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Abstract

Many boundaries impede the flow of authorization

information, forcing applications that span those

boundaries into hop-by-hop approaches to autho-

rization. We present a unified approach to autho-

rization. Our approach allows applications that span

administrative, network, abstraction, and protocol

boundaries to understand the end-to-end authority

that justifies any given request. The resulting dis-

tributed systems are more secure and easier to audit.

We describe boundaries that can interfere with

end-to-end authorization, and outline our unified ap-

proach. We describe the system we built and the

applications we adapted to use our unified autho-

rization system, and measure its costs. We conclude

that our system is a practical approach to the desir-

able goal of end-to-end authorization.

1 Introduction

As systems grow more complex, they are often grown

by affixing one system to another using some form of

gateway to bridge boundaries between the systems.

The boundaries can take several forms; we discuss

four in this paper.

When we assemble systems in this way, frequently

the authorization information available at the client

system cannot be translated to the terms of autho-

rization at the server system. As a result, the gate-

way often ends up making access-control decisions

on behalf of the server system, and the server sys-

tem is ignorant of any authorization information be-

yond a blind trust in the gateway. Our end-to-end

authorization system remedies this situation.

2 Goals

Saltzer et al. describe a general principle for com-

puter engineering: implement end-to-end semantics
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to achieve correctness, and only implement hop-by-

hop semantics to boost the performance of the end-

to-end implementation [19]. Voydock and Kent ar-

gue for end-to-end security measures when the hops

are between network routers [24]. The same prin-

ciple applies to authorization semantics when the

hops are between gateways that span administra-

tive boundaries, network scales, levels of abstraction,

or protocol boundaries. End-to-end authorization

makes systems more secure by reducing the number

of programs that make access-control decisions, by

giving those programs that do control access more

thorough information, and by providing more useful

audit trails. In this section, we illustrate four kinds

of boundaries in distributed systems that impede the

flow of authorization information from one end of a

system to another. We discuss how, by giving clients

and servers the ability to form and verify proofs, our

unified system can support end-to-end authorization

through the gateways that span these boundaries.

2.1 Spanning administrative domains

Administrative boundaries frequently interfere with

end-to-end authorization. The conventional ap-

proach to authorization involves authenticating the

client to a local, administratively-defined user iden-

tity, then authorizing that user according to an

access-control list (ACL) for the resource. When

resources are to be shared across administrative

boundaries, this scheme fails because the server has

no local knowledge of the recipient’s identity.

Typical solutions to this problem involve authenti-

cating the remote user in the local domain, either by

having the local administrator create a new account,

or by the resource owner sharing her password. An-

other approach is to install a gateway that accesses

the resource with the local user’s privilege but on

behalf of the remote user. With the gateway the

owner achieves her goal of sharing, but obscures the

identity and authority of the actual client from the

service that supplies the underlying resource.

Another way a user might share resources across

administrative boundaries is by delegating1 her au-

thority with restriction. In the example, Alice may

1We call delegation what Abadi et al. call handoff.



authorize Bob to perform some restricted set of ac-

tions on certain resources. Authority information

flows across the administrative boundary: the del-

egation provides the resource server with sufficient

information to reason about the client regardless of

her membership in the local administrative domain.

Indeed, the authorization mechanism has no inher-

ent notion of administrative domain.

2.2 Spanning network scales

A second boundary that interferes with end-to-end

authorization is network scale. Network scale affects

an application’s choice of hop-by-hop authorization

protocol. For example, a strong encryption protocol

is appropriate when crossing a wide-area network.

Inside a firewall where routers are locally adminis-

tered, some installations may base authority deci-

sions on IP source addresses. On a local machine,

we can often trust the OS kernel to correctly identify

the participants in an interprocess communication.

Our unified approach separates policy from mech-

anism, creating two benefits. First, applications rea-

son about policy using a toolkit with a narrow inter-

face. The toolkit can transparently support multi-

ple access mechanisms, and simply enable those that

policy allows. Second, when an application does not

support a desired mechanism, we can build a gate-

way that forwards requests from another mechanism

while still passing end-to-end authorization informa-

tion in a form the server understands and verifies.

Ultimately, the high-level security analysis of a pro-

gram is independent of mechanism, and reflects end-

to-end trust relationships.

2.3 Spanning levels of abstraction

Another use for gateway programs is to introduce

another level of abstraction over that provided by

a lower-level resource server. A file system takes

disk blocks and makes files; a calendar takes rela-

tional database records and makes events; a source-

code repository takes files and makes configuration

branches. Typically, an abstracting gateway con-

trols the lower-level resource completely and exclu-

sively, so that the gateway makes all access-control

decisions. With end-to-end authorization, one can

instead allow multiple mutually untrusting gateways

to share a single lower-level resource.

For example, a system administrator might con-

trol the disk-block allocator. To grant Alice access

to a specific file X, the sysadmin may allow Alice

to speak for the file system regarding X, and allow

the conjunction of Alice and the file system quoting

Alice to speak for the disk blocks. In this configu-

ration, the file system cannot access the lower-level

disk block resource without Alice’s agreement (due

to the conjunction), and Alice cannot meddle with

arbitrary disk blocks without the file system agree-

ing that the requests are appropriate. The system

helps us adhere to the principal of least privilege by

encoding partial trust in the user and in the file sys-

tem program. Furthermore, auditing any request for

disk blocks provides end-to-end information indicat-

ing the involvement of both Alice and the file system

program.

2.4 Spanning protocols

Commonly a gateway is installed between two sys-

tems simply to translate requests from one wire pro-

tocol to another. Like any gateway, these gateways

often impede the flow of authorization information

from client to server.

In our system, authorization information is en-

coded in a data structure that has both robust and

efficient wire transfer encodings [18]. Thus the uni-

fied system is easily adapted for transfer over a va-

riety of existing protocols. In this paper, we de-

scribe its implementation over HTTP and over Java

Remote Method Invocation (RMI). Adapting more

protocols, such as NFS and SMTP, to support uni-

fied authorization will result in wider applicability

of end-to-end authorization.

The four boundaries described above turn up in

real systems that accrete from smaller subsystems.

Gateway software installed at each boundary maps

requests from clients on one side of the boundary

to requests for services on the other side. The sys-

tem described herein allows us, at each boundary, to

preserve the flow of authorization information along-

side the flow of requests. By allowing gateways to

defer authorization decisions to the final resource

server when appropriate, and ensuring that resource

servers have a full explanation for the authority of

the requests they service, we provide applications

with end-to-end authorization.

3 Unified authorization

Above, we motivate the use of a unified system

to support end-to-end authorization, and allude to

some of its features. In this section, we give an

overview of the system we built, part of a project

called Snowflake that facilitates naming and sharing

across administrative boundaries.

The main idea behind our end-to-end authoriza-

tion is a compact logic of authority. The logic is

founded in a possible-worlds semantics that provides



intuition and guidance about possible extensions.

Due to its length, the detailed semantics appears

in a companion paper [11].

Logical assumptions represent statements that a

principal believes based on some verification (out-

side the logic), such as the result of a digital sig-

nature verification. Principals combine assumptions

and logical theorems to produce inherently auditable

proofs of authority. Such proofs are not bearer capa-

bilities but simply verifiable facts: while they prove

that a given principal has authority, knowledge of

the proof by an adversary does not bestow author-

ity on the adversary. The primary form of statement

is B
T⇒ A, read “Bob speaks for Alice regarding the

statements in set T .” The statement means that Al-

ice agrees with Bob about any statement in T that

Bob might make; the speaks for captures delegation,

and the regarding captures restriction.

The logic stems from the Logic of Authentica-

tion due to Abadi, Burrows, Lampson, Plotkin, and

Wobber [1, 13, 25]; as in their logic, ours can en-

code conjunction (multiple parties exercising joint

authority) and quoting (one party claiming to speak

on behalf of another). The logic is backed by a se-

mantics that not only provides unambiguous mean-

ing for every logical statement, but tells us how the

system may and may not be safely extended.

The formalism suggests a natural implementation

language that fits nicely with the Simple Public Key

Infrastructure (SPKI) [9]. Our system generalizes

SPKI by allowing other forms of principal, so that

the same framework can be used for authorization

on a single host using a trusted kernel, authorization

within an administrative domain using a secret-key

protocol, or authorization in the wide area using a

public key protocol. We extended the SPKI frame-

work rather than create our own to simplify poten-

tial interoperation with SPKI, to exploit SPKI’s un-

ambiguous S-expression representation, and to build

on existing implementations of SPKI in C and Java.

We present the implementation in three sections:

the infrastructure of the system, the channels of

communication we have supported, and some ap-

plications that exploit the authorization model.

The applications culminate in a configuration that

bridges each of the four boundaries described above.

Principals, statements and proofs are the language

of our system. Section 4 describes each, and dis-

cusses our implementation. It also describes the

Prover, a tool used by clients to generate proofs.

Requests to be authorized are delivered over various

kinds of channels, from fast local channels connected

by a trusted kernel, to cryptographically-protected

network connections. We discuss our implementa-

tion of authorization over channels in Section 5. In

Section 6, we describe the applications and services

we have built that participate in and interoperate

using the unified authorization system. We measure

and analyze the costs of our approach in Section 7.

Section 8 discusses related work, and we summarize

in Section 9.

4 Infrastructure

The basic elements of the system are statements and

principals. A statement is any assertion, such as “it

would be good to read file X,” or “Bob speaks for

Alice,” or “Charlie says Alice speaks for Charlie.”

A principal is any entity that can make a state-

ment. Examples include the binary representation

of a statement itself (that says only what it says), a

cryptographic key (that says any message signed by

the key), a secure channel (that says any message

emanating from the channel), a program (that says

its output), and a terminal (that says whatever the

user types on it).

A proof of authority, like a proof of a mathemati-

cal theorem, is simply a collection of statements that

together convince the reader of the veracity of the

conclusion statement. Of course, in an authoriza-

tion system, a proof is read by a program, not by a

mathematician.

4.1 Statements

Snowflake’s implementation of sharing begins with

the Java implementation of SPKI by Morcos [14].

It is a useful starting point because not only do we

wish to preserve features of SPKI, but SPKI includes

a precise and easily extensible specification of the

representation of various abstractions. Furthermore,

starting with a SPKI implementation offers an easier

path to SPKI interoperability.

The restriction imposed on a delegation is speci-

fied using authorization tags from SPKI. Authoriza-

tion tags concisely represent infinitely refinable sets,

which makes them an attractive format for user-

definable restrictions. We replaced Morcos’ minimal

implementation of authorization tags with a com-

plete one that performs arbitrary intersection oper-

ations [12, Chapter 6].Our semantics paper explains

how SPKI’s revocation mechanisms (lists and one-

time revalidations) can be expressed as statements

in our logic [11].

4.2 Principals

SPKI makes a distinction between principals and

“subjects,” entities that can speak for others but

can utter no statements directly, such as threshold



(conjunct) principals. Our formalism does not make

that distinction. It also supports new compound

principals, such as the quoting principal of Lampson

et al. Therefore, we extended Morcos’ Principal class

to support SPKI threshold (conjunction) principals

and Lampson’s quoting principals. When a service

reads a request from a communications channel, it

associates the request with an appropriate principal

object that represents the channel; this principal is

the one that “says” the request. Because the chan-

nel itself is a principal, it may claim to quote some

other principal; that assertion is noted by associ-

ating the channel with a Quoting principal object.

The object’s quoter field is the channel itself, and

its quotee field is the (possibly compound) principal

the channel claims to quote.

4.3 Proofs

We implemented a Proof class that represents a

structured proof consisting of axioms and theorems

of the logic and basic facts (delegations by princi-

pals). An instance of Proof describes the state-

ment that it proves and can verify itself upon re-

quest. While Proof objects may be received from

untrusted parties, their methods are loaded from a

local code base, so that the results of verification are

trustworthy. Servers receive from clients instances

of the Proof class that show the client’s authority

to request service. Conversely, a server may send a

Proof to a client to establish its authenticity, that

is, to prove its authority to identify itself by some

name or to provide some service the client expects.

Proofs can be transmitted as SPKI-style S-

expressions or directly transferred between JVMs

using Java serialization. No precision is lost in the

latter case, since the basic internal structure of ev-

ery proof component is a Java object corresponding

to an S-expression.

SPKI’s sequence objects also represent proofs of

authority. SPKI sequences are poorly defined, but

they are linear programs apparently intended to run

on a simple verifier implemented as a stack machine.

When certificates and opcodes are presented to the

machine in the correct order, the machine arrives at

the desired conclusion [8].

Transmitting proofs in a structured form rather

than as SPKI sequences is attractive for three rea-

sons. First, the structured proofs clearly exhibit

their own meaning; to quote Abadi and Needham,

“every message should say what it means” [2]. Sec-

ond, the structured proof components map one-to-

one to implementation objects that verify each com-

ponent. The SPKI sequence verifier, in contrast,

requires an external mapping to show that the state

machine corresponds to correct application of the

formal logic. Third, it is simple to extract lem-

mas (subproofs) from structured proofs, allowing

the prover to digest proofs into reusable components

(Section 4.4).

The logic encodes expiration times as part of the

restriction of a delegation, so that each proof need

be verified only once. The step of matching a request

to a proof automatically disregards expired conclu-

sions, since a current request cannot match a con-

clusion with a restriction that it was valid only in

the past. Figure 1 illustrates a proof. Since the

structure of the proof is preserved, if the topmost

statement should expire (perhaps because it depends

on the short-lived statement HD ⇒ KS), the still-

useful proof of KS ⇒ KC · N may be extracted and

reused in future proofs.

transitivity
HD ⇒ KC ·N

transitivity
KS ⇒ KC · N

signed-certificate
HD ⇒ KS

name-monotonicity
HKC · N ⇒ KC · N

signed-certificate
KS ⇒ HKC · N

hash identity
HKC ⇒ KC

Figure 1: A structured proof. This proof shows that

document D is the object client C associates with the

name N . HKC is a hash of the client’s key KC, HD a

hash of the document, and KS the server’s key.

4.4 The prover

A Prover object helps Snowflake applications col-

lect and create proofs. It has three tasks: it collects

delegations, caches proofs, and constructs new dele-

gations.

A user’s application collects delegations from

other users. Gateways collect delegations directly

from client applications. Both sorts of applications

use a Prover to maintain their collected delega-

tions in a graph where nodes represent principals

and edges represent a proof of authority from one

principal to the next (see Figure 2). The Prover
traverses the graph breadth first to find proofs of

delegation required by the application. For exam-

ple, if the Prover must prove that a channel KCH



speaks for a server S, it works backwards from the

node S to find the proof that A
V ∩X⇒ S. A is fi-

nal, meaning that the Prover can make statements

as A; therefore, Prover simply issues a delegation

KCH ⇒ A to complete the proof.

A

CB

S

V ∩ X

X

VT

Figure 2: A look inside Alice’s Prover. Each node rep-

resents a principal, and each edge a proof. For example,

the edge from A to B represents the proof consisting of

the single delegation A
T⇒ B. The node A is distin-

guished because it is final: it represents a principal that

the Prover can cause to say things.

When the Prover receives a delegation that is ac-

tually a proof involving several steps, the Prover
“digests” the proof into its component parts for stor-

age in the graph. Whenever it receives or computes a

derived proof composed of smaller components, the

Prover adds a shortcut edge (dotted line in Figure 2)

to the graph to represent the proof. These shortcuts

form a cache that eliminates most deep traversals of

the graph.

When an application controls one or more princi-

pals (e.g., by holding the corresponding private key

or capability), its Prover can store a closure (an

object that knows the private key or how to exer-

cise the capability) in its graph to represent the con-

trolled principal. When desired, the Prover can not

only find existing proofs, but complete new proofs

by finding an existing chain of delegations from the

controlled principal to the required issuer, then us-

ing the closure to delegate to the required subject

restricted authority over the controlled principal.

Our simple Prover is incomplete, but it is suit-

able for most authorization tasks applications face.

Abadi et al. note that solutions to the general access-

control problem in the presence of both conjunc-

tion and quoting require exponential time [1, p.726].

Elien gives a polynomial-time algorithm for discov-

ering proofs in a graph with only SPKI certificates

(no quoting principals) [7]. In the common case, we

expect applications to collect authorization informa-

tion in the course of resolving names, so that proofs

are built incrementally with graph traversals of con-

stant depth.

5 Channels

With the infrastructure above in place, applications

and services have the tools they need to generate,

propagate, and analyze authority from the source of

a request to its final resource server. The autho-

rization information must be propagated from one

program to the next through channels.

When a client makes a request of a server, the

server needs some mechanism to ensure that the

client really uttered the request. We implemented

three such mechanisms: a secure network channel,

a local channel vouched for by a trusted authority

in the same (virtual) machine, and a signed request.

We describe each and discuss how they are repre-

sented as principals in our unified system.

5.1 Secure channels

To implement a secure channel, we built a Java im-

plementation of the ssh protocol that can interoper-

ate with the Unix sshd service [26]. Then we built

Java ServerSocket and Socket classes based on ssh
that provide a secure connection. Either end of the

connection can query its socket to discover the pub-

lic key associated with the opposite end.2

We plugged our ssh sockets into RMI using socket

factories. Ssh ensures that the channel is secure be-

tween some pair of public keys. To make that guar-

antee useful, we embody the channel as a principal.

Consider the channel in Figure 3. To establish the

channel, the server (principal PS) uses public key

K1 and the client (PC) key K2 in the key exchange,

and together they establish secret key KCH as the

symmetric session key.

channel with secret key KCH

client (PC)

M

server (PS)

K2 K1

Figure 3: Treating a channel as a principal

Suppose a message M emerges from the channel

at the server. In the language of the formalism,

2Why did we build an ssh implementation? Some have
suggested that we use SSL over RMI, which is apparently now
fairly practical. When we began this work, however, RMI did
not have easily pluggable socket factories, and even once it
did, the only open-source SSL implementation we could find
did not operate well under RMI.



the ssh implementation promises that M ⇒ KCH .

The initial key exchange convinced the server that

KCH ⇒ K2, and the client may explicitly establish

that K2 ⇒ PC. Because M ⇒ KCH ⇒ K2 ⇒ PC ,

the server concludes that M ⇒ PC , that is, the mes-

sage says what the client is thinking.

5.1.1 How channels work

Figure 4 illustrates our RMI/ssh channel in action.

Initially, the server creates an instance of an RMI re-

mote object ya , defines the key KS that controls it,

and associates the object with an SSHContext that

manages any incoming messages for the object yb .

The SSHContext is associated with the RMI listener

socket yc that will receive incoming requests for the

object, and defines the public key (K1) that will par-

ticipate in ssh session establishment.

The client retrieves a stub yd for the remote ob-

ject from a name service it trusts. To exercise its au-

thority on the object, the client first establishes its

identity in thread scope. In a try ... finally
block, it establishes its own SSHContext ye and

a Prover yf that holds its private key KC . Any

method called in the run-time scope of the try block

will inherit the established authority, but the author-

ity will be canceled when control exits the block.

Then the client invokes a method m on the re-

mote stub. The remote stub has been mechanically

rewritten to wrap its remote invocations with calls to

the invoker helper method yg . The invoker method

makes the usual RMI remote call through the re-

mote reference yh , and the reference creates an ssh
socket yi using the SSHSocketFactory specified in

the stub. The ssh channel is established yj , and

each context learns the public key associated with

the opposite end (K1, K2). The method call passes

through the channel to the skeleton object on the

server yk , which forwards the call to the implemen-

tation object.

The programmer has prepended to each remote

method implementation a call to the no-argument

method checkAuth() yl . This routine discovers

from the local SSHContext the key K2 associated

with the channel that the request arrived on, and

concludes K2 says m. The server object was asso-

ciated at creation with the key KS , however, and

checkAuth() does not know that K2 speaks for KS ,

so it throws an SfNeedAuthorizationException.

RMI passes the exception back through the chan-

nel, where the client’s invoker method catches it.

The invoker inspects the exception to discover the

issuer KS it must speak for and the minimum re-

striction set regarding which it must speak for that

issuer.3 The invoker queries the Prover yf for a

proof of the required authority; since the prover con-

trols the client’s private key KC , it can construct

a statement to delegate authority from KC to K2.

The exception carries a reference to a special re-

mote proofRecipient object; the invoker calls a

method on it to pass ym the proof to the server. The

proofRecipient object yn stores the proof at the

server, and returns to the client.

The invoker again sends the original invocation m
through the remote reference, and the request trav-

els the same path to checkAuth on the server. This

time, the proof that K2
T⇒ KS (via KC) is avail-

able, checkAuth() returns without exception, and

the remote object’s implementation method runs to

completion. Future calls encounter no exception as

long as the proof at the server remains valid, and are

only slowed by the layer of encryption protecting the

integrity of the ssh channel.

The client programmer need only establish the

client’s authority at the top of a code block; in-

side that scope, the Prover and the invoker together

handle the nitty-gritty of proof generation and au-

thorization. In the idiom we adopt, the server pro-

grammer defines the object server key KS and the

mapping from method invocation to restriction set

(T ) for a server object, then prefixes each Remote

method with calls to a generic checkAuth() that

uses those definitions. We chose this approach be-

cause it would be simple to automate the injection

of checkAuth() calls to insure that no Remote in-

terface is left unprotected.

5.2 Local channels

Setting up a secure network channel is an expensive

operation because it involves public-key operations

to exchange keys. If a server trusts its host machine

enough to run its software, it may as well trust the

host to identify parties connected to local IPC chan-

nels. Within our Java environment, we treat the

JVM and a few system classes as the trusted host,

and bypass encryption when connecting to a server

in the same JVM.

3In this example, the minimum restriction set T = {m}
contains the singleton request (method invocation) made by
the invoker. When some more-sophisticated mapping is in-
volved, where the server’s minimum restriction set may re-
veal sensitive structure of the service, the server may reveal
the set only incrementally. For example, its first challenge
may tell the client how to prove authority to learn the “real”
restriction set. The situation is analogous to ls -l foo/bar

in Unix: it reveals the authority required by a client to access
a resource bar, but only after the client has shown its author-
ity to learn that information by logging in with a UID that
has permission to read the directory foo.
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Figure 4: How our ssh RMI channel is integrated with Snowflake’s authorization service. Dashed arrows

represent object references. Solid arrows � represent the critical remote call path, and dotted arrows

represent the longer path taken when the server requires fresh proof of the client’s authority.

In the local case, the ssh channel is replaced with

a Java “IPC” pipe implemented without any operat-

ing system IPC services, and the public keys corre-

sponding to the channel endpoints (K1 and K2) are

swapped directly. Because it was involved in con-

structing the key pairs and the keys are stored in

immutable objects, the trusted system class knows

whether a client holds the private key corresponding

to a given public key. Hence when a client is colo-

cated in the same JVM with the server, there is no

encryption or system-call overhead associated with

the channel, only RMI serialization costs.

5.3 Signed requests

Not all applications can assume that our ssh-
enhanced version of RMI is available as an RPC

mechanism. Indeed, the most visible RPC mech-

anism on the Internet is HTTP. To facilitate ap-

plications that use HTTP, we created a Snowflake

version of the HTTP authorization protocol.

HTTP defines a simple, extensible challenge-

response authorization mechanism [10]. The client

sends an HTTP request to the server. The server

replies with a “401 Unauthorized” response, in-

cluding a WWW-Authenticate header describing the

method and other parameters of the required au-

thorization. The client resends its request, this

time including an Authorization header. If the

Authorization satisfies the server’s challenge, the

server honors the request and replies with the re-

turn value of the operation. Otherwise, the server

returns a “403 Forbidden” response to indicate the

authorization failure.

HTTP defines two standard authorization meth-

ods. In Basic Authentication, the client’s

Authorization header includes a password in

cleartext. In Digest Authentication, the server’s

WWW-Authenticate challenge includes a nonce, and

the client’s Authorization header consists of a se-

cure hash of the nonce and the user’s password.

Both methods authenticate the client as the holder

of a secret password, and leave authorization to an

ACL at the server.

In our new method, called Snowflake Autho-

rization, the parameters embedded in the server’s

WWW-Authenticate challenge are the issuer that the

client needs to speak for and the minimum re-

striction set that the delegation must allow. The

Authorization header in the client’s second request

simply includes a Snowflake proof that the request

speaks for the required issuer regarding the speci-

fied restriction set. The subject of the proof is a

hash of the request, less the Authorization header.

Figure 5 shows an example.

5.3.1 Signed request optimization

The signed request protocol described above is

rather slow, since it incurs a public-key signature

for every request. We implemented a more efficient

protocol that amortizes the public-key operation by

having the server send an encrypted, secret message

authentication code (MAC) to the client. The client

then authorizes messages by sending a hash of 〈 mes-

sage, MAC 〉. The protocol is represented in the

end-to-end authorization chain by representing the

MAC as a principal.

SSL channels offer an alternative approach to

amortizing the initial public-key operation, with dif-



HTTP/1.0 401 UNAUTHORIZED

Content-Type: text/html

MIME-Version: 1.0

Server: MortBay-Jetty-2.3.3

Date: Sat, 08 Apr 2000 15:18:47 GMT

WWW-Authenticate: SnowflakeProof

Authorize-Client

Sf-ServiceIssuer: (hash md5

|ehtQYd4EpQXOa/ON6Smesg==|)

Sf-MinimumTag: (tag

(web (method GET)

(service |Sm9uJ3MgUHJvdGVjdGVpY2U=|)

(resourcePath "")))

Connection: close

Figure 5: An HTTP authorization challenge message

from a Snowflake server. It indicates the method, the

required resource issuer, and the minimum restriction of

a delegation that must be proven.

ferent security and performance trade-offs.

5.3.2 Authorization vs. authentication

The SPKI group argues that authorizing a request

without authentication as an intermediate step re-

duces indirection and hence removes opportunities

for attack [9]. When authentication is desired, one

can use the logic to demand it. For example, one

may delegate a resource to “authentication server’s

Alice,” requiring Alice to authenticate herself to the

server to invoke her authority over the resource. Al-

ternatively, one can resolve the secure bindings that

map keys to names after the fact to discover whose

authority was invoked. How meaningful an authen-

tication is depends on one’s philosophy about dele-

gation control [11].

5.3.3 Server authorization

Often a client also wants to verify that it is com-

municating with the “right” server. The notion

of “right” can be as simple as the server speak-

ing for the client’s idea of a well-known name like

www.dartmouth.edu, but in general the real ques-

tion is still one of authorization: Does this server

have the right to claim authority about Dartmouth’s

course list? Does that server have authority to re-

ceive my e-mail?

We addressed a limited version of this problem

with a second HTTP extension that enables a server

to show the authenticity of a document using the au-

thorization system. The server includes with docu-

ment headers a proof that the hash of the document

speaks for the server. The client completes the proof

chain and determines whether the authentication is

satisfactory.

5.3.4 Server implementation

We implement the server side of the signed-requests

protocol as an abstract Java Servlet Protected-
Servlet [15]. Concrete implementations extend

ProtectedServlet with a method that maps a re-

quest to an issuer that controls the requested re-

source and to the minimum restriction set required

to authorize the request. The concrete class also

supplies the service implementation that maps a re-

quest to a response. When each request arrives, the

ProtectedServlet ensures that appropriate autho-

rization has been supplied, and if not, constructs

and returns the “401 Unauthorized” response to the

client.

Notice that the server identifies only a single prin-

cipal that controls the resource, not an ACL. An

ACL is a specific group of users authorized to access

a resource; in our system, the client is responsible

to know and exploit its group memberships as rep-

resented in delegations [11].

5.3.5 Client implementation

We realize our client as an HTTP proxy that en-

hances a browser with Snowflake authorization and

server document-authentication services. Like any

proxy, it forwards each HTTP request from the

browser to a server. When a reply is “401 Unau-

thorized” and requires Snowflake authorization, the

proxy uses its Prover to find a suitable proof,

rewrites the request with an Authorization header,

and retries the request.

The proxy provides an HTML user in-

terface to its services at a virtual URL

http://security.localhost/. Through this

interface, the user can create a new private key pair,

import principal identities and delegations, and

delegate his authority to others. To delegate his

authority, the user views a history of recently-visited

pages, clicks the “delegate” link next to the page

he wishes to share, and selects the recipient from a

list of principals. The proxy generates an HTML

snippet for the user to deliver to the recipient. A

link inside the snippet names the destination page

and carries both the delegation from the user as

well as the proof the user needed to access the page.

When the recipient follows the link, his own proxy

imports the authorization information and redirects

his browser to the named page.

6 Applications

We built three applications to demonstrate the

Snowflake architecture for sharing.



6.1 Protected web server

The first application is simply a protected web file

server that uses Snowflake’s sharing architecture.

One user establishes control over the file server by

specifying the hash of his public key when starting

up the server; he may delegate to others permission

to read subtrees or individual files from the server

using the mechanisms described above.

6.2 Protected database

The second application attaches Snowflake security

to a relational email database. The original database

server accepts insert, update, and select requests

as RMI invocations on a Remote Database object,

and returns the results of the query as serialized

objects from the database. Adapting the applica-

tion to Snowflake required only minimal changes.

We modified the database instance constructor to

use a SshSocketFactory so that all connections to

the object use our ssh secure channels. Then, we

prepended each implementation of a method in the

remote interface with a call to the checkAuth()
method. The database clients required only a mod-

ification to their initialization code to install an

SSHContext and a Prover.

6.3 Quoting protocol gateway

The third application is a protocol gateway that pro-

vides an HTML over HTTP front-end to the email

database. A database can be configured to allow

certain principals access to certain data records. In

the course of serving multiple users, the gateway can

simultaneously access both Alice and Bob’s email

records. It is important that the gateway not mis-

use its authority and accidentally allow Bob to read

Alice’s email. The gateway programmer could try

to prevent this mistake by checking access-control

restrictions itself, but this approach duplicates the

access control checks in the database, and increases

the opportunity for error.

A better approach is to use quoting. The

gateway’s authority to access Alice’s email in the

database depends on the gateway intentionally quot-

ing Alice in its requests. Therefore, as long as the

gateway correctly quotes its clients in its requests on

the database server, the correct access-control deci-

sion is made by the server.

A transaction begins when the client (C) sends

an unauthorized request (R) to the gateway (G).

The gateway queries the client for the identity the

client wishes to use, and a delegation that the gate-

way speaks for the client to perform the task. The

gateway attempts to access the database server (S),

but the RMI authorization fails because the gate-

way has no authority. The gateway sees an excep-

tion that indicates the required issuer S and restric-

tion set (T ). The gateway generates a “401 Unau-

thorized” Snowflake Authorization HTTP response,

and in that response indicates it needs a proof that

G|? T⇒ S. By G|? the gateway means it needs

a proof of authority that the gateway quoting the

client speaks for the database. The client knows to

substitute its identity for the “pseudo-principal” ?;

this shortcut saves a round-trip from the gateway to

the client to discover the client’s identity.

The client proxy now knows it needs to delegate its

authority over the server to the principal “gateway

quoting client,” G|C. The client proxy generates

the proof and submits it to the gateway along with a

signed copy of its original request (showing R ⇒ C).

The gateway digests the new proof and forwards the

request to the database server. This time, the au-

tomatic RMI authorization protocol of Section 5.1.1

finds the proof in the gateway’s Prover, and the

database fulfills the request. The gateway builds an

HTML interface from the database results for pre-

sentation to the user. Subsequent requests are ac-

cepted without so much fanfare, since the database

server holds the appropriate proof of delegation.

The quoting gateway is a motivating application

because it spans each of the four boundaries dis-

cussed in Section 2. Our gateway operates identi-

cally whether the client and the server are in the

same administrative domain or different ones. It can

be colocated with the server, in which case its RMI

transactions automatically avoid encryption over-

head by using the local channels of Section 5.2. The

gateway constructs a view of an e-mail message from

several rows and tables of a relational database, and

so introduces a level of abstraction above the server

resource. Finally, the gateway spans protocols by

connecting an HTTP-speaking web browser with an

RMI-speaking database server. Despite each of these

boundaries, the gateway preserves the entire chain of

authority that connects the client to the final server,

enabling the server to make a fully-informed access-

control decision.

6.3.1 Correctness and trust

The client trusts the gateway not to abuse the

client’s authority, and for some applications, the

client may even trust the gateway to tell it how

much authority the gateway needs to do its job. To

establish that trust, the a client might first chal-

lenge the gateway to authenticate itself. If a gate-

way has received delegated authority from multiple

clients (Alice and Bob), it must ensure that when

it fulfills Bob’s request it does not accidentally in-



voke Alice’s authority. Where a conventional gate-

way would actually make access-control decisions to

determine what Bob is allowed to do, our gateway

only need be careful to correctly quote each client.

It is therefore easier to verify that a quoting gateway

is correct with respect to authorization.

In our system the notion of TCB is parameterized

by the resource being protected. For example, the

client software and hardware are part of the TCB

for any resources the client is authorized to manip-

ulate; when the client delegates a subset of those

resources to the gateway, the gateway software and

hardware become part of the TCB for that subset

of resources. Although quoting helps us write the

gateway application with greater confidence in its

correctness, we cannot escape the fact that a com-

promised gateway still compromises the resources

delegated to the gateway. Because the gateway is

involved in the transfer of authority, authorization is

not end-to-end in the pure sense of abstracting away

intermediate steps. It is end-to-end, however, in the

sense that authorization information now passes all

the way from client to server, and the proof of au-

thority verified by the server even includes evidence

of the gateway principal’s involvement.

7 Measurement

To better understand the costs of the Snowflake au-

thorization model, and how they compare to costs

of related systems, we timed the performance of our

Snowflake-enhanced RMI implementation and our

Snowflake-enhanced HTTP implementation. For

comparison, we also timed standard RMI and stan-

dard HTTP servers with and without SSL support.

7.1 Experimental method

The values reported in this section are the param-

eters of linear regressions. In setup cost and band-
width experiments, we vary the file length to sepa-

rate copy cost from connection setup. In setup and
per-request experiments, we vary the number of con-

nections made after some slow setup operation to

determine the amortizable part of the cost.

We made the measurements on 270 MHz Sun Ul-

tra 5 hosts with 128 MB RAM, connected by a

shared 10 Mbps Ethernet segment. The hosts run

Solaris 2.7, Apache 1.3.12, OpenSSL 0.9.5, a locally-

compiled Java JDK 1.2.2 with green threads,
PureTLS 0.9b1, and Cryptix 3.1.1. We used 1024-

bit RSA keys.

We ran each experiment ten times, discarding the

first iteration so that caches are warm except where

we intentionally measure setup costs. On each run,

we repeated an operation 10 to 1000 times, enough

to amortize measurement overhead, and noted the

total wall-clock time. When the nine runs had co-

efficient of variation greater than 0.1, we re-ran the

experiment. We report values to two significant fig-

ures. The figures show values for single-machine ex-

periments, where computation time, the dominant

source of overhead, cannot hide under network la-

tency. The raw data, complete tables of computed

parameters, standard deviations and R2 fitness coef-

ficients are available [12, Chapter 12]. We computed

95% confidence intervals on the linear-regression pa-

rameters and found them vanishingly small.

7.2 RMI authorization with
Snowflake

In this section, we quantify our implementation of

Snowflake authorization over Java remote method

invocation as described in Section 5.1. Figure 6 sum-

marizes the overhead our prototype adds to RMI.

The test operation is a Remote object that returns

the contents of a file. Most of the overhead present

in Snowflake is due to layering RMI over the ssh pro-

tocol. The extra work is is the server’s checkAuth()
call, which retrieves the caller’s public key, finds a

cached proof for that subject, and sees that the proof

has already been verified. The data-copy cost is un-

changed compared to the ssh case.
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Figure 6: The cost of introducing Snowflake authoriza-

tion to RMI. A basic RMI call costs 4.8 ms. Securing the

channel with ssh introduces significant overhead. Map-

ping the request into Snowflake and verifying the client’s

authority adds another 5 ms.

It costs 470 ms to establish a new Snowflake-

authorized RMI connection, reflecting the public-key



operation the client performs to delegate its author-

ity to the channel. When the client caches the dele-

gation but we make the server forget its copy after

each use, we learn that the server spends 190 ms

parsing and verifying the proof from the client.

7.3 HTTP authorization with
Snowflake

In this section, we quantify our implementation of

Snowflake authorization over the HTTP protocol as

described in Section 5.3. As shown in Figure 7, the

overhead of Java client and server code introduces a

five-fold slowdown over an optimized C implementa-

tion of HTTP. Most of the rest of Snowflake’s slow-

down we have accounted for in the slow libraries de-

scribed in Section 7.4.3.
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Figure 7: The cost of introducing Snowflake authoriza-

tion to HTTP. A trivial C client accessing an Apache

server takes 4.6 ms. Replacing the client and server with

convenient but inefficient Java packages brings the base-

line for HTTP to 25 ms. Most of Snowflake’s overhead

reflects the use of inefficient SPKI libraries, shown as an

inset box.

The black bars in Figure 8 show our measurements

of a Java SSL implementation, and the gray and

white bars show the costs of the Snowflake autho-

rization and document authentication protocols de-

scribed in Section 5.3. Notice that when public-key

encryption operations are involved, both protocols

require hundreds of milliseconds. When caching con-

nection information (Snofwflake MAC protocol and

identical requests versus a SSL request), they require

tens of milliseconds. Snowflake’s cached requests are

a factor of two slower than SSL requests, due in part

to differences in the protocol, and in part to the slow

libraries discussed in Section 7.4.3.

Minimum cost of HTTP GET 5 5

(C client and server)

Java+Jetty overhead for HTTP 20 20

Java SSL overhead 22

S-expression parsing ˜20

SPKI object unmarshalling ˜20

Other Snowflake overhead 17

(proof verification,

SPKI object marshalling)

MAC costs 28

(serialization, MD5 hash)

Total 47 110

Table 1: Breakdown of time spent in MAC authorization

protocol. Units are milliseconds.

7.4 Observations

We hypothesize that the Snowflake authorization

model is not prohibitively expensive. In fact, be-

cause it can subsume many hop-by-hop authoriza-

tion models, it allows applications and users to make

performance–security tradeoffs freely by selecting

alternate hop-by-hop authorization protocols and

plugging them into the same authorization frame-

work.

Do our measurements support our hypothesis?

Unfortunately, since our implementation is unopti-

mized and built on top of slow libraries, the num-

bers do not support our hypothesis unequivocally.

By comparing them with baseline experiments, how-

ever, we believe we can make a strong case for the

hypothesis. In the next two sections, we examine

the two parts of our hypothesis. In Section 7.4.3, we

argue that an optimized Snowflake promises to be

competitive with existing hop-by-hop protocols.

7.4.1 Comparable operations

Snowflake-enhanced protocols are not inherently

more expensive than other protocols with similar

guarantees. The measurements displayed in Figure 8

indicate that Snowflake performs similar encryption

steps as SSL. SSL spends about 400 ms starting up,

as does Snowflake. SSL can complete a request over

an established channel in about 50 ms. With our

MAC optimization, a Snowflake request takes about

110 ms (see Table 1).

Both SSL and Snowflake engage in similar op-

erations. SSL verifies message authenticity with

symmetric-key decryption and a CRC; Snowflake

does the same with an MD5 hash. Regardless of

protocol, the server parses and processes the request

and returns the reply. The SSL protocol checksums

and encrypts the reply; Snowflake securely hashes
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Figure 8: This graph displays the costs of standard SSL authentication (black bars) versus Snowflake client autho-

rization (gray bars) and server document authentication (white bars).

the reply document. In both cases, the client uses

a corresponding operation to verify the reply. Be-

cause the expensive cryptographic operations are

comparable, one expects optimized implementations

to perform comparably.

The additional sources of overhead in Snowflake

are time spent walking the proof graph and memory

consumed maintaining cached proofs. Our experi-

ments do not explore that space in depth, but as we

hint in Section 5.3.5, proofs are usually constructed

incrementally while walking the name graph, an op-

eration driven by the client user or application.

7.4.2 The performance–security tradeoff

By comparing our authorized-request protocol to

SSL we somewhat compare apples and oranges, for

the protocols make different performance–security

tradeoffs. For example, our protocol does not ver-

ify the authenticity of the server’s reply header;

since SSL provides integrity for the entire channel,

a Snowflake–SSL protocol could as easily show the

authenticity of all messages from the server.

In fact, part of the purpose of our system is

to enable such tradeoffs. With Snowflake, one is

free to choose an established hop-by-hop protocol

or to develop a new one. By stating in our logic

the authorization promises the protocol makes, one

can integrate the protocol into Snowflake’s end-to-

end authorization model. Conceivably, new pro-

tocols can be dynamically integrated into exist-

ing Snowflake-aware applications; in other cases, a

protocol-translating gateway can introduce the new

protocol to the distributed system without hiding

authorization information from the underlying ap-

plication.

7.4.3 Slow libraries

Our formal measurements and informal tests indi-

cate that a large fraction of Snowflake’s cost is need-

less overhead. Our baseline HTTP measurements

indicate that using Java and the convenient Jetty

web server incurs substantial overhead (250%). Fur-

thermore, our SSL measurements indicate that the

Java encryption library Cryptix imposes a substan-

tial bandwidth overhead.

What surprised us most was the overhead of the



SPKI implementation on which we built Snowflake’s

objects. In informal tests, parsing a 2 KB S-

expression from a string takes around 20 ms, and

converting the resulting tree into typed Java objects

takes another 20 ms. There is no reason a well-

implemented library should spend milliseconds pars-

ing short strings in a simple language; and 40+ ms

delays such as these explain much of the difference

between Snowflake’s warm-connection performance

and that of simple HTTP transactions (See Fig-

ure 7).

8 Related work

Our work is built primarily on the Logic of Authen-

tication due to Abadi, Burrows, Lampson, Plotkin,

and Wobber [1, 13, 25]. The Logic of Authentica-

tion introduced the notion of conjunct and quoting

principals, and their applicability for modeling prac-

tical mechanisms such as channels and multiplexed

gateways. We have preserved the generality and for-

mality of the Logic of Authentication while introduc-

ing the crucial feature of restricted delegation. The

structure of our implementation is similar to that of

Taos, but we generally shift the burden of proof to

the client so that the collection of access-control in-

formation happens in the course of name resolution

as described in Section 4.4.

Sollins describes the restricted delegation problem

as “cascaded authentication,” and proposes as a so-

lution a restricted delegation mechanism called pass-
ports [21] that provides for authorization of servers.

Varadharajan et al. propose a more general mech-

anism that incorporates both symmetric and asym-

metric encryption [23]. Neuman’s proxies are tokens

that express restricted delegation [17]. The Policy-

Maker system has a notion of delegations with re-

strictions specified by arbitrary code [5]. As we men-

tion in Section 3, SPKI has a notion of restricted

delegation close to the one we use. Because the only

principals in SPKI are public keys, it has high over-

head for authorization on a single machine [9].

Sollins’ passports, Neuman’s proxies, Policy-

Maker, and SPKI certificates are mechanisms with

only informally-described semantics, and hence have

no obvious and safe route to generalization. As we

discuss in the companion paper [11], our formal se-

mantics not only provides intuition for restricted del-

egation and end-to-end authorization, but it can ad-

vise us about the safety of possible extensions. Fur-

thermore, it guides us in building a system with a

minimal verification engine.

Appel and Felten’s higher-order predicate logic is

similarly inspired and applicable to SPKI [3]. Be-

cause our logic is a first-order propositional modal

logic, we can employ a conventional modal-logic se-

mantics [11]. Our logic is also simpler; we factor im-

plementation details out of the logic and leave only

the structure of authorization. For example, con-

cepts such as “digital signature” do not appear in

our proof rules; instead, we integrate them by map-

ping a key to a logical principal, and asserting that

a digital signature check validates the logical state-

ment K says x.

Several single-machine operating systems have

been built on the notion of restricted delegation;

these are often called capability-based systems. Ca-

pabilities in KeyKOS, Eros, and Mach are unforge-

able because the kernel manages them. A process

delegates its authorization by asking the kernel to

pass a capability, possibly with restriction, to an-

other process [6, 20, 4]. Amoeba capabilities, in

contrast, are secret random numbers, and may be

transmitted as raw data [22, 16]. Amoeba must as-

sume that a cluster is a secure network; we con-

sider such a cluster a single administrative domain.

Snowflake end-to-end authorization could integrate

either sort of capability implementation as a fast,

local authorization mechanism.

9 Summary and future work

We make a case for end-to-end authorization. Our

proposal is based on a formal logic that models re-

stricted delegations and hence models several exist-

ing hop-by-hop protocols. We describe the infras-

tructure of Snowflake, our implementation, includ-

ing two hop-by-hop protocols and applications that

exploit its end-to-end nature. Our end-to-end ap-

proach lets us connect systems with gateways that

preserve authorization information, and by integrat-

ing multiple hop-by-hop mechanisms, it gives us free-

dom to easily trade off performance and security.

We would like to cross our work on end-to-end au-

thorization with work on models of secrecy and in-

formation flow, to work toward an end-to-end model

that can capture notions of who should know what.

In such an architecture we imagine a gateway that

operates with only partial access to the information

it translates, passing from server to client encrypted

content that it need not view to accomplish its task.
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