Mobile-Agent versus Client /Server Performance:
Scalability in an Information-Retrieval Task

Robert S. Gray!, David Kotz!, Ronald A. Peterson, Jr.!, Joyce Barton?, Daria
Chacén?, Peter Gerken?, Martin Hofmann?, Jeffrey Bradshaw?®, Maggie
Breedy?, Renia Jeffers®, and Niranjan Suri®

! Dartmouth College Computer Science,’ Hanover NH, USA,
{rgray,dfk,rapjr}@cs.dartmouth.edu
2 Lockheed-Martin Advanced Technology Laboratory,¥ Camden NJ, USA
{jbarton,pgerken,mhofmann}@atl.lmco.com, dachacon@bigfoot.com
3 Institute for Human and Machine Cognition,® Univ. of West Florida (Pensacola)
USA

{jbradshaw,mbreedy,rjeffers,nsuri}@ai.uwf.edu

Abstract. Building applications with mobile agents often reduces the
bandwidth required for the application, and improves performance. The
cost is increased server workload. There are, however, few studies of the
scalability of mobile-agent systems. We present scalability experiments
that compare four mobile-agent platforms with a traditional client/server
approach. The four mobile-agent platforms have similar behavior, but
their absolute performance varies with underlying implementation choices.
Our experiments demonstrate the complex interaction between environ-
mental, application, and system parameters.

1 Introduction

One of the most attractive applications for mobile agents is distributed informa-
tion retrieval, particularly in mobile-computing scenarios. By moving the code
to the data, a mobile agent can reduce the latency of individual steps, avoid
network transmission of intermediate data, continue work even in the presence
of network disconnections, and complete the overall task much faster than a
traditional client/server solution.

A common performance concern about mobile-agent systems, however, is that
they shift much of the processing load from the clients to the server. This shift
is a significant advantage in some environments: the clients may be hand-held

The authors are listed in alphabetical order within institutional groups. The contact
author is David Kotz <dfk@cs.dartmouth.edu>.

! Dartmouth was supported by the DARPA CoABS Program (contract F30602-98-2-
0107) and by the DoD MURI program (AFoSR contract F49620-97-1-03821).

¥ Lockheed-Martin was supported by the DARPA CoABS Program (contract F30602-
98-C-0162) and by the DoD MURI program (AFoSR contract F49620-97-1-03821).

§ THMC/UWTF was supported by the DARPA CoABS Program (contract F30602-00-
2-0577 and by the Office of Naval Research (contract N00014-01-1-0577).

In Proceedings of Mobile Agents 2001. Copyright Springer-Verlag.O

Available at http://www.cs.dartmouth.edu/~dfk/papers/gray:scalability.pdfll

IMPORTANT NOTE: This version of the paper contains newer (more correct) EMAA data than the version in the conference proceedings.O
O

2 Robert Gray et al.

computers with limited memory and computational power, and the “server”
may be a large multiprocessor computer. On the other hand, the shift does
raise questions about scalability. As the number of clients increases, how well
do the mobile-agent services scale? Where is the trade-off between the savings
in network transmission time and the possible extra time spent waiting for a
clogged server CPU?

We set out to examine these questions. In the context of a simple information-
retrieval application, we compared a traditional client/server (RPC) approach
with a mobile-agent approach on four mobile-agent platforms. Our goal was
to understand the performance effects that are fundamental to the mobile-agent
idea, and separately, the performance effects due to implementation choices made
by the different mobile-agent platforms.

We begin a comparison of the four mobile-agent systems we consider. Then we
describe the scenario chosen for our tests, and the details of the tests themselves.
We present the experimental results and our interpretation. Finally, we compare
our results with the most relevant prior literature.

2 DMobile-Agent Systems

We evaluate four mobile-agent platforms: D’Agents [7,8] from Dartmouth Col-
lege, EMAA [12,4] from Lockheed-Martin Advanced Technology Laboratory,
KAoS [3,2] from Boeing and the University of West Florida Institute for Human
& Machine Cognition (UWF-THMC), and NOMADS [14] from the UWF-THMC.
We chose these systems because they were available to us and because they
represent a range of design choices, yet share a common language (Java). Since
a full presentation of these systems is outside the scope of this paper, Table 1
outlines the features most relevant to our experiments. Each feature represents
a design decision made by the systems’ authors. We discuss the importance of
these decisions here.

KAoS uses a hybrid approach allowing static agents to dispatch small task-
specific agents called minions. KAoS allows developers to plug in different mobil-
ity solutions. In this case, our experiments used Voyager 3.0 for KAoS mobility,
so most performance effects are dependent upon Voyager’s implementation.

(a) D’Agents and NOMADS support strong mobility, where the agent’s con-
trol state, as well as its code and data state, is moved from one machine to
another. As a result of this decision, they use different versions of Java. (b)
D’Agents uses a modified version of an older Sun JVM, whereas NOMADS uses
a custom JVM called Aroma (a “clean-room” implementation of the Java VM
specification, and mostly JDK 1.2.2 compatible). This decision has a significant
impact on performance, because the newer Sun JVM is generally more efficient
and supports Just-In-Time (JIT) compilation. The NOMADS JVM is an un-
tuned research prototype with no JIT compiler. Despite its age, the D’Agents
JVM has one benefit: optimized string-handling routines that are important for
our test application.

Mobile-Agent Scalability

Table 1. Relevant features of systems used in our experiments.

3

Feature D’Agents NOMADS| EMAA KAoS
a) strong/weak strong strong weak weak (Voyager)
b) JVM version 1.0.2 Aroma 1.3.0-02 1.3
c) JVMs used multiple multiple one one
d) what moved |all code, data, stack| data, stack data data
e) code caching no yes preinstalled| preinstalled
f) encoding custom, fat custom serialized serialized
g) communication sockets sockets sockets |sockets (Voyager)
h) socket reuse no no yes yes
1) security off off off off

(c) For several reasons, D’Agents and NOMADS also create a new JVM
process for each incoming agent, while the others simply add a new thread to the
existing JVM. This choice raises the cost of jumps in D’Agents and NOMADS.

(d) Only D’Agents moved every bit of agent state (all necessary classes, the
stack of the jumping thread, and the reachable parts of the heap) on every jump.
NOMADS cached the code on the server during the first jump, so subsequent
jumps did not need to move code. EMAA and KAoS do not transmit code with
an agent; the recipient fetches the code from a class server and then caches it for
future use. As a result, in our experiments they essentially never moved code.
EMAA and KAoS never move thread-stack state. As a result, EMAA and KAoS
agents are relatively small.

(f) EMAA and KAoS used Java serialization to encode the agent object, but
the other two had their own encoding for agent state. The D’Agents encoding
is particularly verbose, increasing the size of its agents. Section 3.1 presents the
actual agent sizes from our experiments.

(g) Interestingly, none used RMI to move a jumping agent, choosing the
more efficient socket mechanism (using TCP/IP). (h) D’Agents and NOMADS
created a new socket connection for every jump, whereas EMAA and KAoS
(really Voyager) “cached” the open socket and re-used it for subsequent jumps,
reducing the overhead of jumps.

(i) Finally, where security mechanisms like encryption or authentication were
available, they were disabled for these experiments. Such features have signifi-
cant performance impact, but varied so much across systems that we chose to
eliminate them from this initial study of the impact of other features.

3 Experiments

Our goal was to compare the scalability of the mobile-agent approach versus
the client/server approach in an information-retrieval (IR) task as the number
of clients increased. In our experiments, we explore the effect of increasing the
number of clients and agents on a single mobile-agent server and its network
connection. While our experiments do not always identify the boundaries of
the performance space (not all experiments reach the limit of CPU or network

4 Robert Gray et al.

capacity, for all agent systems), the results invite comparison between mobile-
agent system designs, and bring some understanding to the structure of the
performance space.

We implemented a simple IR task using both an agent and a client/server
architecture. Our task filters the results of a simple keyword query on a collec-
tion of documents stored at the server. The client/server application downloads
all documents resulting from every query, and does its filtering on the client
machine. The agent-based application sends an agent to do the filtering on the
server and returns with only the matching documents. The client /server applica-
tion is written in C++ (for speed), while the agent-based application is written
in Java (for mobility). The tradeoff is thus between network bandwidth con-
sumption and processing speed, between a fast language on distributed clients
and a slower language on a shared server. In our experience, mobile-agent ap-
plications often offer this tradeoff, and are particularly interesting in situations
where the server does not support the application’s needs directly in its RPC
interface.

We recognize that this experiment does not explore the full range of mobile-
agent capability, in particular, the ability to jump to more than one server, but
the scalability of mobile-agent systems even for single-hop applications is not yet
well understood. The results of the single-hop experiments presented here are a
critical foundation for future research, since even a multi-hop agent must decide
whether to jump at all.

3.1 The Experiments

Our IR task involved two steps: a keyword query selected a set of documents
from the collection, then a filter procedure scanned the selected documents to
return those that contain a given string. Our document server implemented only
the keyword-query operation. In our client/server implementation, the selected
documents were returned to the client, which ran the filter. In our agent im-
plementation, the agent filtered the documents at the server, then carried the
resulting subset back to the client host. This application is representative of the
type of computational task that might be used in an agent-based information-
retrieval application.

Because the keyword query is common to both implementations, we removed
that step, and used a fixed list of sixty 4096-byte documents. Although in both
implementations we scan all sixty documents, we chose to declare a certain
fraction of the documents to “pass”, ignoring the actual results of the filter, to
increase our control over the size of the task output. In our experiments the
“pass ratio” was either 5% or 20%.

We wrote the client/server applications in C++ using TCP /IP connections
with a simple protocol for handshaking between client and server. The total
query time is the time recorded at the client host to send the keywords to the
server, receive the sixty documents, and filter the sixty documents on the client.
We average these times to give average total query time.

Mobile-Agent Scalability 5

Table 2. Comparison of average IR task times.

Pass ratio| C++|D’Agents|EMAA| KAOS|NOMADS
5% ratio |2.92ms| 55.9ms|71.9ms|63.5ms| 14497ms
20% ratio |3.02ms| 61.6ms|81.9ms|73.6ms| 14516ms

We wrote the agent application in Java. The speed of any application writ-
ten in the Java language, even with a JIT compiler, is slower than that of an
equivalent implementation in C++. This difference works only in the favor of the
client /server approach; any performance benefits seen with the agent approach
are not due to language differences. We ported the agent application to each of
our four agent platforms, and reviewed the ported code to ensure that they were
functionally identical.

There are four different virtual machines used by the four different mobile-
agent platforms. D’Agents “AgentJava” uses a modified JDK 1.0.2, EMAA uses
the Linux JDK 1.3.0_.02, KAoS uses the Sun JDK 1.3.0-02, and NOMADS uses its
own JVM that has not yet been optimized for speed (Aroma release 20010327).
To understand the speed differences, we ran the IR task alone in each platform.

C++ was markably faster due to inefficient Java file I/O routines. All of the
times reflect little actual disk activity because the underlying Linux file cache
held all of the documents used. All of the Java tests used the same code, so any
difference in performance was due to differences in the JVM or JIT compiler. Due
to an optimized string-handling library, D’Agents was significantly faster than
EMAA or KAoS, even though it did not use a JIT compiler. These differences
accounts for some of the performance differences seen in our scalability tests
below.

In our scalability experiments, each client agent looped over many queries.
For each query, the agent jumped to the server, obtained the list of sixty docu-
ments, ran the filter over those documents, obtained the subset that “pass” the
filter, and jumped back. The elapsed time, measured on the client, was the total
query time. The agent also measured its time on the server, the “task time.”
The “jump time” was the difference between the total time and task time.

In our experiments we varied the number of clients (1 to 20, each on a separate
machine), the network bandwidth to the server (1, 10, 100 mbps),! shared by all
clients, and the pass ratio (5% or 20%).

Other parameters, fixed for these experiments, were the number of docu-
ments in the collection (60), the document size (4096 bytes), and the number of
queries (10-1000 queries, depending on the agent system, using whatever num-
ber of queries was required to get repeatable results). The query rate was set
to average one query per two seconds, but uniformly distributed over the range
0.25-0.75 queries per second. This randomness prevents agents from exhibiting
synchronous behavior. This query rate is a maximum: if a query takes longer

! In this paper we use the prefixes m and k to refer to powers of 10, and the prefixes
M and K to refer to powers of 2. Thus 10 mbps refers to 10,000,000 bits per second.

6 Robert Gray et al.

Table 3. Agent sizes in bytes. All were measured “on the wire,” including all protocol
overhead.

Agent D’Agents EMAA KAoS NOMADS
5% client to server | 16,317 2,439 4,560 8,403
5% server to client | 29,311 15,183 17,104 58,959
20% client to server| 17,668 3,716 5,380 8,403
20% server to client| 68,186 54,827 56,183 210,256

than two seconds to complete its task, the next query will not be started until
the agent returns to its client machine.

The agent size depended on the agent system (Table 3). D’Agents includes
all the classes with every agent, so its base agent size is the largest. NOMADS
can optionally compress the agent state in transit, but that option was not used
in our experiments.

The size of agents going from client to server was incorrectly high in some
cases, because our implementation had the same agent jump back and forth
to obtain an average performance. After the first trip to the server, KAoS and
D’Agents carried a small amount of extraneous state information. We expect that
the effect on D’Agents and KAoS performance was small. NOMADS encoded
the documents with several bytes per character, while other systems used one
byte per character. Although this makes the NOMADS agents much larger, the
computational overhead of NOMADS dominated its results so the agent size was
not much of a factor.

We ran the experiments on a set of twenty-one identical Linux workstations.?
Twenty of the machines act as clients and one acts as the document server. We
interconnected the computers with a 100 mbps Ethernet,® but could reduce the
bandwidth available by inserting a software bandwidth manager set to 10 mbps
or 1 mbps.* The network was full duplex at all bandwidths.

4 Results and Discussion

We plot several aspects of the results in a series of figures. We first consider
the total query time, and then its components “task time” and “jump time.”
Then we make a direct comparison between the client/server times and the agent
times, by presenting the ratio between client/server and agent times.

The plots are missing some NOMADS points. Also, several of the EMAA
points are slightly too low because of early termination of some agents. The
general EMAA trends are correct, although little should be interpreted into the
details of any non-linear wiggles. (Most of the agent systems had trouble in the
10 mbps tests, due we believe to some bugs in RedHat Linux 7.1 or its interaction
with dummynet.)

2 VA Linux VarStation 28, Model 2871E, 450 mHz Pentium II, 256 MB RAM,
5400 rpm EIDE disk, running the Linux 2.4.2-2 (RedHat 7.1) operating system.

® With a one-way measured throughput of 65 mbps.

* DummyNet; see <http://info.iet.unipi.it/ luigi/ip-dummynet/>.

Mobile-Agent Scalability 7

4.1 Total Query Time

Each plot in Figure 1 shows the averaged per-query time, in milliseconds, for all
systems (note there is a separate scale for the NOMADS data).

The figure shows six plots, for three bandwidths (1, 10, and 100 mbps) and
two pass ratios (5% or 20%). Generally speaking, any implementation will slow
down linearly with the number of clients, due to increasing contention for the
network and the server’s CPU. A query time exceeding 2000 milliseconds in-
dicates that the clients have failed to sustain the desired query rate and have
slowed to match the system’s capacity.

The slope of the line depends on the overhead of that implementation, the
parameters of the query, and the speed of the network and CPU. An inflection
point, where the slope suddenly increases, indicates that the load exceeded the
limitations of the network or CPU. That effect can be seen most readily in our
10 mbps client/server experiments, where the demands of 12 clients exceed the
limits of the network.

In the 1 mbps network, the fact that agents bring back only 5 or 20% of
the documents allows them to be less sensitive to the constraints of the slow
network, while the client/server approach is bandwidth-limited. Here, as in the
10 mbps network, D’Agents, EMAA, and KAoS clearly perform much better
than client/server. NOMADS is much slower, due to its slower JVM (as we
discuss in the next section).

In the 100 mbps network, however, client/server is the clear winner. In this
environment, the network has more than enough bandwidth to allow the clients
to retrieve all of the documents. With the network essentially free, the slower
computation of the agents (using Java rather than C++, and sharing the server
rather than dispersing among the clients) makes the mobile-agent approach a
less attractive option.

The differences between mobile-agent systems are better examined in terms
of the task times and jump times.

4.2 Task Times

Each plot in Figure 2 shows the task time for all agent systems. The task time is
the time for computation of the filtering task only. Recall, however, that a client
will not generate a query until its previous query has finished. In a network-
limited configuration the query rate is reduced, reducing load on the server.
Thus, the task times do depend on the bandwidth of the network.

The most notable feature in these graphs is the dramatic difference between
the NOMADS times (which have a separate y-axis scale) and the other agent
systems. This difference is due to the home-grown Aroma JVM used in NO-
MADS, which has not been tuned. The NOMADS data grows linearly with the
number of clients, indicating that the server’s CPU is always the limiting factor
for NOMADS.

The D’Agents task time is the fastest, in large part because it uses an older
version of the JVM, with native (rather than Java) implementations of the crit-

Robert Gray et al.

Total Time, 1Mbps, 5% Pass Ratio

Total Time, 1Mbps, 20% Pass Ratio

60000 800000 60000 800000
/ 700000 700000
50000 50000
/ 600000 / 600000
. 40000 + __ 40000
] 500000] 500000
< NOMADS 3 NOMADS ‘[/P
E 30000 I T 400000 E 30000 . 400000
E 1 P [T
5 g Z
3 1 Client/Server 300000 ° 7 Client/Server 300000
20000 i 20000
200000 200000
D'Agents
10000 10000 ¥ AoS
D'Agents 100000 100000
I === L EMAR
0 EmaA— 0 0 0
12 3 4 56 7 8 9 1011 12 13 14 15 16 17 18 19 20 12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Total Time, 10 Mbps, 5% Pass Ratio Total Time, 10Mbps, 20% Pass Ratio
5000 800000 5000 800000
4500 700000 4500 700000
4000 4000
600000 . 600000
3500 3500 Client/Sprver
2 35000 500000 2 5000 500000
2 NOMADS @ J
£ 2500 400000 E 2500 400000
5 5 NOMADS/ T KAoS
2000 / 300000 o 2000 / A’ 300000
1500 1500 T
/ KAoS ™ 1 200000 / 200000
1000 / 1000 T T 7
00 L1 LI/ 1 T 100000 500 /T/ . L 1 - e"‘»— 100000
=
T B g, | [LT
0 o — 0 0 0
12 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Total Time, 100Mbps 5% Pass Ratio Total Time, 100Mbps, 20% Pass Ratio
4000 800000 4000 800000
3500 //{ 700000 3500 3| 700000
3000 600000 3000 / 600000
2 2500 NOMADS 500000 Z 2500 500000
r e
E 2000 400000 E 2000 400000
£ E
k-] KAoS] / KAoS
2 1500 / 300000 2 1500 / 300000
1000 / 200000 1000 / 200000
500] 500 100000
[° nfserver

Number of Clients

Cli
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 X
Number of Clients

Fig. 1. Total query times, for all systems, all three bandwidths, and both pass ratios.
We show error bars indicating one standard deviation from the mean. Note that the
vertical scale varies. The NOMADS data should all be read using the scale on the
right-hand side of the graph.

Task Time, 1Mbps, 5% Pass Ratio

Mobile-Agent Scalability

Task Time, 1Mbps, 20% Pass Ratio

9

1200 800000 1200 800000
/ 700000 / 700000
1000 1000
/ 600000 / 600000
800 _ 800
’g 500000 T 500000
° NOMADS ° NOMADS
E 600 400000 E 600 400000
i KAos [
% %
8 300000 8 300000
" 400 " 400
200000 / I [[W 200000
200 [T EMAA 200 T [KAoS
g _'_‘;J 11 |} 1 rooono - 100000
Dlhgepts o
0 0 0 0
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Task Time, 10Mbps, 5% Pass Ratio Task Time, 10Mbps, 20% Pass Ratio
2000 800000 2000 800000
1800 700000 1800 700000
1600 1600
600000 600000
KAos
1400 1400 oS 4—1
7 500000) 7 500000
1200 ¥ 1200
< NOMADy! < NOMAV
E 1000 400000 E 1000 ¥ 400000
i i
3 3 e
% s / 300000 g 8w / 300000
600 / 600
200000 / 200000
400 / EMAA 400 EMAA
ons/l/ /,/ l\ D'Agents
200 7] F 200 | P 100000
o e o e e B U e |
0 0 0
12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Task Time, 100Mbps, 5% Pass Ratio Task Time, 100Mbps, 20% Pass Ratio
2000 800000 2000 800000
.
1800 700000 1800 700000
1600 1600
/ 500000 600000
1400 1400
7 500000) 500000
£ 1200 NUMV £ 1200 NOMAD
2 2
E 1000 400000 E 1000 400000
E E
% 800 & 800 /
& / 300000 & / 300000
600 / 600
200000 / 200000
400 400 EMAA
/'/ T N I 1 Jempal /l 100000 100000
20 PR SR S A r%:‘«!:fi—t 201
o i S S Dfgehts 0 Ag

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Number of Clients

2 3 4

5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients

Fig. 2. Task times, for all systems, all three bandwidths, and both pass ratios. We show
error bars indicating one standard deviation from the mean. Note that the vertical scale
varies. The NOMADS data should all be read using the scale on the right-hand side of
the graph.

10 Robert Gray et al.

ical string-manipulation routines. Our document-scanning application stresses
those routines, leading to better performance for D’Agents.

The D’Agents time is largely constant, because the query rate is low enough
to not stress the server CPU. In the 10 mbps network, the KAoS 5% tests begin
to overload the server at about 15 clients. Unfortunately we do not have data
for EMAA at 10 mbps for more than 8 or 10 clients.

4.3 Jump Times

Each plot in Fig. 3 shows the average per-query jump time for each system.
Recall that the jump time is the total query time minus the task time, so it
includes all of the computational overhead of a jump (serialization, network
protocol, deserialization, and reinstating an agent) as well as the network time.

The jump times are most difficult to interpret, because they depend on the
load of both network and server. The higher NOMADS times in fast networks, for
example, are likely due to the heavy load on the CPU impacting the time needed
for serialization, transmission, and deserialization of jumping agents. Note that
NOMADS had the fastest jump times in the most congested network (1mbps at
20% pass ratio and 20 clients), despite having the largest agents.

In slow 1 mbps networks, we expect that systems with smaller agents (like
EMAA and KAoS) jump faster than systems with bigger agents (like NOMADS
and D’Agents). The results in the top row of Figure 3 are therefore surprising.
NOMADS was fast, indeed sometimes fastest by far; the reason is that NOMADS
task times were so large that agents only occasionally cross the network, and the
network never experiences congestion or heavy load.

In the 1 mbps case, the network was the bottleneck; in the 5% graph we can
see D’Agents, EMAA, and KAoS change slope when they first encounter that
bottleneck. In faster networks, the server’s load was the bottleneck. Again, we
can see inflection points where D’Agents, EMAA, and KAoS first encounter that
bottleneck. NOMADS was computation-bound in all cases.

It is difficult to attribute specific design decisions to the jump times mea-
sured in our experiments. Clearly it was helpful to have smaller agents, but even
in the slowest network we found that the computational overhead was often a
determining factor in the time required for a jump.

4.4 Ratio of Client/Server Time to Agent Time

9

Each plot in Figure 4 shows the “performance ratio,” which is the client/server
query time divided by the mobile-agent query time. A ratio of 1 indicates that
the agent approach and the client/server approach are equivalent in performance;
higher than 1 indicates that agents were faster. The NOMADS ratios are indis-
tinguishable from zero because their times were so large. For the other three
systems, there are three different effects, dependent on bandwidth.

In the 1 mbps curves, we see that the performance ratios climbed, and
then fell or level off. For small numbers of agents, the performance ratio im-
proved quickly because the client/server approach was bandwidth limited, while

Mobile-Agent Scalability 11

Jump Time, 1Mbps, 5% Pass Ratio Jump Time, 1Mbps, 20% Pass Ratio
14000 14000
12000 12000
10000 10000 D'Agent: %
& 7 gents [
E £
< 000 g 8000 KAoS
E £
£ E
a
E- 6000 g oo EMAA
3 3 41 4
4000 T’H/ 4000 i —
D'Agents — | [1 1 4
T Nogan
2000 1 . 2000
NOMADS 7V 3 {; i
0 EMAA 0
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Jump Time, 10Mbps, 5% Pass Ratio Jump Time, 10Mbps, 20% Pass Ratio
3500 3500
3000 3000
2500 2500
B B
< 2000 < 2000
E £
e NOMADS e
g 1500 2 1500
3 3
kags
1000 1000
Klaos| NOmMADS | —1
500 T 1 500 I
DfAgents
E,/I»/v/* [IR SN l l J“%’%%:Ts @%_{4 E
T g £
[=TV [
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1.2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Jump Time, 100Mbps, 5% Pass Ratio Jump Time, 100Mbps, 20% Pass Ratio
3500 3500
3000 3000
2500 2500
B B
+ 2000 < 2000
E E
F E
o
2 1500 g 1500
3 3
1000 NOMADS 1000 NOMADS /
L KAos
500 ’}\ KAoS 500
o M, o EMAR
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients

Fig. 3. Jump times, for all systems, all three bandwidths, and both pass ratios. We
show error bars indicating one standard deviation from the mean. Note that the vertical
scale varies.

12

Robert Gray et al.

Performance Ratios, 1Mbps, 5% Pass Ratio

Performance Ratios, 1Mbps, 20% Pass Ratio

80 80
EMAA
” //'/—‘_‘\‘\\\ ’
60 / \ 60
50 50
2 40 2 40
] / \]
& &
30 30
/ s S
20 ~ . 20
o / / D'Agents o EMAA
Zad . KAoS
. NOMADS . DAgents
NOWAD:
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Performance Ratios, 10Mbps, 5% Pass Ratio Performance Ratios, 10Mbps, 20% Pass Ratio
12 12
D'Agents/'_/_‘_\/
10 / 10
8 8
_ KAoS _
g g
g6 26
& &
4 4
EMAA
JiEBaEs T
o NOMADS o NOMADS
12 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Clients Number of Clients
Performance Ratios, 100Mbps, 5% Pass Ratio Performance Ratios, 100Mbps, 20% Pass Ratio
03 03
0.25 >“\ 0.25
02 02 5
EMAA
< g
gois g ois
£ 2 EMAA
4 ‘\‘\\ D'Agents « D'Agents
_A_KAoS
01 — 01
‘\—\‘ﬁs\
005 \ 005
NOMADS L
N NOMADS N
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clients

Number of Clients

Fig. 4. Performance ratios for all systems, for both pass ratios, combining all systems
on one plot. Note that the vertical scale varies.

Mobile-Agent Scalability 13

the agent approach was not. With a few more agents, it reached the network
bandwidth limit and became slower, reducing the performance ratio. Once both
client/server and agent performance reached the same slope, the performance
ratio leveled off. In the 20% case, the ratio was about 4-5, which is reasonable
considering that the agents moved 1/5th of the data, but with some overhead.
In the 5% case, where the agents moved 1/20th of the data across the network,
the ratio was 8-15. EMAA ratios were even better because their agents had low
overhead and allowed more execution overlap than client/server.

In the 10 mbps curves, we see a different effect. Here, the agents never hit
the network limit, but the client/server implementation hit the limit at 12-13
clients. The performance ratio suddenly improved. The performance ratio for
KAo0S then dropped, due to increasing server load.

In the 100 mbps curves, all performance ratios were low and declined steadily
as more clients were added, due to increasing contention for the server’s CPU.

5 Related work

Researchers have developed numerous mobile-agent systems over the past decade.
Few papers, however, present any substantial study of system performance.
Fewer still examine scalability. We discuss the most relevant papers here.

Ismail and Tichy [9] compare the performance of client/server (RMI) with
mobile agents. The client contacts one server to obtain a list of hotels, and
another server to obtain a phone number for each hotel (one a time). In the
alternative implementation a mobile agent visits the first server and then the
second server, returning with all phone numbers for all candidate hotels. Al-
though the agent is a multi-hop agent, unlike those in our study, the application
is analogous. Mobile agents provide a performance advantage when the agent
retrieves a sufficient number of candidate hotels. In their study, however, there
was only a single client and a single agent, and no other load on the servers.

Johansen [10] used an application like ours, though using images or video
files rather than text documents. The results are directly analogous to our own
results, with similar crossing points in the mobile-agent vs. client-server perfor-
mance curves. They do not, however, study the scalability of the server, since
there is one client sending one agent to the server.

Strafler and Schwehm consider an abstract application, using an analytic
model and parameters derived from the Mole mobile-agent platform [13]. They
consider only a single mobile agent, although it may visit multiple servers. They
have limited experiments on only one mobile-agent system, and they do not
evaluate the scalability of an agent server.

Kiipper and Park use an analytic model, parameterized by a small experi-
ment, to predict the scalability of a telecommunications application [11]. They
compare two approaches: stationary agents, in which the call-setup code for a
user is always resident in the user’s home network, and mobile agents, in which
the call-setup code moves to the user’s current network. Mobile agents lead to
improved call-setup times as long as the user makes enough calls before moving

14 Robert Gray et al.

to a new network. Their paper does not measure real mobile-agent systems, nor
study the scalability of a mobile-agent server.

Baldi and Picco also use an analytic model, parameterized by experiments,
to examine a different aspect of scalability [1]. They compare the network traffic
generated by a variety of approaches (including client/server and mobile agents)
for collecting statistics from a distributed set of network devices. They conclude
that mobile agents (in general, mobile code) can reduce network traffic, relative
to a client-server approach, and thus allow their application to support a larger
number of devices. They consider only a single mobile agent. They compare
only network traffic in bytes and no measures of time. They do not consider the
scalability of the mobile-agent platform itself.

Theilmann and Rothermel also examine the performance of a mobile-agent
application that visits many data servers to filter data [15]. The client/server
approach downloads all data for filtering at the client. In the mobile-agent ap-
proach, one mobile agent is dispatched as close to each data server as possible.
They achieve significant cost savings whether they used hop counts or round-trip
time as basis for measuring distance. “Cost” seems to relate to total number of
bytes transferred across the network. As in our study, the cost savings depend
entirely on the amount of data examined (and filtered out) on each remote host.
They do not study scalability of the agent servers, however, since there is only
one agent sent to each data server.

Woodside [16] proposes a model for scalability and analysis of mobile-agent
systems. The paper examines scalability in terms of the time for a mobile agent
to complete a “tour” (an execution that involves visiting several hosts) as the
number of hosts (agent servers) increases with a corresponding increase in the
number of agents. The model presented does not account for communication
costs, one of the central factors in our study. Also, the paper does not provide
any experimental results.

Dikaiakos and Samaras [6,5] develop a framework for performance analy-
sis of mobile-agent systems. They propose three layers of benchmarks: micro-
benchmarks that test individual operations such as messaging and migration,
micro-kernels that are small, synthetic tasks that would be part of typical appli-
cations, and application-kernels that use actual application-level functionality
and workloads. They present experimental results for three real mobile-agent
platforms using micro-benchmarks and micro-kernels that describe performance
in terms of throughput for a single agent, but do not address scalability.

The consistent theme of previous work, confirmed by our own work, is that
a mobile-agent approach outperforms a client-server approach as long as the
application involves analysis of enough information, and enough reduction of
the data returned to the client, to outweigh the overhead of sending the mobile
agent in the first place. Our study is unique in its study of a server heavily loaded
by mobile agents from multiple clients, and unusual in its cross-comparison of
several mobile-agent systems.

Mobile-Agent Scalability 15
6 Conclusion

In our experiments we found that the scalability of mobile-agent systems, in
comparison to an alternative client/server implementation of the same appli-
cation, depends on many different environmental parameters. Overall, the four
mobile-agent systems we examined scale reasonably well from 1 to 20 clients,
but when we compare them to each other and to a client/server implementation
they differ sometimes dramatically. The client/server implementation was highly
dependent on sufficient network bandwidth. The agent implementations saved
network bandwidth at the expense of increased server computation.

The performance of NOMADS clearly suffered from the untuned virtual ma-
chine. The relative performance of the other three mobile-agent systems varied,
depending on the mix of computation and network in the application, reflecting
their different mix of overheads. The optimized string functions in the D’Agents
JVM helped prevent server overload when the network was fast. The smaller
agents of KAoS and EMAA were an advantage in slower networks.

Our experiments are admittedly only a first step toward understanding the
performance of, and scalability of, mobile-agent systems. These results are for
a single application, in which mobile agents hop once to the server and once
back to the client. The application exercises string processing on the server,
and the transportation of documents in a jumping agent, but does not exercise
agent-agent communication, security mechanisms, multi-hop mobile agents, or
complex network topologies. The relative performance of our four mobile-agent
systems depends in part on the current state of their implementations. Indeed, it
is difficult to tease out the performance effects of the design differences outlined
in Table 1, because their effects were confounded.

It is clear from our results that mobile agents can be beneficial in situations
with low network bandwidth and plentiful server capacity. Indeed, in many en-
vironments it is easier to add more server capacity than to add network capac-
ity, particularly those with wireless networks. For applications demanding high
performance and scalability to hundreds or thousands of active agents, further
research is necessary to develop light-weight agent systems and scalable agent
platforms. We are investigating automated ways to build parallel or distributed
mobile-agent servers and services.

References

1. M. Baldi and G. P. Picco. Evaluating the tradeoffs of mobile code design paradigms
in network management applications. In Proc. of the Twentieth International Con-
ference on Software Engineering, pages 146-155, Kyoto, Japan, April 1998.

2. J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley. KAoS: Toward an
industrial-strength open agent architecture. In J. Bradshaw, editor, Software
Agents, pages 375-418. AAAI/MIT Press, 1997.

3. J. M. Bradshaw, N. Suri, A. K. Canas, R. Davis, K. Ford, R. Huffman, R. Jeffers,
and T. Reichherzer. Terraforming Cyberspace. IEEE Computer, 34(7), July 2001.

16

10.

11.

12.

13.

14.

15.

16.

Robert Gray et al.

. D. Chacén, J. McCormick, S. McGrath, and C. Stoneking. Rapid application

development using agent itinerary patterns. Technical Report #01-01, Lockheed
Martin Advanced Technology Laboratories, March 2000.

. M. Dikaiakos, M. Kyriakou, and G. Samaras. Performance evaluation of mobile-

agent middleware: A hierarchical approach. In Proc. of the Fifth IEEE In-
ternational Conference on Mobile Agents, LNCS, Atlanta, GA, December 2001.
Springer-Verlag.

M. D. Dikaiakos and G. Samaras. A performance analysis framework for mobile-
agent systems. In Infrastructure for Agents, Multi-Agents, and Scaleable Multi-
Agent Systems, volume 1887 of LNCS, pages 180-187. Springer-Verlag, 2001.

R. Gray. Agent Tcl: A flexible and secure mobile-agent system. PhD thesis, Dept.
of Computer Science, Dartmouth College, June 1997. Available as Dartmouth
Computer Science Technical Report TR98-327.

R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in a multiple-
language, mobile-agent system. In G. Vigna, editor, Mobile Agents and Security,
volume 1419 of LNCS, pages 154-187. Springer-Verlag, 1998.

L. Ismail and D. Hagimont. A performance evaluation of the mobile agent
paradigm. ACM SIGPLAN Notices, 34(10):306-313, October 1999.

D. Johansen. Mobile agent applicability. In Proc. of the 2nd Int’l Workshop on
Mobile Agents, volume 1477 of LNCS, pages 80-98, Stuttgart, Germany, September
1998. Springer-Verlag.

A. Kiipper and A. S. Park. Stationary vs. mobile user agents in future mo-
bile telecommunication networks. In Proc. of the 2nd Int’l Workshop on Mobile
Agents, volume 1477 of LNCS, pages 112-123, Stuttgart, Germany, September
1998. Springer-Verlag.

S. McGrath, D. Chacén, and K. Whitebread. Intelligent mobile agents in the
military domain. In Proc. of the Autonomous Agents 2000 Workshop on Agents in
Industry, Barcelona, Spain, 2000.

M. Strafler and M. Schwehm. A performance model for mobile agent systems.
In Proc. of the International Conference on Parallel and Distributed Processing
Techniques and Applications, volume II, pages 1132-1140, Las Vegas, July 1997.
N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, and R. Jeffers.
Strong mobility and fine-grained resource control in NOMADS. In Proc. of the
Second Int’l Symp. on Agent Systems and Applications and Fourth Int’l Symp.
on Mobile Agents (ASA/MA2000), volume 1882 of LNCS, pages 2-15, Zurich,
Switzerland, September 2000. Springer-Verlag.

W. Theilmann and K. Rothermel. Optimizing the dissemination of mobile agents
for distributed information filtering. IEEE Concurrency, 8(2), April-June 2000.
M. Woodside. Scalability metrics and analysis of mobile agent systems. In In-
frastructure for Agents, Multi-Agents, and Scaleable Multi-Agent Systems, volume
1887 of LNCS, pages 234-245. Springer-Verlag, 2001.

