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Mobile computers have become increasingly popular as users
discover the benefits of having their electronic work avail-
able at all times. Using Internet resources from a mobile

platform, however, is a major challenge. Mobile computers do not
have a permanent network connection and are often disconnected for
long periods. And when the computer is connected, the connection
is often prone to sudden failure, such as when a physical obstruction
blocks the signal from a cellular modem. In addition, the network
connection often performs poorly and can vary dramatically from one
session to the next, since the computer might use different transmis-
sion channels at different locations. Finally, depending on the trans-
mission channel, the computer might be assigned a different network
address each time it reconnects.

Mobile agents are one way to handle these unforgiving network
conditions. A mobile agent is an autonomous program that can move
from machine to machine in a heterogeneous network under its own
control. It can suspend its execution at any point, transport itself to
a new machine, and resume execution on the new machine from the
point at which it left off. On each machine, it interacts with service
agents and other resources to accomplish its task, returning to its
home site with a final result when that task is finished. The sidebar
“Why Mobile Agents?” describes the motivations for and benefits of
these agents in more detail.

Agent Tcl is a mobile-agent system whose agents can be written in
Tcl, Java, and Scheme, although the version available to the public
supports only Tcl at present. Agent Tcl has extensive navigation and
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communication services, security mechanisms, and debug-
ging and tracking tools. In this article we focus on Agent
Tcl’s architecture and security mechanisms, its RPC system,
and its docking system, which lets an agent move transpar-
ently among mobile computers, regardless of when they are
connected to the network.

Agent Tcl is being used in experimental projects at numer-
ous academic and industrial research laboratories, including
labs at Lockheed Martin, Siemens, Cornell University, and
the University of Bordeaux, and has begun to find its way
into production-quality applications as well. The public
release provides migration, low-level communication, and
security mechanisms for protecting a machine against mali-
cious agents. The internal version includes the docking and
RPC systems, the debugging tools, additional security fea-
tures, and support for Java and Scheme agents. The new
components in the internal version will be available in fall
1997. The current public release and all Agent Tcl publica-
tions are online (http://www.cs.dartmouth.edu/~agent).

OVERVIEW
Like all mobile-agent systems, the main component of Agent
Tcl is a server that runs on each machine. When an agent
wants to migrate to a new machine, it calls a single function,
agent_jump, which automatically captures the complete
state of the agent and sends this state information to the
server on the destination machine. The destination server
starts up an appropriate execution environment (for exam-
ple, a Tcl interpreter for an agent written in Tcl), loads the
state information into this execution environment, and
restarts the agent from the exact point at which it left off.
Now the agent is on the destination machine and can inter-
act with that machine’s resources without any further net-
work communication. In addition to reducing migration to
a single instruction, Agent Tcl has several important features:

■ Simple architecture.The simple, layered architecture supports
multiple languages and transport mechanisms. The main
language is Tcl. The main transport mechanism is TCP/IP.
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Mobile agents have several strengths. By migrating to the location
of a needed resource, an agent can interact with the resource
without transmitting any intermediate data across the network,
significantly reducing bandwidth consumption in many applica-
tions. Similarly, by migrating to the location of a user, an agent
can respond to user actions rapidly. In either case, the agent can
continue its interaction with the resource or user even if the net-
work connection goes down. These features make mobile agents
particularly attractive for mobile-computing applications.

Mobile agents let traditional clients and servers offload work
to each other, and change who offloads to whom according to
machine capabilities and current loads. Similarly, mobile
agents allow an application to dynamically deploy its compo-
nents to arbitrary network sites, and to redeploy those compo-
nents in response to varying network conditions. 

Finally, most distributed applications fit naturally into the
mobile-agent model, since mobile agents can migrate sequen-
tially through a set of machines, send out a wave of child
agents to visit multiple machines in parallel, remain stationary
and interact with resources remotely, or perform any combi-
nation of these three extremes. Complex, efficient, and robust
behaviors can be realized with surprisingly little code. Our own
experience with undergraduate programmers at Dartmouth
suggests that mobile agents are easier to understand than many
other distributed computing paradigms.

Although each of these strengths is a reasonable argument
for mobile agents, any specific application can be implement-
ed just as efficiently and robustly with more traditional tech-
niques, such as queued RPC, high-level query languages, ded-
icated proxies within the network, automatic installation

facilities, and Java applets.1 However, mobile agents eliminate
the need for these other techniques, combining their strengths
into a single, general, and convenient framework. Distributed
applications can be implemented efficiently and easily—even
if they must exhibit extremely flexible behavior in the face of
changing network conditions. For example, a search applica-
tion can migrate to a dynamically selected proxy site and do
its merging and filtering there, while a server can continually
migrate to new machines to minimize the average latency
between itself and its clients.2

In short, the true strength of mobile agents is that they are a
uniform paradigm for distributed applications. Thus, all exist-
ing systems—Agent Tcl, Telescript,3 Odyssey,4 IBM Aglets,5 and
Sumatra2—are intended for general applications, differing only
in their languages, migration and security models, and sup-
port services. Agent Tcl distinguishes itself by combining a true
jump instruction (one that automatically captures the entire pro-
gram state); support for multiple languages; simple but effective
security mechanisms; and significant navigation, communica-
tion, and debugging tools.
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■ Security. Agent Tcl protects individual machines against
malicious agents—agents that try to access or destroy
restricted information or consume too many machine
resources. It also protects groups of machines controlled
by a single organization.

■ Docking system. The docking system lets an agent trans-
parently jump off a partially connected computer (such
as a mobile laptop) and return later, even if the comput-
er is connected only briefly. 

■ Interagent communication. Agents communicate with either
low-level mechanisms (message passing and streams) or
high-level mechanisms (RPC) that are implemented at the
agent level atop the lower level mechanisms. All commu-
nication mechanisms work the same whether or not the
communicating agents are on the same machine.

ARCHITECTURE
As Figure 1 shows, Agent Tcl’s architecture has a four-level
core system and an agent-level support system.

Core System
At the lowest level of the core system, Figure 1a, is an inter-
face to each available transport mechanism. The next level
is the server that runs on each machine. The server keeps
track of the agents running on its machine, provides the low-
level interagent communication facilities (message passing
and streams), receives and authenticates agents arriving from
another host, and restarts an authenticated agent in an
appropriate execution environment. 

The third level of the architecture consists of the execu-
tion environments, one for each supported agent language.
Agent Tcl supports Tcl, Java, and Scheme, so its execution
environments are simply a Tcl interpreter (Tcl 7.5), a

Scheme interpreter (Scheme 48), and the
Java virtual machine (Sun JDK 1.2). For
each incoming agent, the server starts up the
appropriate interpreter. 

The last level of the architecture com-
prises the agents themselves, which execute
in the interpreters and use the facilities pro-
vided by the server to migrate from
machine to machine and to communicate
with other agents. Agents include both
moving agents, which visit different
machines to access needed resources, and
stationary agents, which stay on a single
machine and provide a specific service to
either the user or other agents. From the
system’s point of view, there is no difference
between the two kinds of agents, except that
a stationary agent has authority to access
more system resources.

To add a language to Agent Tcl, programmers simply
extend the interpreter to provide

■ state-capture routines that capture and restore the state
of an executing program, and

■ an interface to the agent servers. 

In the Tcl interpreter, for example, the state-capture rou-
tines capture and restore all defined variables and proce-
dures, the procedure-call stack, and the control stack. The
interface to the servers is a set of Tcl commands, such as
agent_begin and agent_jump, which are provided as a stan-
dard Tcl extension.  The agent_jump command calls the
state-capture routines to capture and restore the state of an
executing Tcl agent. Similarly, in Java, the state-capture rou-
tines capture and restore the state of a single Java thread
(including all accessible objects). The interface to the servers
is a special Java class. Finally, in Scheme, the state-capture
routines capture and restore the current continuation (the
rest of the program), and the interface to the servers is a set
of Scheme functions.

Most of the interface between the interpreters and the
servers is implemented in a C/C++ library and shared among
all interpreters. The language-specific portion is just a set of
stubs that call into this library.

Agent-Level Support
The agent servers provide low-level functionality. As
Figure 1b shows, all other services are provided at the agent
level by dedicated service agents.  Such services include
navigation, high-level communication protocols, and
resource management. Both the docking system and Agent
RPC (described later) are implemented entirely at the
agent level.
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Figure 1. The architecture of Agent Tcl. (a) The core system has four levels:
transport mechanisms, a server that runs on each machine, an interpreter for
each supported agent language, and the agents themselves. (b) Support agents
provide navigation, communication, and resource management services to
other agents.
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Sample Agent
Figure 2 shows a simple Agent Tcl agent
written in Tcl. The agent’s task is to make a
list of all users logged onto some Dartmouth
machines and then show this list to its owner.
The agent has several important parts:

■ agent_begin. The agent registers with
Agent Tcl through the server on its
home machine (Bald).

■ agent_jump $machine. The agent
migrates sequentially through the
machines of interest (Muir, Tenaya, and
others not shown). It continues execut-
ing from the point of the jump on each
successive machine. On each machine,
the agent executes the Unix who com-
mand (exec who) to obtain the user list. 

■ agent_jump $agent(home). Once the agent has migrat-
ed through all the machines, it migrates one last time to
return to Bald.

■ # display results. Once on Bald, the agent displays the
complete user list to its owner (not shown).

■ agent_end. The agent tells Agent Tcl that it has finished.

Although this agent performs a simple task, any agent
that migrates sequentially through one or more machines
has the same general form. The exec who command can be
replaced with any desired local processing. Some agents will
need learning and reasoning capabilities. Agent Tcl does not
provide such capabilities directly, but an agent is just a pro-
gram written in Tcl, Scheme, or Java, so it can include and
use any existing libraries.

SECURITY
Security, of course, is a critical issue in any mobile-code sys-
tem. Agent Tcl currently protects machines from malicious
agents (both individual machines and groups of machines
under single administrative control), but does not protect
agents from malicious machines. We give a brief summary
of our current implementation here; a detailed description
and our future plans are given elsewhere.1,2

The security mechanism has three major features:

■ Agents and messages sent between machines are encrypt-
ed, which maintains agent privacy.

■ Agents and messages sent between machines are signed,
which authenticates the agent to the new host.

■ Resource managers control access to system resources. 

Each resource (CPU, memory, file system, screen, net-
work, and so on) has a stationary agent that acts as a man-
ager. For Tcl agents, each visiting agent is run in an untrusted

Tcl interpreter, and all resource accesses are trapped into a
separate, trusted interpreter. The trusted interpreter asks the
appropriate resource manager to determine if the visiting
agent should have access to the resource.  For example, the
memory manager might limit an agent to 100 Kbytes of
memory. The trusted interpreter then enforces the manag-
er’s policy decision, either proceeding with the resource
access or throwing a security exception back to the untrust-
ed interpreter.

In addition to absolute limits on resource use, we plan to
use a currency-based model in which agents purchase
resources from the managers, thus limiting their total
resource use even across administrative domains.2 The prices
will vary according to supply and demand and the chang-
ing priorities of agents and servers.

The same resource managers are used for all agents; only
the enforcement mechanism differs among agent languages.
In Java, for example, a special security manager class con-
tacts the resource managers and enforces the policy deci-
sions, rather than a separate trusted interpreter.

DOCKING SYSTEM
When a mobile agent tries to return to its home machine
with final results, the machine might be disconnected. Thus,
the agent must have some way to determine when the home
machine reconnects. A simple approach is polling (try, time-
out, sleep, try again, and so on), but polling wastes network
resources and will fail outright if the home machine recon-
nects for only brief periods. For this reason, we devised a
docking system, Figure 3, that pairs each laptop computer
(“laptop” meaning any mobile device) with a permanently
connected dock machine. When a mobile agent is unable to
migrate to a laptop (laptopX), it waits at the laptop’s dock
machine (laptopX_dock). When the laptop reconnects, it
notifies the dock machine of its new network address, and
the dock machine forwards all waiting agents. 
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agent_begin

set output {}; set machineList {muir tenaya…}

foreach machine $machineList {
    agent_jump $machine
    append output [exec who]

}

agent_jump $agent(home)

# display results

agent_end

Bald (home)

Tenaya

A

A

A

Muir

Figure 2. A simple Tcl agent that figures out which users are logged onto some
set of machines. Bald, Muir, and Tenaya are machines at Dartmouth College.
The agent starts on Bald.
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Although only certain machines act as docks, all machines
have a dock master, an agent that maintains a queue of wait-
ing agents. The queue is always stored on disk rather than
in memory. On the dock machine, the queue contains the
agents waiting to visit the laptop; on the laptop itself, the
queue contains the agents waiting to leave the laptop.

Application
Figure 4 illustrates how the docking system works in an
application. The figure depicts the following sequence of
events (numbers in parentheses correspond to the numbers
in the figure). An agent wants to jump from a source
machine S to a disconnected destination laptop D, so it exe-
cutes the command agent_jump~D. The agent_jump com-
mand tries but fails to contact laptop D directly (1). Once
the agent_jump command discovers that D is disconnected,
it contacts the dock master on D’s dock machine D_dock
and transfers the agent to this dock master (2). The dock
master adds the agent to the queue of agents waiting to jump
to D. When D reconnects to the network (3), the agent sys-

tem on D detects the reconnection and notifies the dock
master on D_dock (4). The dock master on D_dock trans-
fers all waiting agents to D, where they resume execution
(5). If D has changed its network address, the new address
is included in the notification, so that waiting agents can be
transferred to the new address. Agents trying to reach D at
the old address will fail, jump to D_dock, and eventually
reach D at its new address.

If the agent is trying to leave the disconnected laptop D,
it again executes the agent_jump command, which detects
that the laptop is disconnected, saves the state of the agent to
disk, and informs the local dock master. The local dock mas-
ter continually monitors network status, and when the lap-
top reconnects to the network, the dock master transfers the
waiting agent to the desired destination.

A more complex case is when both the agent’s source S
and destination D are laptops. The two laptops might never
be connected to the network at the same time. If S is dis-

connected, the dock master on S saves the
agent’s state on disk. When the dock master
on S detects network reconnection, it tries
to transfer the agent to D. If D is unreach-
able, it tries to transfer the agent to D’s dock.
If D_dock is unreachable, perhaps because
of a temporary problem on the Internet, the
dock master on S tries to transfer the agent
to S_dock. If S_dock is also unreachable, the
dock master will try the entire process again
at a later time. If S_dock can be reached, the
agent is sent to S_dock, and the dock mas-
ter on S_dock will periodically attempt to
transfer the agent to either D or D_dock.
The agent may reside at D_dock until D

connects and notifies the dock master at D_dock of D’s new
location. Once at D, the agent continues executing.

Multidestination Jumps
We are extending our docking system to support multides-
tination jumps, which are useful when an agent wants to
visit multiple hosts (D1, D2, …, DN) but in no particular
order. The agent may be searching all sites for information or
visiting one of a replicated set of servers. The dock master
on S first tries to transfer the agent to one of the final desti-
nations by trying each in order (D1, D2, ..., DN). If all desti-
nations are unreachable, the S dock master transfers the
agent to S_dock. The dock master at S_dock periodically
tries to reach the destinations until one of the transfers suc-
ceeds. S_dock does not transfer the agent to a dock machine
DKdock, so that it does not prematurely commit to a desti-
nation that may rarely connect (although this issue is an
open research topic). When the agent awakes (returns from
its call to agent_jump), it checks its actual destination and
proceeds with its task.
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Figure 3. Docking system. Each laptop is paired with a per-
manently connected machine, where agents wait for the lap-
top to reconnect. Here “laptop” refers to any partially con-
nected machine.
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Figure 4. Jumping to or from a laptop.
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For agents that desire more control over the jumping
process, we provide hooks to allow agents to query the status
of the current machine’s network connection, to request a
failure notification rather than being blocked when a desti-
nation cannot be reached immediately, and to request that
the jump go as far toward the destination as possible and
then wake up the agent. 

Performance
To determine the docking system’s overhead, we measured
the time needed for an agent to jump onto a laptop from a
nearby host. The laptop was a 66-MHz Intel 486 running
Red Hat Linux; the nearby host was a 100-MHz Intel
Pentium running FreeBsd 2.1; the two machines were con-
nected via a 10-Mbps Ethernet (with no intervening
routers). In one set of experiments, the laptop was still con-
nected, and the agent jumped directly onto it. In the second
set of experiments, the laptop was still connected, but we
forced the agent to go through the laptop’s dock machine.
Under normal operation, of course, the agent goes through
the dock machine only if the laptop is disconnected, but
forcing the agent to go through the dock was the easiest way
to measure the docking overhead.

When the agent was carrying 8 Kbytes of code and data, a
direct jump onto the laptop took 0.3 second, due mainly to
the cost of starting up a new Tcl interpreter for the incom-
ing agent. An indirect jump (agent going through the dock
machine) took 1.6 seconds. The extra time came from the
need to connect to the dock master, transfer the agent, save
the agent to disk, and get the agent off the disk for transmis-
sion to its final destination. In addition, all agents are cur-
rently written in Tcl, which is slower than most other inter-
preted languages. Rewriting the dock masters in Java and
providing a pool of ready interpreters will reduce these times
significantly because a pool of ready interpreters eliminates
the need to start a new interpreter for each incoming agent.

Benefits and Limitations
The docking system has several advantages. The agents
depart from or arrive at the laptop as soon as possible and
do not miss any transmission opportunities (because there
is no polling). In addition, because waiting agents are saved
on disk, they survive machine crashes and do not occupy
precious memory and CPU time. Finally, all the state of a
waiting agent has already been captured, so the agent is ready
for transfer as soon as the network is connected. 

On the down side, if an agent is running on a machine
when the machine goes down, the agent is lost. If an agent is
running on a machine, and the machine becomes discon-
nected from the network for a long period, the agent
remains in exile. Finally, the dock for a given host named
X.domain is the host named X_dock.domain. Although this
allows immediate identification of a machine’s dock, it also

means that the machine must have a permanent name, even
if the host gets a new network address at every machine
restart. We are working to address these disadvantages.

INTERAGENT COMMUNICATION
Agent Tcl provides message passing and byte streams at its
lowest level. Higher-level communication mechanisms,
which make many applications much easier, are imple-
mented at the agent level using message passing or streams.
Our most important high-level mechanism, Agent RPC,3 is
similar to traditional RPC.4 Agent RPC lets two agents com-
municate through the procedure-call abstraction. The agents
can be on the same or different machines, but usually will
be on the same machine, since most client agents jump to
the same location as the desired service. 

Programmers using Agent RPC begin by writing an inter-
face in AIDL (Agent Interface Definition Language). The
interface specifies the procedures a server agent provides to
its clients. The programmer presents the AIDL specification
to a stub compiler, which generates the Tcl procedures
(called stubs) that let the client and server agents commu-
nicate. The client and server agents simply include these
stubs with their application-specific code. In addition to
accepting client requests, the server stubs register the server
with a nameserver agent, which client agents consult when
searching for a needed service. 

Although this basic structure is no different from that of
traditional RPC systems, Agent RPC offers two unique
advantages:

■ Flexible interface language. AIDL allows both default and
position-independent parameters in interface defini-
tions.

■ Client-server bindings.  Bindings (or connections between
compatible client and server agents) are based on inter-
face matching rather than on names. Thus, a client agent
can obtain the desired service from any server that sup-
ports the appropriate interface, rather than only servers
that have a particular service name and version. In addi-
tion, a client agent can have multiple, simultaneous bind-
ings to the same or different servers. Finally, a server agent
can accept or reject a bind request according to any secu-
rity information  the agent system provides, such as the
authenticated identity of the client agent’s owner.

AIDL and Bindings
AIDL aims to support extensibility and flexible matching.
To illustrate, we present a running example that begins with
the interface definition:

{constant {version 1} {service travel_agent}
{category airlines}}

{list_flights {{Origin CityCode} 
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{Destination CityCode}} 
{flights flight_list}}

{buy_ticket {{payment_form sale_type credit_card}
{flight flight_number}} 
{success boolean}}

{refund_ticket {{flight flight_number}}
{success boolean}}

The constants convey the version number for this server
(version 1), its service type (travel_agent), and its service spe-
cialization (airlines). The names of these constants are not
meaningful to the stub compilers or the nameserver, but
they are meaningful to the client and server agents.

Following the constants are three procedure definitions,
list_flights, buy_ticket, and refund_ticket. Each procedure has a list
of parameters and a return value. Each parameter and return
value has a name, a type, and an optional default value.

The named parameters and the default values make inter-
face matching more flexible. The process has the following
steps:

■ A server agent provides the AIDL description of its inter-
face to the nameserver.

■ A client agent provides an AIDL description of the inter-
face it needs. 

■ The nameserver looks for a match between the client’s
desired interface and the interfaces the servers support.
Two interfaces match if the server’s AIDL matches all the
functions and constants described in the client’s AIDL.
Two constants match if they have the same name and
value (or if they have the same name and the server’s value
falls within the client’s set of values). Two function
descriptions match if they have the same function name,
same parameter names and types (in any order), and same
return name and type. If the server function provides a
default value for a parameter not mentioned in the client’s
function description, the functions still match. If the serv-
er provides additional functions, the interfaces still match. 

Thus, a client searching for the interface defined below will
find all servers that support the interface defined earlier:

{constant {category airlines} {service travel_agent}}
{list_flights {{Destination CityCode} {Origin CityCode}}

{flights flight_list}}
{buy_ticket {{flight flight_number}}

{success boolean}}

In this example, the client does not care about the ver-
sion number, uses the default value for the sale_type para-
meter to the buy_ticket function, and does not need the
refund_ticket function. The client will find all servers that
have a different version number, all servers whose buy_tick-

et function does not even have a sale_type parameter, and
all servers that provide only the list_flights and buy_ticket
functions. In other words, a client can find and use all servers
that provide the functions it needs, regardless of whether
those servers provide additional functions as well. 

This flexibility is important in the dynamic world of the
Internet, where clients and servers are not implemented by
the same parties, where older or simpler clients must inter-
act with newer or more complex servers, and so forth. It is
easy to add more functions, constants, or parameters to a
server and still support clients that expect an older, simpler
interface.

The stub compiler compacts and sorts the interface def-
initions, so that the constants, the functions, and the para-
meters within each function are sorted by name. This sort
lets the nameserver quickly compare two interfaces for a
match. The generated client stubs pack the parameters (into
a byte stream) in sorted order, and the generated server stubs
unpack the parameters in sorted order. Thus, there is no
explicit sorting step, which saves considerable time.

Performance
We measured the performance of Agent RPC using two
machines: Bald, a 200-MHz Intel Pentium running Linux
version 2.0, and q, a 100-MHz Intel Pentium running
FreeBsd version 2.1. The two machines were connected with
a 10 Mbps Ethernet and one intervening router. The server
agent was always on Bald. The client agent was on either
machine. For both client locations, we measured the end-to-
end wall clock time for a remote procedure call that had a
single parameter, an empty server procedure, and no return
data. We repeated the experiments for various parameter
sizes. 

Table 1 presents the average timing results. The first col-
umn is the size of the single parameter. The second column is
the total time needed for the RPC call. The third column
shows the time needed for the client stub to pack the proce-
dure parameters into a byte stream. The fourth column is the
time needed for the server stub to unpack the parameters,
invoke the actual procedure, and pack the (void) return value.
The last column is the percentage of time actually spent
transmitting data from one agent to the other. As expected,
this percentage is significantly smaller when the two agents
are on the same machine. The total RPC time is just the sum
of the client stub, server stub, and communication times.

Communication time (last column) shows the time to
make a local procedure call (one in the same program) with
the same data. Because Tcl is inherently slow, this measure is
a good baseline for evaluating results with remote procedure
calls. When the client and server agents are on the same
machine, and when the parameter size is zero, the remote
procedure call takes 200 times longer than the local call. In
all other cases, it takes 40 to 140 times longer than a local
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call. This ratio is fairly common in RPC systems. In Agent
RPC, however, we plan to significantly reduce it by using a
faster interprocess communication mechanism when the two
agents are on the same machine and implementing the para-
meter packing routines in C instead of in Tcl.
Communication was 23 to 43 percent of the total time in all
cases. Thus the overhead imposed by Tcl and our software is
only two to four times greater—not unreasonable given Tcl’s
slow interpretation speed. Of course, Tcl will be too slow for
certain applications; for those, the client and server agents
could be written in Java or Scheme, either of which is 10 to
1,000 times faster than Tcl, depending on the application.

SEARCH APPLICATIONS
Agent Tcl is used primarily in distributed information retrieval
applications. Our most full-featured application is a mobile
Tcl agent that searches distributed collections of technical
reports. The mobile agent starts on the user’s home machine,
typically a laptop, where it asks the user for a free-text query.
The agent then travels to the network site of each collection,
where it interacts with a dedicated information retrieval agent
to retrieve relevant documents. As it travels, the agent merges
and organizes the results from each collection. 

The agent does not actually travel sequentially through
the collection sites. Instead, it sends out child agents to
search the collections in parallel. More specifically, the agent
makes two decisions:

■ If the home machine is connected to the network with
an unreliable or low-bandwidth link, the agent first
migrates to some dynamically selected proxy site within
the network.  This eliminates any use of the low-quali-
ty link except for the initial transmission of the agent
and the final transmission of the merged query results. 

■ If the information retrieval agents provide a low-level
interface to the collections, the agent sends a child agent
to each collection. The child agents can perform a mul-
tistep query using only local communications; only the
final query results are sent back to the main agent. On

the other hand, if the information retrieval agents pro-
vide a high-level interface and the query requires only a
single operation, the agent does not send out child
agents. It simply interacts with the collections from
across the network, avoiding the migration overhead.

■ In either case, once the main agent has results from each
collection, it merges and filters the results and carries the
final list of relevant reports back to the home machine. If
the home machine is disconnected, the agent goes
through the docking system. Once the agent is back on
its home machine, it displays the list of reports to the
user. If the user wants to read a specific report, the agent
retrieves the complete text.

Benefits and Limitations
Using a mobile agent in this and other search applications
has several advantages:

■ Task continuation. Because the agent migrates onto a
proxy site, it can continue its task even if the home
machine disconnects. For example, a user can launch the
mobile agent from her laptop, disconnect the laptop, fly
across the country (or walk down the hall to a confer-
ence room), and then have the agent immediately return
with the final results when she reconnects. 

■ Minimal connection use. The agent merges and filters the
documents at the proxy site, so the use of the connec-
tion between the network and the laptop is minimal.
This is critical if the connection is a low-bandwidth wire-
less or modem link. 

■ No application-specific support. Neither the proxy sites
nor the document collections need to provide any appli-
cation-specific support. In fact, the document collections
can provide an extremely low-level interface, such as a
single operation that just returns the complete text of a
specific technical report. By migrating to the collection,
the agent can still perform its search efficiently, since all
resource accesses are then local. Thus, once the agent sys-
tem is installed at a site, developers  can efficiently imple-
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Data
size

(bytes)
0
64
256

1,024

Server
stub
time
2.2
3.0
3.6
5.9

Same
machine

5.1
5.8
6.6
9.6

Different
machine

1.8
1.7
1.8
2.2

35.8%
29.8%
26.9%
22.9%

43.0%
42.3%
41.7%
44.6%

Bald

1.1
1.2
1.3
1.6

q

1.8
1.9
2.0
2.4

Bald

0.024
0.062
0.100
0.233

q

0.049
0.099
0.148
0.321

Same
machine

3.0
3.5
4.0
6.6

Different
machine

RPC time Client stub time Communication time Local call time

6.9
8.3
9.5

14.9 

Table 1. Agent RPC performance. All times are in milliseconds, and are averages of more than 1,000 trials. The
processors passed the data bytes as a single parameter. Bald and q are the names of the two client machines in the
experiment.
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ment numerous distributed applications without any
additional software support at the service sites, which
makes life much easier for the service providers.

■ Straightforward code. Even though the agent exhibits rel-
atively complex behavior, it was extremely easy to write,
since the communication mechanisms work the same
regardless of whether two agents are on the same
machines. Basically, the agent just asks the agent system
about the current network link and then jumps to a proxy
site if that network link has low bandwidth or is expect-
ed to go down. Then, using its knowledge of its query
and the collection interfaces, the agent will either send
out child agents or interact with the collections remotely.
The code to perform the query is the same in both cases.

On the downside, because the agent is written in Tcl, it
uses significant CPU time at each collection site. In addition,
migration overhead in the current system is large. Thus, if the
link between the home machine and network has high band-
width and stays connected, the mobile agent takes more total
time than a traditional implementation. With a high-quality
network, even though the agent always eliminates intermedi-
ate network transmissions when performing a multistep query,
the data amount is not large enough for the transmission time
to outweigh the CPU and migration time. On the other hand,
if the link between the home machine and network is going
up and down or has low bandwidth, the agent takes less time,
since it transmits minimal data across the link and can pro-
ceed even if the home machine is unavailable. 

Reducing the migration time should make the agent
competitive in all cases, and we are currently doing the nec-
essary implementation and experimental work to verify this
belief. Of course, agents that do a large amount of process-
ing per resource access will need to be written in a faster lan-
guage, such as Java.

Other Applications
Other information-retrieval applications of Agent Tcl
include searching for products that meet a customer’s needs,
searching for a particular mechanical part (with a CAD
drawing of the part provided as input), and searching for
medical records that match given criteria. In addition, a joint
project between Lockheed Martin and the US Army uses
Agent Tcl (and a second, proprietary mobile agent system)
to propagate tactical information between the battlefield and
command headquarters (and to retrieve information rele-
vant to the current situation from various online sources).
Lockheed and the Army developed the application over the
course of six Military Intelligence Brigade exercises. In all
cases, the agents eliminated intermediate data transmission,
continued with their task even when the home machine was
disconnected, and performed efficiently without applica-
tion-specific support at each network site.

Agent Tcl allows the rapid development of efficient, robust
distributed applications, particularly when mobile comput-
ers are involved. Despite its current capabilities, we see sever-
al areas for future work. The two most important are network
sensing and service directories. To best plan its route through
the Internet, an agent needs information about the network’s
current state, such as its bandwidth, latency, and connectivi-
ty. We are developing sensing agents that glean this informa-
tion from recent past communications with remote hosts.5

Once an agent can roam the network, it needs to know
where to go to find relevant services. We are constructing a dis-
tributed “yellow pages” infrastructure in which agents can
advertise their services and client agents can look for agents
that meet their needs.5 These “yellow pages” are similar to the
RPC nameservers except that they are hierarchical and can con-
tain arbitrary service descriptions. Eventually the RPC inter-
face definitions will be included in the “yellow page” entries,
eliminating the need for the separate RPC nameservers.

Other areas of future work include rewriting some of the
service agents in the much faster Java language, making the
agent servers more efficient, and extending the security model
to protect agents from malicious machines. We are also inves-
tigating multidestination jump support, and are integrating
our interagent message-passing with the docking system so
that messages go through docks when necessary. We are
adding a persistent store so that an agent may leave most of its
data (such as the results of a database search) at one host,
carry a small amount of its data along with it, and yet be able
to remotely access the stored data if necessary. Finally, in
cooperation with other groups, we are continuing to devel-
op applications that demonstrate the effectiveness of mobile
agents in different network environments. ■
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