
Group-aware Stream Filtering

Ming Li and David Kotz
Department of Computer Science, Dartmouth College

Hanover, NH 03755
{ mingli, dfk} at cs.dartmouth.edu

Abstract

In this paper we are concerned with disseminat-
ing high-volume data streams to many simultaneous
context-aware applications over a low-bandwidth wire-
less mesh network. For bandwidth efficiency, we propose
a group-aware stream filtering approach, used in con-
junction with multicasting, that exploits two overlooked,
yet important, properties of these applications: 1) many
applications can tolerate some degree of “slack” in their
data quality requirements, and 2) there may exist multi-
ple subsets of the source data satisfying the quality needs
of an application. We can thus choose the “best al-
ternative” subset for each application to maximize the
data overlap within the group to best benefit from multi-
casting. An evaluation of our prototype implementation
shows that group-aware data filtering can save band-
width with low CPU overhead.

keywords: data dissemination, overlay multicasting,
data filtering, bandwidth reduction

1. Introduction

Distributed context-aware applications may need to
subscribe to remote information sources that provide
contextual information about the users’ locations and
their environment. In some applications, context data
collected by sensor networks often come to the sub-
scribers as high-volume data streams. Transporting con-
text “streams” via wired links may not be feasible in
hard-to-wire areas, such as on a disaster scene; a wire-
less mesh network is a more cost-effective alternative.
According to many studies, however, the effective band-
width in a wireless mesh network is usually much lower
than its wired counterpart, due to congestion and the lim-
its of radio communications. Hence, there is a disparity
between the high data demands of context dissemination
in a wireless network and its limited bandwidth.

Two main approaches have been proposed to tackle

the problem. One is to eliminate redundant communica-
tions with multicast protocols when disseminating com-
mon data to multiple subscribers. The other is to reduce
the data at a context source, by applying application-
specific filters at the source node to select only those
tuples “important” for meeting the applications’ data-
quality requirements. Since source-sharing applications
may use context source in different ways, the filters de-
ployed at the same source may select different portions
of the source data. If there is sufficient overlap of the
data selected by the filters, we can still multicast the
data to further reduce bandwidth demands. Thus, at the
source node, we multiplex the filtered streams to form
a multicast stream. Figure 1 shows this process: two
applications, A and B, share the same context source
< D1, D2, D3, ... >, but each application’s filter se-
lects a different subset. The multicast protocol allows us
to label each tuple with the list of the applications that
should receive that tuple; thus each tuple is transmitted
at most once on any link.

We here propose a solution that combines multicast-
ing and filtering for context streams. In contrast to self-
interested filtering, which only considers each individual
application’s needs, we propose group-aware stream
filtering that considers the needs of individual applica-
tions, as well as those of other subscribers. The result
of this “group-aware stream filtering” satisfies all sub-
scribers’ data requirements, and simultaneously ensures
maximum data sharing among the subscribers to make
the best use of a multicast protocol in saving bandwidth.
Our work makes use of two overlooked, yet important,
properties of context-aware applications: 1) many ap-
plications can tolerate some degree of “slack” in their
data quality requirements, and 2) there may exist multi-
ple subsets of the source data satisfying the quality needs
of an application. We can thus choose the “best alterna-
tive” subset for each application to maximize the data
overlap within the group to best benefit from multicast-
ing.

In the paper, we describe the following contributions
of this work.

D1 -> A
D2 -> A, B

D1, D2, ...

data stream D1, D2, D3 ...

Context
Source

Filter
for A

Filter
for B

multiplex for multicast

D2, ...

Figure 1. Multiplexing filtered streams for
multicasting.

• Our approach uses multicast protocols in concert
with data filtering to reduce unnecessary data traf-
fic, which is crucial for a wireless dissemination
system to support large-scale context sharing. The
core of our approach is to exploit semantics of ap-
plications to reduce data communication. We treat
saving bandwidth a goal as important as providing
data to satisfy applications’ quality needs.

• We developed a framework that encapsulates the
general idea of group-aware filtering.

• We built a prototype system for evaluation. Our
preliminary experiments show that this approach
can effectively save bandwidth with low CPU over-
head.

In the rest of the paper, we first describe in Section
2 the basis for group filtering, and introduce our frame-
work for the group-aware stream filtering in Section 3.
In Section 4, we discuss our evaluation of this concept
based on a prototype implementation. We discuss re-
lated work in Section 5 and conclude in Section 6 with
a description of future work.

2. Two key observations

In this section, we make two key observations about
stream filtering for context-aware applications. The ob-

servations motivate our “group-aware stream filtering”
approach detailed in the next section.

2.1. Quality requirements of stream fil-
tering

The goal of stream filtering is to select an “impor-
tant” portion from a streaming data source according to
the specific needs of an application. The result of this
filtering reflects an applications’ desirable data quality,
which is normally measured as the accuracy, granular-
ity, timeliness, or completeness of the data. For exam-
ple, an application would like to get a temperature read-
ing of a place whenever the reading has changed by n
degrees. This n-degree data granularity requirement can
be enforced by a “delta-compression” filter that keeps
the temperature state and compresses the streaming data
at “delta”, in this case n unit, intervals.

2.2. First observation

The first key observation we have made about the
context-aware applications is that they may tolerate
some degree of “slack” in their data quality.

Consider a temperature source and delta-
compression filtering for example. Given a time-
ordered nine-tuple sequence from the source:
< 0, 35, 29, 45, 50, 59, 80, 97, 100 >, the output
that satisfies compression at 50-unit granularity (here
we assume the initial state is the first reading of the
temperature) will be < 0, 50, 100 >.1 We recognize
that applications may find it harmless to tolerate a small
deviation from the ideal compression granularity in the
output. For instance, the application may be able to
tolerate a maximum of 10-degree “slack” with regard to
its ideal 50-degree granularity requirement. The quality
deviation can be specified in various ways: one may
specify the tolerable degree of deviation in reference to
data points in the source stream that perfectly satisfy the
targeted data granularity, or one may specify the slack
using distance functions or membership functions of
some state important to the application.

2.3. Second observation

Our second observation is that more than one se-
quence from a data source can potentially satisfy an ap-
plication’s approximate quality requirements.

In the previous example, if the application tolerates
a maximum of 10-degree slack in the 50-degree com-

1Here we represent each tuple as a single integer; in reality, each
tuple may have several fields, but for simplicity we represent each by
the value of its “temperature” field since it is that field that is used for
filtering.

pression granularity, it is easy to validate that the fol-
lowing sequences satisfy the approximate granularity re-
quirements as well: < 0, 45, 100 >, < 0, 59, 100 >,
< 0, 50, 97 >, < 0, 45, 97 >, < 0, 59, 97 >.

2.4. Group-awareness

Let us call the above delta-compression application
A. Suppose application B shares the same source as A
and tolerates a maximum of 5-degree slack in the 40-
degree compression granularity. By the same token, it
is also easy to validate that the following sequences sat-
isfy B’s requirements: < 0, 45, 97 >, < 0, 50, 97 >,
< 0, 50, 100 >, < 0, 45, 100 >.

Individually, A may choose < 0, 50, 100 > as its
output; B may choose < 0, 45, 97 > as its output. This
makes a total of 5 tuples to output when multiplexing the
output streams for multicasting. If A and B are aware
of each other’s filtering needs, and both decide on, say
< 0, 50, 97 >, as their individual output, then only three
tuples need to be multicast to A and B to satisfy both
filtering requirements. In effect, the “group-awareness”
reduces the bandwidth demand by two tuples.

3. Framework for group-aware stream fil-
tering

In this section, we formally define the problem the
group-aware stream filtering tries to solve and show
a general group-aware filtering algorithm whose basic
idea we have briefly shown in the previous example.
First, we will introduce the assumptions and background
of our work.

3.1. Definition of the problem

With the above background information, we now for-
mally define the group-aware stream filtering problem
as the following optimization problem.

Consider a source stream S and n filters
Op1, Op2, ...Opn deployed at the source node for
n subscribing applications Application 1, Application
2, ... Application n, respectively. Filters process source
data in time-progressive batches or data windows.
An output of a filter is a time-ordered sequence. For
simplicity, we assume the timestamp of each tuple in
the sequence is unique and thus the output can be repre-
sented as a set of tuples. We define the set that contains
all satisfying outputs of Application i based on a data
window Sw ⊂ S as PotentialOuti = {S′|S′ ⊂ Sw, S′

satisfy application i’s quality requirements}. The
goal of grouped filtering is for each Opi to pick an
element outi from PotentialOuti(i = 1..n) such that
|out1

⋃
out2...

⋃
outn| is minimized (see Figure 2).

S

window W

Sw

out2out1 outn...
Goal: minimize the size of the union of all outi,1≤ i≤ n

Figure 2. Group-aware stream filtering
problem

3.2. Framework for group-aware stream
filtering

Saving bandwidth is important to satisfy long-
running applications’ quality needs and for the system to
scale well to a large number of co-existing applications
that may cooperate for a common mission. Thus, ap-
plications deployed in a wireless bandwidth-conscious
network are motivated to expose their approximate data
needs for the system to reduce the overall bandwidth de-
mand. Each application may reveal “quality-equivalent”
candidates for each of its outputs based on a “reference
point-based” approach. We define reference points as
the output that a self-interested filter would normally
produce. Then, applications can define a “slack” of a
reference point to include all adjacent data points that
are “slack” units away from the reference point as its
candidate set. For instance, in the 50-degree delta-
compression example mentioned in Section 2, the ref-
erence points of the 9-tuple sequence are 0, 50, 100. If
the application has a 10-degree “slack”, we can identify
the candidate replacement for each reference points by
computing the contiguous range of tuples before or after
the desired reference points, as long as each value is no
more than 10 degree below or over that of the reference
point. For instance, 50 now has a candidate set consist-
ing of 45, 50.

In our framework, applications can declare quality
“slack” with distance or membership functions. In the
delta-compression example, a numeric temperature dif-
ference defines the slack. A distance function may use
other attributes as well, such as the timestamp of the tu-
ples. It may also involve multiple attributes of the data.
In a location trace, for example, the distance function

GROUPAWARE-STREAM-FILTER(S, qSpec)
. initialize the filter’s internal state with application’s quality specification qSpec

1 internalState ← qSpec .initInternalState();
2 while ((currentTuple ← S.getNextTuple())! = null);
3 do if isAdmissable(currentTuple, qSpec, internalState)
4 then

. first stage: get candidates
5 internalState ← addToCandidateSet(currentTuple);
6 internalState .update(currentTuple)
7 globalState .update(“groupUtil”, currentTuple);
8 else if closeCandidateSet(currentTuple, qSpec, internalState)
9 then

. second stage: decide output for this application
10 output ← decideOutput(globalState , internalState);

. record the output in global state
11 globalState.update(“dataForMulticast”,output);

Figure 3. Group-aware stream filtering algorithm

may be the Euclidean function involving two or three
attributes that describe a location. If a context stream
represents observations made by many sensing devices,
an application can declare a membership function for
the sensing devices based on the similarity in their sens-
ing capacity and environment, such that the observations
made by a member sensor can be treated equivalent to
those made by any other member.

We abstract the group-aware filtering process into the
following continuous two-stage process at each filter.

1. First stage: finding candidates for a reference
point: select a candidate set that contains tuples
that can potentially satisfy the data quality require-
ments of the application. Communicate the can-
didate set to other source-sharing applications via
global state.

2. Second stage: deciding the output: With refer-
ence to the global state, pick a subset of tuples
from the candidate set for output. Communicate
the choices via global state.

Finally, merge and multicast the chosen output tuples
to the subscribing applications. The global state in our
framework consists of 1) the group utility of each tuple,
which captures how many applications have the tuple
in their candidate set, and 2) data-for-multicast which
records each application’s already-decided outputs that
have not yet been multicast. This two-stage process is
shown in GROUPAWARE-STREAM-FILTER of Figure 3.

This process takes the source stream S and applica-
tion’s quality specification qSpec as inputs. The qSpec

includes the predicates and functions that can be invoked
by procedure isAdmissable and closeCandidateSet
to build the candidate set for a reference output. qSpec
also initializes the internal state of the filter. The
“groupUtil” field of the global state is incremented when
a tuple can be included in the candidate set of an appli-
cation; the “dataForMulticast” field of the global state
object is to record the chosen output tuples, which will
be multicast later. The rules for choosing tuples to out-
put from a candidate set are captured in decideOutput.

The software architecture of the framework shown in
Figure 4 consists of the following modules: 1) the ap-
plication specification manager, which facilitates appli-
cations to specify their data needs with a library of com-
mon predicates, distance functions, etc.; 2) the group-
aware stream filtering manager, which manages a pool
of group-aware filters instantiated according to the ap-
plications’ quality specifications; 3) an output scheduler
that merges output decided by each application into the
multicasting format before invoking the overlay multi-
casting protocol; 4) a global state manager that main-
tains the state information shared by the applications.

4. Evaluation

We evaluate group-aware stream filtering with a pro-
totype implementation. We integrate our prototype with
a general data dissemination system, Solar [5], devel-
oped at Dartmouth College. Solar is a distributed soft-
ware infrastructures that can be deployed over a wireless
mesh network to assist applications to collect, aggregate,
and disseminate contextual data. Filters, as part of the

global state
manager

group-aware filtering manager application spec. manager

output scheduler

data output

data source instantiate

internal state

Figure 4. Framework for group-aware stream filtering

aggregation-oriented services, are deployed for applica-
tions on the nodes where context sources are published.
The core of Solar is a scalable and self-organizing peer-
to-peer overlay to support key data-driven services, in-
cluding the application-level multicasting service. The
multicast service uses its peer-to-peer routing substrate
to improve the scalability of data dissemination and does
not rely on IP multicast. Our group-aware filtering ser-
vice utilizes both filtering and the multicast service pro-
vided by Solar. We have implemented group-aware
stream filtering as an enhanced service running on top
of Solar’s basic filtering and multicasting services.

We use real sensor data collected by the NAMOS
(Networked Aquatic Microbial System) project at
UCLA2 for data sources. In particular, we use the tem-
perature trace collected in August 2006 as the major
source of data for testing our ideas. That trace con-
tains temperature samples every 10ms; it is important
to save bandwidth while disseminating such data over a
bandwidth-limited wireless mesh network. The temper-
ature change of consecutive readings in the trace is, on
average, well below 0.03 degree and it is reasonable to
compress the data using the delta-compression specifi-
cations shown in Table 1.

We used Emulab3 to set up a seven-node DHT ring
for Solar overlay services. The nodes are 600MHz CPUs
with FreeBSD 4.5 and JDK 1.4.2. We set the link capac-
ity of the network to be 50Mbps (note that 50Mbps is
much larger than effective bandwidth usually obtainable

2http://cens.ucla.edu
3http://www.emulab.net

Table 1. Delta-compression specifications
Spec. App1(Delta/Slack) App2(Delta/Slack)
spec1 0.03/0.003 0.04/0.004
spec2 0.03/0.006 0.04/0.008
spec3 0.03/0.012 0.04/0.016
spec4 0.03/0.006 0.06/0.012

in a wireless mesh network. We set it so, mainly to get a
lower-bound estimation on the transport latency among
the nodes.) We created a Solar source that continuously
publishes events obeying the original event interval in
the temperature trace. We deployed two group-aware fil-
ters on the node that runs the source. The filters capture
applications’ delta-compression specifications shown in
Table 1.

We evaluate the bandwidth savings of our approach
using the output ratio, which is the total number of tu-
ples output by the group-aware filters over the total num-
ber of tuples output by individual filters. This metric
measures the bandwidth saved by group filtering beyond
that saved by multicasting and basic filtering. Figure 5
shows the results; for each test, we show the average
and the median of the output ratio, across batches of
100 tuples. We can see that group-aware filtering can
reduce output as much as 20% in these tests. For a low-
bandwidth network, such savings of bandwidth is valu-
able.

Intuitively, the wider the slack is in the delta-
compression specification, the more likely it is to find

NAMOS Temperature Data (Aug., 2006)

0.983

0.807

0.9023

1

0.8103

0.9163 0.92680.9274

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

spec1 spec2 spec3 spec4

test specification (avg. / median of output ratio)

o
u
tp

u
t

ra
ti
o

Figure 5. Average and median of output ra-
tio

overlapped candidate sets for two applications, and thus
output should be more reduced. This effect is reflected
in our results: given the same delta values, spec2 has
twice the slack of spec1, and spec3 has twice the slack
of spec2, which explains the better output ratio of spec2
(0.9163) over spec1 (0.9830), and spec3 (0.8070) over
spec2 (0.9163).

We measured the cost of group-aware filtering by the
CPU time consumed per batch of data. Figure 6 shows
the CPU cost of running the group-aware filtering al-
gorithm in four settings. We can see that processing a
batch of 100 tuples costs no more than 30ms in average:
the group-aware filter processing rate was about 0.3ms
per tuple, which is much faster than the data arrival rate
(10ms per tuple). This shows that the group-aware fil-
tering was suitable for fast stream processing thanks to
its low CPU overhead.

We also measured the average latency of transporting
a tuple from a node to another in the Emulab setup. It
was about 134.01ms, which, compared with the 0.3ms
per tuple processing rate of the group-aware filtering,
is much more substantial. In a wireless mesh net-
work whose effective bandwidth is well below 50Mbps,
the even longer latency incurred during transportation
makes the overhead of group-aware filtering negligible.

5. Related work

Bandwidth-reduction mechanisms, such as sampling,
summarising, and filtering, have been actively re-
searched in recent years in the systems community [11,
8, 2, 3, 4]. Most of the mechanisms are discussed in the
context of a single streaming application. Only a few

NAMOS Temperature Data (Aug. 2006)

28.34 28.76 29.28
26.96

25.5
23

27.5
25

0

5

10

15

20

25

30

35

spec1 spec2 spec3 spec4

test specification (avg. /median CPU time)

C
PU

 t
im

e
(m

s)

Figure 6. CPU cost in group-aware filtering

research efforts have looked into group optimization for
streaming applications, but these mechanisms are either
based on traditional compiler rewriting techniques, or
the simple grouping of stateless filters [1, 6, 10, 12, 7].
When data reduction is based on simple filters, group-
ing the filters has been proved to save computational
power [10, 12]. Different from their objectives, the goal
of our work is to trade CPU time for bandwidth savings.

Our work exploits semantics of a stream process-
ing application to improve resource management in a
dissemination system. IBM’s Gryphon [13] also uses
the semantics of aggregation functions of the applica-
tion to compress a sequence of data into a reduced se-
quence that will have the same effect on application’s
states. Zhao et al. [14] proposed a case-based lan-
guage to specify an application’s sophisticated process-
ing needs, which identify what sequences are semanti-
cally equivalent to applications so that the system can
re-order sequences and compensate the data lost in the
network. We have a different goal than either project:
rather than using a complicated language to describe the
needs, we opt for a simple framework with libraries of
distance functions and member functions to let applica-
tions describe the approximate nature of their data re-
quirements.

Johnson et al. [9] summarized a general structure for
sampling operators. The structure also contains stages,
as we proposed. If we see our group-aware filtering from
a sampling point of view, our algorithm is a special kind
of sampler in that it picks an output from a candidate set
of outputs. But our process involves coordination across
a group of applications, which never occurs in Johnson’s
single-application oriented sampling.

6. Conclusion and future work

In a wireless data dissemination network, bandwidth
limitations are a critical problem well recognized by
the research community. In this work we let the data-
dissemination system exploit the semantics of many
streaming applications, in particular the applications’
approximate nature of data filtering and processing, to
save network bandwidth. The key of our solution is
to leverage overlay multicasting and in-network group-
aware filters. Our preliminary evaluations based on real
sensor data traces collected by UCLA’s CENS project
have shown encouraging results with low CPU cost.

As a first step, we evaluated our work using a simple
delta-compression filtering scheme. For future work, we
would like to consider the following extensions.

• Diverse data traces for testing. We plan to accu-
mulate more real event streams to further the eval-
uation. With experience, we will gain insights into
the properties of applications and data that might
allow us to improve group-aware filtering.

• Diverse application needs for testing. This work
focused on the simple delta-compression needs of
applications. We plan to test with more diverse fil-
tering types. For example, applications may want
to filter the data based on values of multiple at-
tributes in a tuple or some patterns in the tuple se-
quence.

• Topology-aware grouping. Currently we group all
the filters subscribing to a source, regardless of the
topology of the applications. In scenarios where
two applications share little of their routes from the
source, there is little benefit to maximize the over-
lap of the two output streams. Hence, if we can
group the applications’ filters by how applications
are clustered in the network, we may reduce the
overall bandwidth needs even more.

7. Acknowledgments

The authors want to thank Guanling Chen, Kazuhiro
Minami, other members in the ARTEMIS project at
the Institutue for Security Technology Studies and other
members of Center for Mobile Computing at Dartmouth
College, for their valuable suggestions and feedback.
This research program is a part of the Institute for Secu-
rity Technology Studies, supported under Award number
2000-DT-CX-K001 from the U.S. Department of Home-
land Security, Science and Technology Directorate, and
by Grant number 2005-DD-BX-1091 awarded by the
Bureau of Justice Assistance. Points of view in this doc-
ument are those of the authors and do not necessarily

represent the official position of the U.S. Department of
Homeland Security or the United States Department of
Justice.

References

[1] Suresh Aryangat, Henrique Andrade, and Alan Sussman.
Time and space optimization for processing groups of
multi-dimensional scientific queries. In ICS ’04: Pro-
ceedings of the 18th Annual International Conference on
Supercomputing, pages 95–105, New York, NY, USA,
2004. ACM Press.

[2] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sam-
pling from a moving window over streaming data. In
SODA ’02: Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 633–
634, Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics.

[3] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sam-
pling algorithms: lower bounds and applications. In
STOC ’01: Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, pages 266–275,
New York, NY, USA, 2001. ACM Press.

[4] Surajit Chaudhuri, Rajeev Motwani, and Vivek
Narasayya. On random sampling over joins. In SIGMOD
’99: Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data, pages
263–274, New York, NY, USA, 1999. ACM Press.

[5] Guanling Chen, Ming Li, and David Kotz. Design and
implementation of a large-scale context fusion network.
In MobiQuitous ’04: Proceedings of the First Annual In-
ternational Conference on Mobile and Ubiquitous Sys-
tems, pages 246–255. ACMPress, 2004.

[6] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan
Wang. NiagaraCQ: a scalable continuous query system
for Internet databases. In SIGMOD ’00: Proceedings of
the 2000 ACM SIGMOD International Conference on
Management of Data, pages 379–390, New York, NY,
USA, 2000. ACM Press.

[7] Reynold Cheng, Ben Kao, Sunil Prabhakar, Alan Kwan,
and Yicheng Tu. Adaptive stream filters for entity-based
queries with non-value tolerance. In VLDB ’05: Proceed-
ings of the 31st International Conference on Very Large
Data Bases, pages 37–48. VLDB, 2005.

[8] Theodore Johnson, S. Muthukrishnan, and Irina Rozen-
baum. Sampling algorithms in a stream operator. In SIG-
MOD ’05: Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data, pages
1–12, New York, NY, USA, 2005. ACM Press.

[9] Theodore Johnson, S. Muthukrishnan, and Irina Rozen-
baum. Sampling algorithms in a stream operator. In SIG-
MOD ’05: Proceedings of the 2005 ACM SIGMOD in-
ternational conference on Management of data, pages 1–
12, New York, NY, USA, 2005. ACM Press.

[10] Samuel Madden, Mehul Shah, Joseph M. Hellerstein,
and Vijayshankar Raman. Continuously adaptive contin-
uous queries over streams. In SIGMOD ’02: Proceed-
ings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, pages 49–60, New York,
NY, USA, 2002. ACM Press.

[11] Don P. Mitchell. Consequences of stratified sampling in
graphics. In SIGGRAPH ’96: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interac-
tive Techniques, pages 277–280, New York, NY, USA,
1996. ACM Press.

[12] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In SIG-
MOD ’03: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 563–
574, San Diego, California, June 2003.

[13] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An
information flow based approach to message brokering.
In International Symposium on Software Reliability En-
gineering (ISSRE ’98), 1998.

[14] Yuanyuan Zhao and Rob Strom. Exploitng event stream
interpretation in publish-subscribe systems. In PODC
’01: Proceedings of the twentieth annual ACM sympo-
sium on Principles of distributed computing, pages 219–
228, New York, NY, USA, 2001. ACM Press.

