
Copyright 1991 by IEEE. Appeared in Symp. on Parallel and Distributed Processing, pages 60-67.�
Available at URL ftp://ftp.cs.dartmouth.edu/pub/CS-papers/Kotz/kotz:writeback.ps.Z�

Caching and Writeback Policies in Parallel File Systems�

David Kotz Carla Schlatter Ellis

Dept� of Math and Computer Science Dept� of Computer Science

Dartmouth College Duke University

Hanover� NH ���������	 Durham� NC
����

David�Kotz�Dartmouth�edu carla�cs�duke�edu

Abstract

Improvements in the processing speed of multipro�
cessors are outpacing improvements in the speed of
disk hardware� Parallel disk I�O subsystems have been
proposed as one way to close the gap between processor
and disk speeds� Such parallel disk systems require par�
allel �le system software to avoid performance�limiting
bottlenecks� We discuss cache management techniques
that can be used in a parallel �le system implementa�
tion� We examine several writeback policies� and give
results of experiments that test their performance�

� Introduction

As computers grow more powerful� it becomes in�
creasingly di�cult to provide su�cient I�O bandwidth
to keep them running at full speed for large problems�
which may consume immense amounts of data� Disk
I�O has always been slower than processing speed�
and recent trends have shown that improvements in
the speed of disk hardware are not keeping up with
the increasing raw speed of processors� This widen�
ing access�time gap is known as the I�O crisis ��	� �
��
The problem is compounded in typical parallel archi�
tectures that multiply the processing and memory ca�
pacity without balancing the I�O capabilities�

The most promising solution to the I�O crisis is
to extend parallelism into the I�O subsystem� One
such approach is to connect many disks to the com�
puter in parallel� spreading individual �les across all
disks� Parallel disks could provide a signi�cant boost
in performance
 possibly equal to the degree of par�
allelism� if there are no signi�cant bottlenecks in the
I�O subsystem and if the I�O requests generated by
applications can be mapped into lower�level operations
that drive the available parallelism� Thus� the �rst
challenge to the designers of a multiprocessor �le sys�
tem is to con�gure parallel disk hardware to avoid
bottlenecks �e�g�� shared busses�� and to avoid further
bottlenecks in the system software� An e�ective �le
system for a multiprocessor must itself be fully parallel
to scale with additional processors or disks� The sec�
ond challenge is to make this extensive disk hardware

�This research was supported in part by NSF grants CCR�
������� and CCR�������� and DARPA	NASA subcontract of
NCC��
���

bandwidth easily available to application programs�
To meet these challenges we propose a highly parallel
�le system implementation that incorporates caching
and prefetching as a means of delivering the bene�ts
of a parallel I�O architecture to the user programs�

This paper concentrates on multiprocessor �le sys�
tems intended for scienti�c applications� These ap�
plications typically push the leading edge of com�
puting technology� such as multiprocessors� placing
tremendous demands on both CPU and I�O systems�
Most �le caching studies have examined general�
purpose workloads �e�g�� ��
��� where �les are much
smaller ���� ��� The parallel environment and work�
load raise a number of questions� Are caches useful for
parallel scienti�c applications using parallel �le sys�
tems� If so� in what way� What are the appropriate
management policies�

Di�erent workload characteristics� including a new
form of locality� lead us to new policies� The sequential
access patterns in the workload suggest prefetching
and write�behind� Prefetching is the focus of ��� ��� ���
and write�behind is the focus of this paper� What poli�
cies are most appropriate for bu�ering writes for these
parallel scienti�c�application workloads� Do write�
behind and delayed writeback help� In what way�
This paper examines these issues� de�nes some new
policies� and reports results from experiments with
these policies�

In the next section we provide more background
information on parallel I�O� caching� and �le system
workloads� In Section 	 we describe the testbed� the
workload� the experimental methods� and the cache
management policies� In Section � we present the ex�
periments� performance measures� and results� Sec�
tion � concludes�

� Background

Much of the previous work in I�O hardware paral�
lelism involves disk striping� In this technique� data
of a �le are interleaved across numerous disks and ac�
cessed synchronously in parallel ���� �� �	�� These
schemes rely on a single controller to manage all of
the disks�

For multiprocessors� one form of parallel disk ar�
chitecture is based on the notion of parallel� indepen�
dent disks� using multiple conventional disk devices

�

addressed independently and attached to separate pro�
cessors� The �les may be interleaved over the disks�
but the multiple controllers and independent access
to the disks make this technique di�erent from disk
striping� Examples of this architecture include the
Concurrent File System ����
� for the Intel iPSC��
multiprocessor� and the Bridge ��� 	� �le system for
the BBN Butter�y parallel computer�

File caching is a technique used in most modern �le
systems� Caching has not been studied for parallel �le
systems� but Alan Smith has extensively studied disk
caching in uniprocessors with general�purpose work�
loads� In ��
�� his simulations show that disk caching
is an e�ective way to boost the performance �as mea�
sured by the cache miss ratio� of the I�O subsystem
�e�g�� an � MByte cache can service ������ of I�O
requests��

File access patterns have never been studied for par�
allel computers� but have been studied extensively for
uniprocessors ��� ���� These studies found that sequen�
tial access� usually of the entire �le� is the major form
of access� Supercomputer �le access patterns �a sci�
enti�c workload� involve huge �les �tens to thousands
of megabytes� accessed primarily sequentially� some�
times repeatedly ����� Parallel �le access has been dis�
cussed by Crockett ���� but he did not study an actual
workload�

� Models and Methods

��� Architectural Models

Our architectural model is a multiple instruction
stream� multiple data stream �MIMD� multiprocessor�
A subset of the problems and many of our proposed
solutions �although not our implementation� may also
apply to message�based distributed�memory architec�
tures�

We represent the disk subsystem with parallel� in�
dependent disks� We assume an interleaved mapping
of �les to disks� with blocks of the �le allocated round�
robin to all disks in the system� The �le system han�
dles the mapping transparently� managing the disks
and all requests for I�O� There is a �le system man�
ager running on each processor� This spreads the I�O
overhead over all processors and allows the use of all
processors for computation� rather than reserving a
set of processors exclusively for I�O�

��� Workload Model

Parallel �le systems and the applications that use
them are not su�ciently mature for us to know what
forms might be typical� Parallel applications may use
patterns that are more complex than those used by
uniprocessor versions of the same application� The
lack of a real parallel workload employing parallel I�O
leads us to use a synthetic workload in our tests� which
captures such nuances of real workloads as sequential�
ity� regularity� and inter�process interactions�

We work with �le access patterns� rather than disk
access patterns� That is� we examine the pattern of
access to logical blocks of the �le rather than physical
blocks on the disk� Thus� we make no assumptions of
disk layout� Note also that the application is accessing

records in the �le� which are translated into accesses
to logical �le blocks by the interface to the �le system�
The �le system internals� which are responsible for
caching� see only the block access pattern�

In our research we do not investigate read�write
�le access patterns� because most �les are opened for
either reading or writing� with few �les updated ���
���� We expect this to be especially true for the large
�les used in scienti�c applications� Thus we consider
read�only patterns� used to demonstrate the bene�ts
of caching� and write�only patterns� used to investigate
delayed�write policies�

All sequential patterns consist of a sequence of ac�
cesses to sequential portions� A portion is some num�
ber of contiguous blocks in the �le� Note that the
whole �le may be considered one large portion� The
accesses to this portion may be sequential when viewed
from a local perspective� in which a single process ac�
cesses successive blocks of the portion� We call these
locally sequential access patterns� or just local pat�
terns� This is the traditional notion of sequential ac�
cess used in uniprocessor �le systems�

Alternatively� the pattern of accesses may only look
sequential from a global perspective� in which many
processes share access to the portion� reading disjoint
records within the portion� We call these globally se�
quential access patterns� or just global patterns� If
the reference strings of all the processes are merged
with respect to time� the accesses follow a �roughly�
sequential pattern� The pattern may not be strictly
sequential due to the slight variations in the global
ordering�

We use eight representative read�only parallel �le
access patterns� Four of these are local patterns� three
are global patterns� and one is random� The sequential
nature of the patterns imply a low rate of data rerefer�
encing� which is important for caching� The details of
the sequentiality are only important for prefetching�

lw Local Whole �le� every process reads the entire
�le from beginning to end� It is a special case of
a local sequential pattern with a single portion�

lfp Local Fixed�length Portions� each process reads
many sequential portions� The sequential por�
tions have regular size� although at di�erent
places in the �le for each process�

lrp Local Random Portions� like lfp� but using por�
tions of irregular �random� size� Portions may
overlap by coincidence�

seg Segmented� the �le is divided into a set of non�
overlapping contiguous segments� one per process�

gw Global Whole �le� the entire �le is read from
beginning to end� The processors read distinct
records from the �le in a self�scheduled order� so
that globally the entire �le is read exactly once�

gfp Global Fixed�length Portions� �analogous to lfp�
processors cooperate to read �xed�size sequential
portions�

�

grp Global Random Portions� �analogous to lrp�
processors cooperate to read random�size sequen�
tial portions�

rnd Random� records are accessed at random�

We use three representative write�only parallel �le
access patterns� Two of these are local patterns and
one is a global pattern�

lw� A single process writes the entire �le from start
to �nish� The other processes are idle�

seg The �le is divided into disjoint segments� one per
process� and each process writes its segment from
start to �nish�

gw Like its read�only counterpart� this pattern writes
records of the �le in a self�scheduled order�

Note that these patterns are not necessarily rep�
resentative of the distribution of the access patterns
actually used by applications� We feel that this set
covers the range of patterns likely to be used by sci�
enti�c applications�

��� Methods

Our methodology is experimental� using a mix of
implementation and simulation� We implemented
a �le system testbed called RAPID�Transit ��Read�
Ahead for Parallel Independent Disks�� on a BBN
GP���� Butter�y parallel processor ���� an MIMD ma�
chine� Since the multiprocessor does not have parallel
disks� they are simulated� The testbed is a heavily pa�
rameterized parallel program� incorporating the syn�
thetic workload �the application�� the �le system �in�
terface and manager�� and the set of simulated disks�
The �le system allocates and manages a bu�er cache to
hold disk blocks� described below� The testbed gath�
ers statistics on many aspects of the performance of
the �le system� This implementation of the policies
on a real parallel processor� combined with real�time
execution and measurement� allows us to directly in�
clude the e�ects of memory contention� synchroniza�
tion overhead� inter�process dependencies� and other
overhead� as they are caused by our workload under
various management policies� This method allows us
to evaluate whether practical caching policies can be
implemented� See ��� for more details�

In this section we describe one simple replacement
policy� which determines the blocks to replace when a
free bu�er is needed� and several write policies� which
determine when new data are written back to disk�

Bu�er Replacement Policy� We associate an in�
stance of the cache with a particular open �le� caching
the logical blocks of the �le rather than the physical
blocks of the disk� This is a shared cache concurrently
servicing the requests of all processes within a parallel
application�

The workload plays a signi�cant role in determining
the appropriate cache policies� Scienti�c applications
often read and write several megabytes or gigabytes of
data� generally sequentially ����� For a cache to suc�
ceed� the workload must exhibit some locality� Tempo�
ral locality� where recently used data will be used again

soon� is not present when large �les �much larger than
the cache size� are accessed sequentially� even if the
�les are accessed repeatedly� Spatial locality� where
other data near or in a recently accessed block will
be accessed soon� is a strong component of sequential
access patterns� The combination of these observa�
tions leads to a �toss�immediately� replacement pol�
icy� where only the most recently used �MRU� block
remains in the cache� This is more appropriate than
the traditional LRU policy ���� �although of course it
is identical to LRU with a stack size of one��

In the access patterns we expect to see in parallel
scienti�c applications� another form of locality occurs�
With interprocess locality� a block used by one process
is used soon by another process �when� for example�
each is reading di�erent small records from the same
block��

We extend the toss�immediately strategy to paral�
lel access patterns as follows� any block that is not the
MRU block of any process may be replaced� Thus the
cache must have at least as many bu�ers as processes�
Our policy has many advantages� It ensures that the
MRU block of each process remains in the cache un�
til that process has clearly �nished with it� This is
important� because locality makes it likely that the
process will use its MRU block again� If there were
only one global MRU block� toss�immediately would
replace some blocks still in use� If there were a global
LRU policy� which had a single LRU stack� an active
process could use many blocks� arti�cially aging the
blocks of less�active processes and thus forcing them
out� Finally� ours is simple to implement� each bu�er
has a counter in shared memory indicating the number
of processes that consider this block to be their MRU
block� Thus� interprocess locality is directly included�
When the count reaches zero� the block is free for re�
placement� If the block is dirty �containing data not
yet written to disk�� the block must be written to disk
and the disk write completed before the bu�er may be
re�used� Bu�ers that are available for replacement are
kept in a global free list�

Write Policies� A cache can improve �le�write per�
formance with write�behind� where data is written into
a bu�er� allowing the application to continue while the
bu�er is written to disk� If the disk write is not ini�
tiated immediately� it is termed �delayed writeback��
which traditionally has several advantages�

� Some data disappears before it is written to disk
�by being overwritten or by removal or truncation
of the �le containing the data�� and thus disk load
is reduced� This is not likely in our workload�

� Bursts of write activity can be absorbed by a
cache� asynchronously writing the data to disk
while the application continues�

� Where there is spatial locality �e�g�� when mul�
tiple �le writes are made to the same block��
caching avoids multiple writes to the disk� This is
of prime interest when there is also interprocess
locality involved�

	

The write policy determines when the �dirty� bu�ers
are �cleaned� �written to disk�� If a dirty bu�er is
written too late� the cache �lls with dirty blocks and
processes must idle waiting for bu�ers to be cleaned� If
a dirty bu�er is written too early� costly mistakes may
be made� There are two types of mistakes possible in
write�only access patterns� reread and rewrite� If the
application writes to a bu�er after the bu�er has been
written to disk� the disk write was a rewrite mistake�
If the application writes to a block that has already
been �ushed from the cache� causing the block to be
read back from disk� the extra write and read is a
reread mistake�

A technique that is appropriate for a single�process
sequential access pattern is to write a block when�
ever the process moves on to the next block �or� if
you track the �le pointer carefully� when the process
writes the last byte in the block�� This technique as�
sumes sequential access� once a block is written by
the process� it will not be rewritten� In a multiprocess
application with interprocess locality� however� the ac�
tions of any one process do not clearly indicate when
a block is complete� From the assumption of sequen�
tiality� however� every byte of the �le �and hence of
any block in the �le� is written exactly once� Thus it
is safe to write the block to disk when all bytes of the
block have been written� This leads directly to our
WriteFull policy below�

We implemented several distinct write policies�

WriteThru� the simplest scheme� forces a disk write
on every �le write request from the application�
This is ideal for blocks accessed only once�

WriteBack delays the disk write until the bu�er is
needed for another block�

WriteFree issues a disk write when the bu�er enters
the free list� Thus� it issues a write before the
bu�er is needed for re�use� but after it is no longer
in use by some processor� This is a compromise
between WriteThru and WriteBack�

WriteFull issues the disk write when the bu�er is
�full�� de�ned to be when the number of bytes
written to the bu�er is exactly equal to the size
of the bu�er in bytes�

� Experiments

We �rst brie�y demonstrate the need for a cache�
and then examine the capabilities of the four write
policies�

��� Experimental Parameters

In all of our experiments� we �x most of the pa�
rameters and then vary one or two parameters at a
time� The parameters described here are the base from
which we make other variations� Each combination of
parameters represents one test case�

There were �� processes running on �� processors�
The patterns all accessed � MBytes of data� divided
up for local patterns as ��� KBytes per process� The
cache block size was always � KByte� and the record

size was usually one block �in one set of tests we ex�
periment with other record sizes�� Note that in most
patterns this translates to ���� blocks read from �or
written to� the disk� but in lw only ��� distinct blocks
are read since all processes read the same set of ���
blocks� The cache contained �� one�block bu�ers� We
also had the capability to turn the cache o�� so all
requests went to the disk with no cache overhead�

After each record was accessed� delay was added
in some tests to simulate computation� this delay was
exponentially distributed with a mean of 	� msec� All
other tests had no delay after each access� simulating
an I�O�intensive process�

The �le was interleaved over �� disks� at the gran�
ularity of a single block� Disk requests were queued in
the appropriate disk queue� The disk service time was
simulated using a constant arti�cial delay of 	� msec�
a reasonable approximation of the average access time
in current technology for small� inexpensive disk drives
of the kind that might be replicated in large numbers
on a multiprocessor system�

��� Measures

The RAPID�Transit testbed records many statis�
tics intended to measure and interpret performance�
The primary performance metric for measuring the
performance of an application is the total execution
time� This� and all time measures in the testbed� is
real time� Total execution time incorporates all forms
of overhead �such as memory contention� reread mis�
takes� etc�� and unexpected e�ects� and thus it is the
best measure of overall performance�

A note on the data� Every data point in each plot
represents the average of �ve trials� The coe�cient of
variation �cv� is the standard deviation divided by the
mean �average�� For all experiments in this paper� the
cv was less than ���
� �usually much less�� meaning
that the standard deviation over �ve trials was less
than
��� of the mean� In each table and plot we give
the maximum cv of all data points involved�

The Ideal Execution Time� We compare the ex�
perimental execution time to a simple model of the
ideal execution time� The total execution time is a
combination of the computation time� the I�O time�
and overhead� In the ideal situation� there is no over�
head� and either all of the I�O is overlapped by compu�
tation or all of the computation is overlapped by I�O�
Thus� the ideal execution time is simply the maxi�
mum of the I�O time and the computation time� This
assumes that the workload is evenly divided among
the disks and processors and that the disks are per�
fectly utilized� No real execution of the program can
be faster than the ideal execution time� With the base
parameter values� both the I�O and the computation
times are
 seconds� and thus the ideal execution time
is also
 seconds� The ideal I�O time for lw is shorter�
only ��	 seconds� since it only reads ��� blocks from
disk� The ideal computation time for lw� with com�
putation �and thus the ideal execution time� is ���
seconds since there is only one processor involved�

�

��� Caching

Using the testbed� we ran all of our access pat�
terns with and without caching� Our point is not to
demonstrate the superiority of our particular bu�er�
replacement policy� but to demonstrate the basic ben�
e�t of a cache �from temporal and spatial locality�� We
also hope to determine the e�ects of interprocess lo�
cality� The cache� when used� contained �� one�block
bu�ers� There was no computation involved in these
access patterns�

The following table shows the results of experi�
ments on our full set of read�only access patterns�
With one�block records� there was actually a slight
performance degradation due to caching overhead�
There was no improvement because most of these pat�
terns did not rereference data in the cache �i�e�� there
was no temporal locality�� Some patterns �lrp� grp
and rnd� made some rereferences� but so rarely that
they were insigni�cant� The lw pattern had many
rereferences �interprocess temporal locality�� but exe�
cution time did not improve with caching because all
processes read the same block almost simultaneously�
and used only one disk at a time� Thus interprocess
locality was important� but not bene�cial here�

The situation changed signi�cantly when the record
size was one�quarter block� Except in the rnd pattern�
each block was referenced four times� once for each
quarter�block record in the block� Without a cache�
the block was read four times from the disk� With a
cache� spatial locality �in the local patterns� and in�
terprocess spatial locality �in the global patterns� was
used to avoid wasting disk bandwidth� �Note that the
bene�ts would be larger for smaller record sizes� and
signi�cant for all non�integral record sizes�� Because of
the interprocess locality in the global access patterns�
however� four processes waited for each four�record
block to be read from the disk� and thus only one�
fourth of all disks were in use at any time� Prefetch�
ing can avoid this underutilization� see ��� �� ��� for
further study of read�only patterns and prefetching�

Read�only patterns
Total execution time� in seconds �cv � ���	��

One�block Quarter�block
Pattern No Cache Cache No Cache Cache
lfp
�	
�� ���
 ���
lrp ��	 ��� ���� ��

lw
�� ��� 	
�� ��	
seg
�� ��� 	
�� ���
gfp
�	
��
��� ����
grp
��
��
��� ����
gw
�	
��
��� ����
rnd ���
 ���� ���� ����

The next table shows the results of experiments
on our write�only access patterns� Here we com�
pared the simple WriteBack caching policy with not
caching� Section ��� compares write policies� Caching
was faster in gw� since the delayed write allowed some
overlap between overhead and I�O� The lw� pattern
was most improved because� with delayed writes� this
one�processor pattern was able to use more than one
disk� This is an example of a cache s ability to help

applications use parallel disk bandwidth� Experiments
with quarter�block records demonstrate the real power
of caching� without a cache� all writes to a disk block
after the �rst write had to read the block from the
disk� update the block� and write the block back to
disk �a reread mistake�� With n records per block� a
cache reduced the �n � � disk accesses per block to
one per block�

Write�only patterns
Total execution time� in seconds �cv � ������

One�block Quarter�block
Pattern No Cache Cache No Cache Cache
lw� ����	 �
�� ��	�� ����
seg
�� ���
	�	 ���
gw
�	
�� ��	�� ���

��� Write�Policy Experiments

We designed a set of experiments to evaluate the
e�ectiveness of our write policies across variations in
workload and cache size� These experiments seek to
answer the following questions� What is the e�ect of
cache size� Is a large cache useful� How do the policies
react to the record size� In particular� how do they
handle the interprocess locality in gw� Which �if any�
policy is the most generally successful� Can a smart
write�bu�ering policy help an application to better use
the available parallel I�O bandwidth�

Cache�size Variation� In these experiments� the
cache size varied from �� one�block bu�ers to ��� one�
block bu�ers �� to �� blocks per process�� The record
size was one block� so each block was accessed only
once� Note that WriteFull and WriteThru are inher�
ently equivalent in these access patterns� because the
bu�er is full when it is �rst written�

In gw with computation� shown in Figure ��
WriteBack was clearly slowest� since it delayed the
disk write too long� WriteFree is also slower than
WriteThru or WriteFull� This is because WriteFree de�
lays the disk write for a full MRU block until the next
�le system access� which is after the process s com�
pute cycle �without computation� WriteFree is similar
to WriteThru and WriteFull�� This delay was too long�
slowing down overall execution� Note that between ��
and �� bu�ers were the maximum useful cache size�
Forty bu�ers corresponds to two bu�ers per process�
which allowed one to be �lled while the other is writ�
ten to disk� The results for gw without computation
give similar conclusions�

The lw� patterns ran more slowly than the gw pat�
terns� because one process could not drive all �� disks
at full e�ciency �Figure ��� WriteBack was much
worse than the other methods� and WriteFree again
was slow with computation� Larger caches bene�ted
the lw� pattern by allowing more disk parallelism to
be used�

The write�only seg patterns had a di�cult disk ac�
cess pattern �all processes began on the same disk��
A large cache helped to alleviate the resulting disk
contention� as seen in Figure 	� since the larger cache
allowed processes to continue writing even when some
disks were overloaded� In e�ect� large caches allowed

�

�

��

��

��

�� �� ��� �
� ���

Total
Time
�sec�

Cache size �blocks�

gw with computation

WriteBack !!

!
! ! ! ! ! !

WriteFull r

r

r r r r r r r

WriteFree e

e

e

e e e e e e

WriteThru �

�

� � � � � � �

ideal

Figure �� Cache�size variation�

a long pipeline to form� using more disks concurrently
than with a short pipeline� This is especially im�
portant as processor speeds increase relative to disk
speeds� This is an excellent example of the ability of a
well�managed cache to help a simple�minded program
access the potentially high bandwidth of parallel disks�
The results for seg with computation are not shown
since they o�er no new insights�

From these results� both WriteThru and WriteFull
�essentially equivalent here� appear to be good write�
bu�ering methods� in that they had the best overall
performance� In some cases a large cache was needed
to absorb disk contention problems �as in seg� or a
high write request rate �as in gw without computa�
tion�� but generally two bu�ers per process were su��
cient� For the experiments in the next section we chose
an ���block cache �four bu�ers per process� because
that was a reasonable compromise for all workloads�
based on the results in this section�

Record�size Variation� In these experiments we
varied the record size of the access pattern with a
�xed cache size of �� one�block bu�ers� The total
amount of data written� in blocks� was �xed� The vari�
ation includes both integral and non�integral record
sizes �relative to the block size�� The latter are im�
portant because they cause multiple accesses to many
blocks� which should clearly di�erentiate WriteThru
and WriteFull�

Figure �a shows the record�size variation for the
write�only gw access pattern� WriteThru is clearly a
poor choice for small record sizes� due to a huge num�
ber of rewrite mistakes� WriteFree was smarter� wait�
ing until the bu�er was mostly unused before issuing
a disk write� but it was still not perfect due to some
mistakes and to not immediately writing the blocks to

�	

��

��

�

��

��

��

�� �� ��� �
� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw�

WriteBack !

! !
!

! ! ! ! !

WriteFull r

r

r
r r r r

r r

WriteFree e

e

e
e e e e

e e

WriteThru �

�

�
� � � �

� �

ideal �
 seconds�

Figure �� Cache�size variation�

disk when they �nally were ready to be written� The
dips occur because there can be no mistakes with in�
tegral record sizes� WriteBack was sometimes faster
than WriteFree because it had fewer rewrite mistakes�
Finally� the WriteFull method had a nearly perfect
�
second execution time over all record sizes� because it
issued the write precisely when the block was ready to
go to disk� and made no mistakes�

The results for lw� are shown in Figure �b� The
high execution times were due to reduced I�O paral�
lelism� because �due to overhead� one process could
not keep �� disks busy� even with an ���block cache�
With non�integral record sizes this overhead was in�
creased due to repeated accesses to some blocks� Thus�
the time varies widely for non�integral record sizes�
Otherwise� the results are no surprise� WriteBack was
usually slowest� and WriteThru also slow for small
non�integral record sizes�

The record�size variation for the seg pattern �Fig�
ure �c� shows that WriteThru was slowest� due to
rewrite mistakes� Because of the sequential access pat�
tern on each processor� none of the others had rewrite
mistakes� and none had reread mistakes�

Thus� record size was an important factor in the
performance of our write methods� For integral record
sizes� all methods were essentially independent of
record size� For non�integral sizes� all but WriteFull
made many mistakes� WriteFull was thus the most
generally successful write policy�

� Conclusion

A relatively simple cache management strategy�
based on toss�immediately� provided e�cient and ef�
fective caching for our workload� Most importantly�
it was an e�ective base for studying write policies for

�

�

��

��

��

� � � 	 � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

a� Record�size variation for gw

WriteBack !

!
!

!
!

!!!
!

!!! !!!
!

!!!
!

!!!!!!!!!
!

!!!!!!
!

WriteFull r

r
r r r r r rr r r r r r rr r r rr r r r r r

r
r r r r r r r r r

r
r

WriteFree e

e

e e

e

e e e

e

e e e e e e

e

e e e

e

e e e e e e e e e
e

e e e e e
e

e

WriteThru �

�

�

�

�

�
�
�

�

��� �
��

�

���

�

���������

�

�����
�

�

ideal

�

��

��

	�

��

��

�

� � � 	 � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

b� Record�size variation for lw�

WriteBack !
!

!!

!

!
!

!

!

!

!! ! !

!

!
! !

!!
! ! ! !

!
!

! !
! !

WriteFull r

r

r r

r

r
r

r

r

r

r r r r

r

r

r
r

r r

r r r r
r

r
r r

r
r

WriteFree e

e

e
e

e

e
e

e

e

e

e e e e

e

e

e
e

e e

e e e e
e

e
e e

e
e

WriteThru �

�

�
�

�

�

�

�

�

�

��� �

�

�

�
�

��

� � � �

�

�

� �

�
�

ideal

�

�

��

��

��

��

	�

� � � 	 � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

c� Record�size variation for seg

WriteBack !

!!!!!!!! !!! ! ! ! !! ! !! ! ! ! ! ! ! ! ! ! !

WriteFull r

r r r r r r rr r

WriteFree e

e e ee e e ee e

WriteThru �

�

�

�

�

��
�

�

����
�

�

��

�

�� � � �
�

�

� � � �

�

ideal

Figure �� Record�size variation for all three write patterns�

�

�

�

�

��

��

��

�	

��

��

�� �� ��� �
� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg

WriteBack !

!

!
! ! ! ! !

WriteFull r

r

r

r

r
r

r r r

WriteFree e

e

e

e

e

e
e e e

WriteThru �

�

�

�

�

�

� � �

ideal

Figure 	� Cache�size variation�

write�only patterns� Caching was often able to use lo�
cality� including interprocess locality� to help applica�
tions use the parallel disk bandwidth� In applications
where caching could not be expected to help� the cache
overhead caused a slight �though tolerable� slowdown�

Given the types of write�only access patterns we
expect to be common in scienti�c workloads� our ex�
ploration of four methods shows that WriteFull� the
most sophisticated of the methods� was consistently at
or near the best performance in all situations� A fairly
small cache ������ blocks� i�e�� ��� blocks per process�
was su�cient to obtain the best performance� except
in the seg pattern� where larger caches helped mask
the disk contention� Large caches were thus only use�
ful when there was high disk contention� �Although
we did not study bursty I�O� larger caches should also
be useful for absorbing bursts of write activity��

References

��� BBN Advanced Computers� Butter�y Products
Overview� �����

��� Thomas W� Crockett� File concepts for parallel
I�O� In Proceedings of Supercomputing 	
�� pages
�������� �����

�	� Peter Dibble� Michael Scott� and Carla Ellis�
Bridge� A high�performance �le system for par�
allel processors� In Proceedings of the Eighth In�
ternational Conference on Distributed Computer
Systems� pages �����
�� June �����

��� Peter C� Dibble� A Parallel Interleaved File Sys�
tem� PhD thesis� University of Rochester� March
�����

��� Rick Floyd� Short�term �le reference patterns in a
UNIX environment� Technical Report ���� Dept�
of Computer Science� Univ� of Rochester� March
���
�

�
� James C� French� Terrence W� Pratt� and Mri�
ganka Das� Performance measurement of a par�
allel input�output system for the Intel iPSC��
hypercube� Proceedings of the ���� ACM Sigmet�
rics Conference on Measurement and Modeling of
Computer Systems� pages �������� �����

��� Michelle Y� Kim� Synchronized disk interleaving�
IEEE Transactions on Computers� C�	����������
���� November ���
�

��� David Kotz� Prefetching and Caching Techniques
in File Systems for MIMD Multiprocessors� PhD
thesis� Duke University� April ����� Available as
technical report CS��������
�

��� David Kotz and Carla Schlatter Ellis� Prefetch�
ing in �le systems for MIMD multiprocessors�
IEEE Transactions on Parallel and Distributed
Systems� ����������	�� April �����

���� David Kotz and Carla Schlatter Ellis� Practi�
cal prefetching techniques for parallel �le sys�
tems� In First International Conference on Paral�
lel and Distributed Information Systems� Decem�
ber ����� To appear�

���� Ethan Miller� Input�Output behavior of su�
percomputing applications� Technical Report
UCB�CSD ���
�
� University of California�
Berkeley� ����� Submitted to Supercomputing
 ���

���� John Ousterhout� Herv"e Da Costa� David Har�
rison� John Kunze� Mike Kupfer� and James
Thompson� A trace driven analysis of the UNIX
��� BSD �le system� In Proceedings of the Tenth
ACM Symposium on Operating Systems Princi�
ples� pages ������ December �����

��	� David Patterson� Garth Gibson� and Randy Katz�
A case for redundant arrays of inexpensive disks
�RAID�� In ACM SIGMOD Conference� pages
������
� June �����

���� Paul Pierce� A concurrent �le system for a highly
parallel mass storage system� In Fourth Con�
ference on Hypercube Concurrent Computers and
Applications� pages �����
�� �����

���� Kenneth Salem and Hector Garcia�Molina� Disk
striping� In IEEE ��

 Conference on Data En�
gineering� pages 		
�	��� ���
�

��
� Alan Jay Smith� Disk cache�miss ratio analysis
and design considerations� ACM Transactions on
Computer Systems� 	�	���
����	� August �����

���� Michael Stonebraker� Operating system support
for database management� Communications of
the ACM� �������������� July �����

�

