
Mobile Agents: The Next Generation in Distributed Computing

Robert Gray, David Kotz, Saurab Nog, Daniela Rus, George Cybenko*
Department of Computer Science

Dart mou th College
Hanover, NH 03755

{rgray,dfk,saurab,rus,gvc}@cs.dartmouth.edu

Abstract

Mobzle agents are programs that can move
through a network under their own control, mi-
grating from host t o host and interacting with
other agents and resources on each. We argue
that these mobile, autonomous agents have the
potential to provide a convenient, efficient and
robust programming paradigm for distributed
applications, particularly when partially con-
nected computers are involved. Partially con-
nected computers include mobile computers such
as laptops and personal digital assistants as
well as inodem-connected home computers, all
of which are often disconnected from the net-
work. In this paper, we describe the design
and iniplenientation of our mobile-agent system,
Agent Tcl. and the specific features that sup-
port mobile computers arid disconnected oper-
ation. These features include network-sensing
tools and a docking system that allows an agent
t o transparently move between mobile coniput-
ers, regardless of when the computers connect t o
the network.

This research was supported by O N R grant
N 0 0 0 1 4- 9 5- 1 - 1 '704 and .A FO S R grants F4 9 6 '7 0- 9 3- 1 - 0'76 6 i
F49620-95-1-0305.

0-8186-7870-4/96 $10.00 0 1997 IEEE
8

1 Introduction

Mobile computers have become increasingly
prevalent as professionals discover the benefits
of having their electronic work available a t all
times. Developing distributed applications that
make effective use of networked resources from a
mobile platform, however, is difficult for several
reasons. First, mobile computers do not have a
permanent connection into the network and are
often disconnected for long periods of time. Sec-
ond, when the computer is connected, the con-
nection often has low bandwidth and high la-
tency and is prone to sudden failure, such as
when a physical obstruction blocks the signal
from a cellular modem. Third, since the com-
puter may be forced to use different transmission
channels depending on its physical location, the
performance of its network connection can vary
dramatically from one session to another. Fi-
nally, depending on the nature of the transmis-
sion channel, the computer might be assigned a
different network address each time that it con-
nects. In short, any distributed application that
works on a mobile platform must deal with un-
forgiving network conditions.

In this paper we describe a system that uses
mobile agents t o support distributed applications
for mobile computers. An ngcnt is a program
that is autonomous enough to act independently

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

even when the user or application that launched
it is not available to provide guidance and handle
errors. A mobile agent is an agent that can move
through a heterogeneous network under its own
control, migrating from host t o host and inter-
acting with other agents and resources on each,
typically returning to its home site when its task
is done. We argue that mobile agents are a good
paradigm for distributed applications and an ez-
cellent paradigm when mobile computers are in-
volved.

We briefly describe a mobile-agent system,
Agent Tcl, that is under development at Dart-
mouth College, and then present a system of
support agents that provide network sensing and
routing services. These support agents allow an
agent t o transparently migrate between a mo-
bile computer and a permanently connected ma-
chine, or between one mobile computer and an-
other, regardless of when the mobile computers
connect t o the network. These support agents
provide a more general solution to mobile com-
puting than approaches in which mobile agents
are used simply to move an application onto a
laptop for continued interaction with the lap-
top’s owner.

The remainder of this section describes the ra-
tionale behind mobile agents and applications
of mobile agents. Section 2 highlights related
work. Section 3 gives an overview of the Agent
Tcl system. Section 4 presents the agents that
support mobile computing, our implementations
of these agents, and an example sales applica-
tion in which these agents may be used. Finally,
Section 5 discusses our results and future work.

1.1 Why mobile agents?

Mobile agents are an effective paradigm for dis-
tributed applications, and are particularly at-
tractive for partially connected computing. Par-
tially connected devices include physically mo-
bile computers such as laptops and personal dig-
ital assistants as well as home and business com-
puters that are occasionally connected to the

network over a SLIP or PPP modem connection.
All of these devices are frequently disconnected
from the network for long periods of time, often
have low-bandwidth, unreliable connections into
the network, and often change their network ad-
dress with each reconnection. Mobile agents di-
rectly address the first two problems, and with
low-level support, can handle the third problem
without difficulty.

A mobile agent, for example, can migrate off
a laptop and roam the Internet t o gather infor-
mation for its user. It can access the needed
resources efficiently since it moves to their net-
work location rather than transferring multiple
requests and responses across the low-bandwidth
laptop connection. Since it is not in continu-
ous contact with the laptop, the agent is not
affected by sudden loss of connection, and can
continue its task even if the user powers down
or disconnects from the network. When the
user reconnects, the agent returns to the lap-
top with the result of its travels. Conversely, an
application that lives in the network can send
a mobile agent onto the laptop. The agent
acts as the application’s surrogate, interacting
with the user efficiently and continuing to inter-
act even in the event of long-term disconnection
[TLKC95, JdTf95].

Mobile agents also ease the development, test-
ing and deployment of distributed applications
since they hide the communication channels but
not the location of the computation [Whi94b];
they eliminate the need to detect and handle
network failure except during migration; they
do not require the preinstallation of application-
specific software a t each site (although the agent
system must be present); and they can dy-
namically distribute and redistribute themselves
throughout the network. Mobile agents move
the programmer away from the rigid client-server
model t o the more flexible peer-peer model in
which programs communicate as peers and act
as either clients or servers depending on their
current needs [Coe94]. Mobile agents lead to
more scalable applications since work can be eas-

9

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

i ly moved to whichever network location is most
appropriate. Mobile agents allow ad-hoc, on-the-
fly applications that represent would be unrea-
sonable investment of time if code had to be in-
stalled on each network site rather than dynam-
ically dispatched. Finally, our experience with
agent programming suggests that mobile agents
are easier t o understand than many distributed
computing paradigms.

1.2 Applications of mobile agents

It can be argued that mobile agents are not an
enabling technology since there are few applica-
tions (if any) that are impossible without mo-
bile agents [HCK95]. However, the advantages
of mobile agents lead t o improved performance
in many distributed applications, where perfor-
mance is a matter of network utilization, comple-
tion time, programmer convenience, or just the
ability to continue interacting with a user during
network disconnection. Mobile agents are best
viewed as a general tool for realizing arbitrary
distributed applications. This view is reflected in
the range of applications in which mobile agents
are used.

Perhaps the most common examples of mo-
bile code are Java applets. Java applets are in-
teractive applications that can be dynamically
pulled across the network with a Java-enabled
W W W browser [Sun94]. Java applets are not
true mobile agents since they migrate only once,
before they start executing, and then only when
requested by a user. Java applets are a pow-
erful argument for mobile code, however, since
most applets would be intolerably slow if they
controlled the screen from a remote location. By
moving t o the local machine, an applet can con-
trol the screen efficiently without the need for
pre-installation. Applets represent a special case
of mobile agents. Mobile agents are much more
powerful since they migrate at will.

True mobile-agent systems include Telescript
[Whi94a, Whi94b1, Tacoma [JvS95], Mobile ser-
vice Agents (MSA) [TLKC95], and our own

Agent Tcl [Gra95, Gra961. Telescript agents are
currently used for network management, active
e-mail, electronic commerce, and business pro-
cess management. In network management, a
Telescript agent might carry a software upgrade
onto a machine along with the code to perform
the installation; the agent executes the instal-
lation code and disappears. In electronic com-
merce, a Telescript agent might leave a laptop,
search multiple electronic catalogs on behalf of
its user, and then return t o the laptop with the
best purchase price. The most visible use of
Tacoma is Stormcast, a system for distributed
weather simulation in which the volumes of data
are so immense as t o make data movement im-
practical. Mobile Service Agents (MSA) have
been used primarily in “follow-me” computing
in which an application moves t o the location of
the user. One MSA demo involves an electronic
conference proceedings. When a user connects
his laptop to the conference’s machines, an agent
is sent t o the laptop. The user interacts with the
proceedings via this agent and can continue in-
teracting even when disconnected.

Agent Tcl has been used primarily in
information-retrieval applications. One
information-retrieval application involves
searching distributed collections of technical
reports; another, medical records [Wu95];
and a third, three-dimensional drawings of
mechanical parts [CBC96]. The advantages of
agents in these retrieval applications is that
each distributed collection can provide low-level
primitives rather than all possible search opera-
tions; an agent can combine the primitives into
efficient, multi-step searches. With the service
agents for mobile computing that are introduced
in Section 4, these same applications work
unchanged on roving devices. Agent Tcl is also
being used in workflow applications, in which
an agent carries a multi-step task description
from one site t o another, interacting with the
user at each site in order t o carry out that
user’s part of the task [CGNSB]. In Section 4,
we describe a workflow application that involves

10

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

both fixed and mobile computers, and that is
supported easily with our mobile computing
infrastructure. In this application, an indepen-
dent traveling salesperson carries a laptop when
visiting customers and uses software that helps
to select vendors and products and to place
orders. Agents represent orders and travel t o
the corporation’s computers where they interact
with billing, inventory, and shipping agents
t o arrange for the purchase. Agents are also
used to explore vendor catalogs and search for
products that meet the customer’s needs. In
all cases, the agents can function while the
salesperson’s laptop is disconnected.

2 Related work
Mobile agents can be viewed as an extension of
the remote procedure call and remote program-
ming paradigms. Remote procedure call (RPC)
allows a client t o invoke a server operation using
the standard procedure call mechanism [BN84].
Remote programming allows a client t o send a
subprogram t o a server. The subprogram exe-
cutes on the server and sends its result back t o
the client. Variants of remote programming in-
clude the Network Command Language (NCL)
[Fa187], Remote Evaluation (REV) [SG90], and
SUPRA-RPC [Sto94]. Agents generalize remote
programming to allow arbitrary code movement.

Systems such as Java [Sun94], Safe Tcl [BR],
and Omniware [Col951 are concerned with the
safe execution of untrusted code fragments. Safe
Tcl is limited to Tcl scripts but Java and Omni-
ware can work with any program (as long as the
program is compiled into the bytecodes of the
appropriate virtual machine). These three sys-
tems do not directly support mobile agents, but
they address the same security issues and can be
used as components in a larger system. Safe Tcl,
for example, is used in Agent Tcl.

The best-known mobile-agent system is Tele-
script from General Magic [Whi94b, Whi94al.
Telescript supports mobile computers and is used
primarily on Personal Digital Assistants (PDA)

such as the Sony Magic Link. The details of how
Telescript agents jump between mobile hosts
and handle disconnected operation are unclear.
The Mobile Service Agent (MSA) system from
ECRC [TLKC95] also supports mobile comput-
ers, but it uses a less general mechanism than
described in this paper. There are several other
research projects that are building infrastructure
for mobile agents. The most notable are Tacoma
[JvS95], Itinerant Agents [CGH+95], Sodabot
[Coe94], and ARA [Pei96]. As yet, however, none
of these projects have considered mobile plat-
forms.

Others have specifically suggested using mo-
bile agents in mobile-computing environments.
Pitoura and Bhargava propose a framework for
agents t o interact with heterogeneous mobile
databases, but they focus on database con-
sistency issues more than communication and
transport issues [PB95].

Some database systems allow “stored SQL
procedures” where you can define complex SQL
commands and store them on the server [BP88].
The stored commands are executed a t the server
end during a user transaction. Some distributed
file systems support disconnected operation, in-
cluding Coda [KS92, MES951, Ficus [RHR+94],
and others [HH95]. In these systems, applica-
tions on the laptop access the local file cache
while the laptop is disconnected. On reconnec-
tion, the file system reconciles any differences
with the appropriate file servers. The Bayou file
system [TTP+95] internally uses a form of mo-
bile code (but not agents) t o handle reconcilia-
tion.

The Rover system [JdT+95] supports discon-
nected operation through queued RPC and re-
locatable dynamic objects (RDO). Queued RPC
allows asynchronous RPC requests t o be queued
and then sent when the laptop connects; an
asynchronous reply is delivered later. Relocat-
able dynamic objects (RDO) allow objects (code
and data) t o be downloaded from the server into
the client, where they can execute closer t o the
user and, potentially, while disconnected. These

11

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

RDOs are not true mobile agents because they
do not move after they have begun execution.

Noble et al. [NPS95] describe the Odyssey sys-
tem, in which applications on mobile comput-
ers can request upcalls whenever a change in re-
source state, such as network bandwidth or bat-
tery power, exceeds some threshold. This fea-
ture enables applications on mobile computers
t o change their behavior according to their en-
vironment, and would be a helpful substrate for
an agent system.

There are of course many papers on mobile IP
and packet forwarding. Perhaps the best back-
ground source is [Joh95]. Other examples in-
clude [BZCS96], [IG93] and [WYOT93]. The
idea is generally t o allow a mobile computer
t o retain the same IP address regardless of lo-
cation, so that applications on the laptop may
continue to communicate with applications else-
where. While such a system would simplify our
laptop-docking scheme, since the laptop would
never change address, it would not solve the
primary problem of disconnection. Athan and
Duchamp [AD931 go further in routing all of a
laptop’s communication through an “agent” that
can filter data according to current network con-
ditions, or store messages for delayed delivery.

3 Agent Tcl

Agent Tcl [Gra95, Gra961 is a mobile-agent
system that we are developing at Dartmouth
College and using in several information-
management applications. Agent Tcl meets four
main goals:

Reduce migration to a single instruction like
the Telescript go instruction [Whi94b], al-
low the instruction to appear a t arbitrary
points, and once the instruction is called,
transparently capture the current state of
the agent and transmit this state t o the des-
tination machine. The programmer should
not have to explicitly collect state informa-
tion. The system should handle all trans-

mission details, including the possibility of
the destination machine being disconnected
or having a new network address.

Provide transparent communication among
agents. The communication primitives
should be flexible and low-level, but should
work the same regardless of whether the
agents are on the same or different ma-
chines, and should hide all transmission de-
tails,

Provide a simple scripting language as the
main agent language, but support multiple
languages and transport mechanisms, and
allow the straightforward addition of a new
language or transport mechanism.

Provide effective security in the uncertain
world of the Internet.

The architecture of Agent Tcl is shown in Fig-
ure 1. The agent server keeps track of the agents
that are running on its machine, provides inter-
agent communication facilities, accepts and au-
thenticates agents arriving from other hosts, and
restarts these agents in their own interpreter. All
other services are provided by agents. Such ser-
vices include navigation, network sensing, and
access control. The agents themselves are sep-
arate processes executing the appropriate lan-
guage interpreter. Each interpreter has the ca-
pability t o capture the agent’s state and send the
state t o a remote agent server.

The only language that we currently support
is Tcl, although work on Java is underway. Tcl
is a high-level scripting language that was devel-
oped in 1987 and has enjoyed enormous popular-
ity [We195]. Tcl is an attractive agent language
due t o its simplicity, ease of use, and portabil-
ity. A set of special commands was added to Tcl
t o create Agent Tcl. An agent uses these com-
mands to migrate from machine t o machine and
t o communicate with other agents. The most
important command is agent-jump, which mi-
grates an agent from one machine t o another.

12

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

server

master
- 0

- - - - c

I’ Agent >
0 - - _ - -

agent

Host X

Agent
server

I
I

Traffic U‘ Monitor

I master Dock I
Navigation

agent

Host Y
Figure 1: The server-based architecture of Agent Tcl. The agent server coordinates the activities
of all local agents and accepts new agents that are arriving from other machines. All other services
are provided by specialized agents such the as the dock master, trafic monitor, and navigation
agents.

The agent-jump command captures the inter-
nal state of the agent, encrypts and digitally
signs the state image, and sends the state image
t o the agent server on the destination machine.
The server authenticates the agent and starts
a Tcl interpreter. The Tcl interpreter restores
the state image and resumes agent execution a t
the statement immediately after the agent-jump.
Further details about Agent Tcl can be found in
[Gra95] and on our web page.’. Details about
Agent Tcl’s security mechanisms can be found
in [Gra96].

4 Mobile computing

Mobile agents are an excellent paradigm for im-
plementing distributed applications, particularly
in the context of partially connected computers.
To be effective, however, the agent system must
support disconnected operation in several ways.

0 An agent must be able to jump off a par-
tially connected computer (such as a laptop)
and return to it later, even if the computer is
only connected for brief periods and changes

‘http: //nan.cs .dartmouth.edu/-agent

its address upon reconnection.

0 An agent must be able to navigate through
the Internet t o find the services that it
needs.

0 An agent must be able to sense and react t o
the network environment, so that it may act
autonomously while its user is disconnected.

0 An agent must be able to communicate ef-
fectively with other agents.

In this section we describe our solutions, using
“laptop” to mean any partially connected com-
puter. Although our description and implemen-
tation are specific t o the Agent Tcl system, the
concepts are all generally applicable.

4.1 Support for disconnected opera-
t ion

Unlike traditional client-server computing,
agents continue to operate even when the laptop
is disconnected. For agents trying to jump into
or out of the laptop, however, the traditional ap-
proach (try, timeout, sleep, retry, ...) can often

13

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

fail, particularly if the a,gent does not happen
to retry its jump during a brief reconnection
period.

To overcome these problems, our laptop dock-
ing system pairs each laptop with a permanently
connected dock machine (Figure 2) . While not
all machines act as docks, all machines have a
dock-master agent (Figure 1).

Consider an agent wishing to jump t o a dis-
connected laptop named D (Figure 3). To do so,
it executes the command agentjump D. When
the command completes, the agent will be run-
ning on D ; the process is transparent. The
agentjump implementation attempts to contact
D , which fails because D is disconnected. So it
then attempts t o contact the dock-master agent
on the laptop’s dock. By convention, the dock for
host D is named D-dock. Internet host naming
allows a single permanently connected machine
t o have many aliases, which allows one host to
act as a dock for many laptops. Once the agent
is transferred to D-dock, it is not restored into
a running agent, but stored on disk under the
control of the dock-master a t D-dock. When D
reconnects, its dock-master agent contacts the
dock-master at D-dock so that all waiting agents
can be transferred to the laptop D, where they
are restored. In the process, D-dock learns of any
change in the address for D. Thus, agents trying
t o reach D will fail t o reach it a t its old address,
jump t o D-dock, and eventually reach D at the
new address.

Now consider an agent trying t o leave the dis-
connected laptop D. Again the agent executes
agentjump, which detects that the laptop is dis-
connected, saves the state of the agent t o disk,
and informs the local dock-master agent. The
dock-master continually monitors the network
status; when the network is connected, the dock-
master immediately transfers all waiting agents
off of the laptop (Figure 3). This scheme has
several advantages: the agents leave the laptop
as soon as possible; agents do not miss any op-
portunities to leave; waiting agents are saved on
disk, where they survive crashes and shutdowns,

and do not occupy precious memory and CPU
time; and their state is captured and ready for
transfer as soon as the network is connected.

Thus, agents wishing t o jump on or off the lap-
top move quickly as soon as the laptop is con-
nected, minimizing the connection time neces-
sary. Again, the entire process is transparent t o
the agent.

Now consider a more complex case, where an
agent’s source [host S) and destination (host 0)
are both laptops (Figure 4). It is easy to imag-
ine that they may never both be connected at
the same time, making a direct jump impossi-
ble. The agent’s state is captured on S , and
saved on S’s disk until the dock-master detects
a network attached t o S . At that point S’s
dock-master attempts t o transfer the agent to
D; when that fails, it transfers the agent to D’s
dock (D-dock). If D-dock is unreachable, per-
haps due to a temporary problem in the Internet,
the S dock-master tries to transfer the agent to
S-dock. If S-dock is also unreachable, the dock-
master will t ry the entire process again at a later
time. If S-dock is reachable, the agent is sent t o
S-dock. The dock-master on S-dock will periodi-
cally attempt t o transfer the agent to either D or
D-dock. The agent may reside a t D-dock until D
connects and notifies the dock-master at D-dock
of the new location of D. Once a t D, the agent’s
state is restored.

We are extending our laptop docking system
to support multi-destination jumps, which are
useful when an agent wishes t o visit multiple
hosts (D1, Dz, . . . , Dn) but in no particular order.
This situation arises when the agent is search-
ing all of the sites for information, or when it
needs t o visit one of a replicated set of servers.
The multi-destination jump allows the agent to
travel in a manner most suitable to the present
network conditions. The dock-master agent on
S first tries to transfer the agent to one of the
final destinations by trying each one in order
(01, D2, ..., Dn). If all the destinations are un-
reachable, the S dock-master transfers the agent
to S-dock. The dock-master a t S-dock periodi-

14

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

LAPTOP1

CONNECTED NETWORK

MACHINE1
LAFTOPl-dock
LAF'TOP2-doc k

LAPTOP3

Figure 2: Laptop-docking system

cally tries t o reach the destinations until one of
the transfers succeeds. S-dock does not trans-
fer the agent t o a dock Dk-dock in order t o
avoid premature commitment t o a destination
that may rarely connect, although this issue is
a matter for further research. When the agent
awakes (returns from its call t o a g e n t j u m p) , it
knows that it has arrived a t one of the desti-
nations. A quick check of the local host name
confirms the particular destination.

For agents that desire more control over the
jumping process, we provide hooks t o allow
agents t o query the status of the network connec-
tion, to request a failure notification rather than
being blocked when the jump destination can-
not be reached immediately, or t o request that
the jump go as far toward the destination as pos-
sible and then wake up the agent.

4.2 Agent navigation and adaptation

The world of an agent is dynamic and uncer-
tain. Machines go up and down, the informa-

tion stored in repositories changes, and the ex-
act sequence of destinations and steps needed to
complete an information-gathering task often is
not completely known a t the time that the agent
is launched into the world. An autonomous
agent is crippled without external state (what
the agent can perceive about the state of its
world) since it has no way of perceiving and
adapting to the dynamic changes in its environ-
ment. In this section we describe the sensors that
allow an agent t o determine its external state and
a mechanism that uses these sensors for adaptive
navigation.

Network sensing. Network sensing, at least
the ability for a laptop to detect the state of its
network connection, is an integral part of our
laptop docking sys t em described in the previous
sub-section. It performs an even more important
task, however, when providing agents with infor-
mation about the expected transit time across
the network and about whether a network site is

15

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

I
- -

* -
c .

c

- _
. .

- _
. ,

_ _ _ - - - - - _

. , .
’ WAITING AGENTS BEGIN JUMPING

. . .
5

2 - 3 CONNECTION NOTIFICATION
c 4 J

NETWORK - NEW IF’ ADDRESS OF D
STATUS UPDATE

D D-dock

m 5 -
I I I I I U

TRANSFER SLEEPING AGENTS U

QUEUE OF QUEUE OF
SLEEPING AGENTS SLEEPING AGENTS

WAITING TO JUMP TO D WAITING TO JUMP FROM D

Figure 3: Jumping to or from the laptop

reachable at all. This information enables agents
t o adapt t o changing network conditions. Con-
sider an agent that needs to visit information
resources a t several sites. A smart agent should
be able to adapt t o the fact that some sites may
currently be unreachable, and to visit other sites
first. An even smarter agent may be able t o plan
a sequence of visits given an estimate of the cur-
rent network delay to each site. Other agents
nay wish to tailor their behavior t o the current
bandwidth available, such as the amount or for-
mat of the data that they carry with them.

We provide a set of network sensing tools that
the agents can use to gather information about
the status of the network.

A tool t o determine whether the local host
is physically connected. This tool “pings”
the broadcast address on the local subnet;
if there is any response in a short interval,
the network is connected.

A tool t o determine whether a specific host
is reachable; this is just the standard “ping.”

A tool t o determine the expected bandwidth
t o a remote host, so that agents can choose
their destination or amount of data based on
the bandwidth. Rather than measuring the
bandwidth by sending lots of data t o the re-
mote host, which would often take as much

S

time as sending the agent itself, we attempt
t o predict bandwidth from experience. A
trafic monitor agent a t each site tracks in-
formation about all recent communications
(bytes moved and time required), which is
provided by the local agent server. Appli-
cation agents contact the network monitor
t o obtain estimates of bandwidth or latency,
which are computed from the recorded infor-
mation. Our traffic monitor uses a weighted
average of all communications with the re-
quested remote site, weighting recent com-
munications more heavily than older com-
munications. If there are no recent commu-
nications with the requested site, the traffic
monitor may use data from recent commu-
nications with “similar” sites, that is, other
sites in the same subnet or domain as the
requested site.

Navigation agents. To locate other agents
that can serve their needs, agents need access t o
a dynamic index of service agents and their lo-
cations. We use a system of virtual yellow pages
t o help the agents decide where to go. These yel-
low pages contain listings of services and their lo-
cations. By consulting these navigation services
and using their network sensing tools, agents can
formulate adaptive navigation plans to visit some

16

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

/ /PERM*NEUnYa \
CONNECTED NETWOR

ii

D S

Figure 4: Laptop to laptop jump

of the services.
The virtual yellow pages are a distributed

database of service locations maintained by a hi-
erarchical set of navigation agents. Services reg-
ister with the navigation agents that are scat-
tered throughout the system (Figure 5). Each
machine has a specialist agent that knows the
location of some of the navigation agents (which
in turn know the locations of services and other
navigation agents). In general, by consulting
the local specialist agent and then visiting one
or more navigation agents, an application agent
can obtain the necessary list of services and their
locations.

Since the information landscape changes, the
virtual yellow pages are not static entities. We
use adaptive learning methods to keep the vir-
tual yellow pages up to date.

0 New services register with one or more nav-
igation agents t o advertise their location.
They describe their service through a list of
keywords. For example, in Figure rj, service
1 registers Lvith navigation agent 2 by the
following protocol: service 1 first contacts

the specialist agent on its machine which
knows the location of navigation agent 2.
Service 1 then sends a registration message
to navigation agent 2 which adds service 1
to the database.

0 An application agent locates a list of naviga-
tion agents by querying the specialist agent
on the local host (Figure 5) . The application
agent then consults the navigation agents
by providing a list of keywords. The navi-
gation agent returns a list of matching ser-
vices from its database. After visiting some
of the services, the application agent revis-
its the navigation agents t o provide feedback
on which of the sites were useful and which
were useless. These “consumer reports” en-
able the navigation agents t o prioritize their
lists.

0 Agents that discover services accidentally
report the corresponding sites to the nav-
igation agents. For example, services rele-
vant t o one task may be discovered while
handling a different but related task. Such

17

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

a situation might arise if an agent handles
textual queries about different topics; while
finding documents relevant t o one topic, it
may discover document collections that re-
late t o another. Alternatively, an agent
might receive different site information from
two navigation agents; it feeds the differ-
ences back to the navigation agents.

Application agents construct an initial plan for
accomplishing their task by using the prioritized
list of services that they receive from the nav-
igation agents. Most applications will want to
visit either one or all of the sites on the list. Us-
ing the network-sensing tools, however, they may
choose to skip some sites that are not reachable
or t o which there is a particularly slow connec-
tion, and then return to them later.

4.3 Inter-agent Communication

Agent Tcl currently provides two levels of agent
conimunication. The low-level mechanisms allow
agents to communicate through message passing
or through a direct connection that is established
when an agent issues the agent m e e t coniniand
and the receiving agent accepts the meeting.

The higher-level Agent Remote Procedure
Call (ARPC) [NCIi9G] mechanism builds on top
of these primitives, adding structure as well
as a higher-level abstraction to the conimuni-
cation. Server agents in the system register
with the local “name-server” agent by specifying
their interface i n a flexible definition language.
Client agents search for a service by providing a
siniilar interface and having the “name-server”
find a niatch from among its registered servers.
This flexible iiiterface-liiatching technique helps
agents to communicate even when they share
only a subset of a complex interface. For es-
ample. a server might have added non-standard
features, or might have an older but uprvardly-
compatible interface.

4.4 Example

Returning t o our example of the traveling sales-
person, we see how the above infrastructure sup-
ports this distributed, mobile application. While
on the road, the salesperson carries a laptop or
PDA loaded with catalog and order-entry soft-
ware. While a t the customer’s location, the soft-
ware helps to select appropriate products and
vendors, prepare a quote, and place an order.
The software creates an agent for each order,
which must be approved by the salesperson’s
supervisor before the order is submitted. The
agents immediately try (and fail) t o jump off
of the salesperson’s laptop to the supervisor’s
computer, and are queued by the dock-master t o
await the laptop’s reconnection. After a day of
customer visits, the salesperson connects the lap-
top to the network, and all of the agents jump off
on their way to the supervisor’s computer. The
laptop need be connected for only a few seconds.

If the supervisor is also a traveler, then the
agents must reach the supervisor’s laptop. If
that laptop is not connected, the agents wait a t
that laptop’s dock until the laptop reconnects.
The agents ask the supervisor t o examine and
approve the orders, and then they continue on
their way to the appropriate vendors (perhaps af-
ter another delay to wait for the laptop to recon-
nect, and perhaps forking into multiple agents,
one for each vendor).

Once a t the vendor, a n order agent interacts
with the vendor’s billing agents to record the
sale for billing purposes, with inventory agents
to determine which items are in stock, and with
shipping agents t o arrange shipping. In each in-
teraction, the agent may use customized code
to adapt t o price changes, discontinued or back-
ordered items. and shipping details.

Eventually, the order agent returns to the
salesperson‘s laptop to inform them that the sale
\vas complete, and whether shipping was success-
ful.

In this application, several of the coniput-
ers are inherently mobile and disconnected. so

18

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

the agents must depend on the dock-masters t o
help them jump from machine to machine. The
use of agents allows for considerable flexibility.
Through standard protocols, the vendors and in-
dependent salespeople can use software produced
by different third-party vendors, which compete
on the basis of other features. In particular,
the salesperson chooses an order-placement soft-
ware package according to its ability t o produce
adaptive order agents; since the order agents are
executable code, they can implement adaptive
strategies that may not have been anticipated
by the writers of the vendor software. While it is
possible to build a traditional system with fixed
interfaces that exchange data only, only mobile
agents can allow this kind of flexible innovation.

5 Discussion

We validated our system in our labs through
an experiment with a laptop computer called
Bond.2 We started an agent on Bond, and the
agent immediately jumped off Bond to interact
with a remote server. Before it could return,
we disconnected Bond, carried it t o another lab,
connected it t o a different subnet, and reconfig-
ured it with a new IP address.

Meanwhile, the traveling agent had finished
its task and had attempted to jump back to
Bond. The jump failed, so it was transferred
to Bond-dock, where its state was saved on disk.

When Bond reconnected a t the new address,
its dock-master discovered the new connec-
tion and new address, and sent a message to
Bond-dock, back in the original lab. Bond-dock
then sent the waiting agent on to Bond. We then
repeated the experiment, carrying Bond back to
its original address.

This simple experiment demonstrates how our
mobile-agent system supports mobile computing
in that an agent was able to leave the laptop and
return home twice, despite disconnection, recon-
figuration, and reconnection at a different IP ad-

dress.
Our system still has a few limitations, how-

ever:

1. If an agent is running on a machine when
the machine goes down, the agent is lost.

2. If an agent is running on a machine and
the machine becomes disconnected from the
network for a long period of time, the agent
remains in exile on this machine for the en-
tire time.

3. Currently, a laptop dock-master agent mon-
itors the state of the local network connec-
tion through periodic “pings” to the broad-
cast address on the local subnet. If the lap-
top is connected for less time than the inter-
val between pings, the dock-master will not
detect the connection. A better solution is
t o obtain an interrupt directly from the op-
erating system when the network connection
changes [N P S9.51.

4. Through a simple convention, it is easy
to locate the dock for a given host: the
dock for host named X.domain is the host
named X-dockdomain. There are some en-
vironments, however, that include nameless
hosts, most commonly, personal computers
assigned an IP address dynamically a t boot
time. Our system cannot currently accom-
modate nameless hosts.

In developing the tools for agent support of
mobile computing, we have found that the oper-
ating system infrastructure available to us lim-
ited the possible solutions. Specifically, the
following low-level operating systems features
would enable more elegant solutions:

1. ,4s mentioned above, we could avoid a busy-
wait sensor for network connectivity if the
operating system could provide a flag or an
interrupt every time the local network con-
nection goes up or down. ’James Bond.

19

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

2. Network routers, and some hosts, have in-
formation about network connectivity and
delays that allow them t o route packets t o
their destination. If that information were
made available t o agents, we might be able
to make much better predictions than those
available from the traffic monitor agent.

Future work. There are many interesting ar-
eas for future work. As we mentioned, there
are a few small operating-system extensions that
would be helpful, and we are investigating multi-
destination jump support. We plan to inte-
grate our inter-agent message-passing with the
docking system, so that messages go through
docks when necessary. We are also refining our
bandwidth-prediction tools. We are considering
support for persistent storage, so that an agent
may leave some of its data (such as the results
of a database search) a t one host, carry a small
part of its data along with i t , and yet be able to
remotely access the saved data if necessary. Fi-
nally, we are developing the traveling-salesperson
application as a real-world demonstration of our
ideas; most of the pieces exist in simple forms
and need to be extended and combined into the
single application.

Summary. We have constructed a system
for supporting mobile computing with mobile
agents. FVe argue that mobile agents allow
a range of adaptive, flexible applications in
distributed heterogeneous systems with 11011-

permanent network connections. ’CVe describe
our esperiences with using this system, and
identify a few operating-system extensions that
would enable efficient, reliable, and simple mo-
bile computing support through mobile agents.

Status

Agent Tcl has been publically released and is in
active use at several sites in various information-
in an a gem en t a p pli c at ion s. T he public version
provides niigration, conimunication. and access

t o the local screen and disk. Our internal version
includes working prototypes of all of the support
services described above. We continue t o extend
and evaluate these implementations. More infor-
mation about Agent Tcl and our current research
can be found on our W W W page.3

Acknowledgements

Many thanks to the students that have helped
with the construction of the support agents de-
scribed in this paper: Ting Cai, Saurab Nog, and
Vishesh Khemani built the “dock” system; Dawn
Lawrie and Mark Giles built the navigation sys-
tem; David Hofer and Miranda Barrows built
the network-sensing tools; and Saurab Nog and
David Hofer maintained the Agent 007 research
lab. Thanks also to the students of CS88/188
(Fall 1995) for their many discussions leading to
these ideas. Finally, thanks t o ONR and AFOSR
for their generous funding.

References

[AD931 Andrew Athan and Dan Duchamp.
Agent-mediated message passing
for constrained environments. In
Proceedings of the Mobile ancl
Locn t io n- Ind eye nd e n t Conip U ti ng
Synzposium, pages 103-107, August
1993.

[BN84] A. D. Birrell and B. J. Nelson. Ini-
plementing remote procedure calls.
ACiU Trcinsnctions on Cornputer
Systems, 2(1):39-59, February 1984.

[BPSS] Andrea J. Borr and Franco Putzolu.
High performance SQL through low-
level system integration. In Proceed-
ings of the ACAf SIGdlOD Internn-
t io n n 1 Co n fe re n ce on *If ci ncigt nz E n t
of Datu, pages 312-349, Chicago. IL.
1988. XCM Press.

“ttp: //nnn .cs .dartmouth.edu/-agent/

20

Authorized licensed use limited to: Dartmouth College. Downloaded on November 3, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

