop on Hot Topics in Operating Systems,
Elmau, Germany, May 2001.

[14] G. Eisenhauer, F. E. Bustamante, and K. Schwan. A mid-
dleware toolkit for client-initiated service specialization.
Operating Systems Review, 35(2):7–20, April 2001.

[15] J. Flinn and M. Satyanarayanan. PowerScope: A tool for
profiling the energy usage of mobile applications. InPro-
ceedings of the Second IEEE Workshop on Mobile Com-
puting Systems and Applications, New Orleans, Louisiana,
February 1999. IEEE Computer Society Press.

[16] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, adaptive network services infrastructure. In
Proceedings of the 3rd USENIX Symposium on Inter-
net Technologies and Systems, San Francisco, California,
March 2001. USENIX.

[17] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster.
The anatomy of a context-aware application. InProceed-
ings of the Fifth Annual ACM/IEEE International Confer-
ence on Mobile Computing and Networking, pages 59–68,
Seattle, WA, August 1999.

[18] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless sen-
sor networks with low-level naming. InProceedings of
the 18th ACM Symposium on Operating Systems Princi-
ples, pages 146–159, Chateau Lake Louise, Canada, Octo-
ber 2001.

[19] J. I. Hong and J. A. Landay. An infrastructure approach to
context-aware computing.Human-Computer Interaction,
16(2&3), 2001.

[20] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole, Jr. Overcast: Reliable multicasting with
an overlay network. InProceedings of Forth Symposium
on Operating Systems Design and Implementation, pages
197–212, San Diego, CA, October 2000.

[21] E. Kiciman and A. Fox. Using dynamic mediation to in-
tegrate COTS entities in a ubiquitous computing environ-
ment. InProceedings of the Second International Sympo-
sium on Handheld and Ubiquitous Computing, pages 211–
226, Bristol, UK, September 2000. Springer-Verlag.

[22] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell,
P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris,
J. Schettino, and B. Se. People, places, things: Web
presence for the real world. InProceedings of the Thrid
IEEE Workshop on Mobile Computing Systems and Ap-
plications, pages 19–28, Monterey, California, December
2000. IEEE Computer Society Press.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:
An architecture for global-scale persistent storage. InPro-
ceedings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 190–201, Cambridge, MA, November
2000.

[24] H. T. Kung. MotusNet: A content network. 2001.

[25] B. W. Lampson. Designing a global name service. InPro-
ceedings of the 4th ACM Symposium on Principles of Dis-
tributed Computing, pages 1–10, Minaki, Ontario, 1986.

[26] A. Mathias. SmartReminder: A case study on context-
sensitive applications. Technical Report TR2001-392,
Dept. of Computer Science, Dartmouth College, June
2001. Senior Honors Thesis.

[27] J. F. McCarthy and E. S. Meidel. ACTIVE MAP: A vi-
sualization tool for location awareness to support informal
interactions. InProceedings of First International Sympo-
sium on Handheld and Ubiquitous Computing, pages 158–
170, Karlsruhe, Germany, September 1999.

[28] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile application-aware
adaptation for mobility. InProceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 276–
287, Saint-Malo, France, October 1997.

[29] M. Satyanarayanan. Pervasive computing: Vision and
challenges.IEEE Personal Communications, 8(4):10–17,
August 2001.

[30] B. Schilit, N. Adams, and R. Want. Context-aware com-
puting applications. InProceedings of IEEE Workshop on
Mobile Computing Systems and Applications, pages 85–
90, Santa Cruz, California, December 1994. IEEE Com-
puter Society Press.

[31] W. N. Schilit. A System Architecture for Context-Aware
Mobile Computing. PhD thesis, Columbia University, May
1995.

[32] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela,
K. V. Laerhoven, and W. V. de Velde. Advanced interaction
in context. InProceedings of First International Sympo-
sium on Handheld and Ubiquitous Computing, pages 89–
101, Karlsruhe, Germany, September 1999.

[33] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh based
content routing using XML. InProceedings of the 18th
ACM Symposium on Operating Systems Principles, pages
160–173, Chateau Lake Louise, Canada, October 2001.

[34] M. Spreitzer and M. Theimer. Providing location informa-
tion in a ubiquitous computing environment. InProceed-
ings of the 14th ACM Symposium on Operating Systems
Principles, pages 270–283, December 1993.

[35] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Ac-
tive Names: Flexible location and transport of wide-area
resources. InProceedings of the 2nd USENIX Symposium
on Internet Technologies and Systems, Boulder, Colorado,
October 1999. USENIX.

10

	Introduction
	Motivation
	The abstraction
	Events, operators, and graphs
	An example operator graph
	Operator state
	One-time subscription requests
	Context-sensitive subscriptions

	Design space
	Event representation
	Operator naming
	Event routing
	Programming model
	Summary

	The Solar system
	Related work
	Summary
	References

