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Abstract. Transportable agents are autonomous programs. They can move through a heterogeneous network
of computers migrating from host to host under their own control. They can sense the state of the network,
monitor software conditions, and interact with other agents or resources. The network-sensing tools allow our
agents to adapt to the network configuration and to navigate under the control of reactive plans. In this paper we
describe the design and implementation of a transportable-agent system and focus on navigation tools that give
our agents autonomy. We also discuss the intelligent and adaptive behavior of autonomous agents in distributed
information-access tasks.
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1. Introduction

Modern information systems have data distributed over heterogeneous and unreliable net-
works. We wish to develop sophisticated methods for browsing, searching, and organizing
distributed information systems. Traditional approaches to distributed information access
co-locate the data and the computation needed to process it by bringing the data to the
computation. We advocate a novel approach that brings the computation to the data in the
form of transportable agents. A transportable agent is a program that can migrate from
machine to machine in a heterogeneous network. Transportable agents have navigation
autonomy, that is, they are capable of traveling freely and independently throughout a com-
puter network. This approach requires an agent to have substantial intelligence in making
decisions and filtering information.

We have built a system called D’ Agents' that supports transportable agents. Our system
supports several languages: Agent Tcl allows users to program agents in an extension of
Tcl; Agent Java allows users to program agents in an extension of Java; Agent Scheme
allows users to program agents in an extension of Scheme. In this paper we discuss our
transportable-agent system and describe distributed information access experiments in a
network of mobile computers, such as laptops. Mobile computers do not have a permanent
connection into the network and are often disconnected for a long period of time. We focus
on sensori-computational aspects of the system that allow the agents to observe changes
in their world and to navigate adaptively through a network, guided by reactive plans. For
example, a user might write a transportable agent for a distributed information access task,
launch it from a laptop connected to the Internet in California, and disconnect the laptop.
The agent will navigate the Internet autonomously, gathering and organizing information.
Some time later, the user might resurface on the Internet in New York, where the laptop is
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assigned a different IP address. The agent should detect the presence of the laptop on the
Internet at the new location and return to it with the search results. The system we describe
here permits the quick specification of adaptive autonomous agents for such classes of tasks.

Transportable agents navigate heterogeneous networks under the control of reactive plans
that give adaptation powers to these agents. We support adaptation with an infrastructure
of network-sensing modules. Agents can sense hardware conditions (for example, whether
a host is connected to the network) or software conditions (for example, a specific change
in a database). The systems infrastructure for information processing on mobile computers
is described in detail in (Gray et al., 1996).

Transportable agents provide a convenient, efficient, and intelligent paradigm for imple-
menting distributed applications, especially in the context of wireless computing. First,
by migrating to the location of an electronic resource, an agent can access the resource
locally and eliminate costly data transfers over congested networks. This reduces network
traffic, because it is often cheaper to send a small agent to a data source than to send all the
intermediate data to the requesting site. Second, the agent does not require a permanent
connection to the host machine (e.g., the computer from where an agent is launched). This
capability supports distributed information-processing applications on mobile computers.
Third, the network-sensing capabilities enable agents to autonomously find the host com-
puter, even when the host changes its geographical location. Fourth, the network software-
and hardware-sensing capabilities permit transportable agents to navigate adaptively. Fifth,
our transportable agents can communicate with each other even when they do not know
their specific locations in the network. Finally, agents have autonomy in decision making:
by using feedback from visiting a site, they can independently modify the overall plan or
refine ill-specified queries. When combined with communication, decision-making enables
our agents to be negotiators. D’Agents supports negotiation through an infrastructure that
supports transactions on electronic cash, arbitration on electronic cash transactions, and
economic policies for resource control.

Transportable agents provide a simple, adaptive, and unified solution for networking
mobile computers and for supporting many distributed systems applications. A good trans-
portable agent system eliminates the need for application-specific solutions, while provid-
ing similar performance. Specifically, with such an agent system there is (1) no need for
high-level search engines at the remote sites (e.g., the search application); (2) no need for
automated installations (i.e., follow-me computing?) and (3) no need for distributed appli-
cations to build their own control language (e.g., programmable distributed databases.)

2. Previous Work

Kahn’s proposal (Kahn and Cerf, 1988) about architectures for retrieving information from
electronic repositories was the first recognition of the utility of software agents for infor-
mation processing. It provides context for the issues discussed in this paper. We draw from
research results in several distinct areas: operating systems, agents, information retrieval,
and mobile robotics.

Although little has been published on transportable agents, much work has been done
concerning the general concept of remote computation. Remote Procedure Call (RPC)
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(Birrell and Nelson, 1984) was an early form of remote client-server processing. Fal-
cone (Falcone, 1987) discusses a distributed-system in which a programming language
provides a remote service interface as an alternative to RPC calls. Stamos and Gif-
ford (Stamos and Gifford, 1990) introduce the concept of Remote Evaluation (REV), in
which servers are viewed as programmable processors. The Telescript technology in-
troduced by General Magic, Inc. in 1994 was the first commercial description of trans-
portable agents (White, 1994). Other notable transportable agent systems include Agent
Tcl (Gray, 1996), Odyssey3, Tacoma (Johansen, van Renesse, and Schneider, 1995), Mo-
bile Service Agents (Tomsen et al.,, 1995), IBM Aglets4, and Sumatra (Ranganathan et al.,
1997). Odyssey is General Magic’s Java-based successor to Telescript; Telescript itself has
been withdrawn from the market. D’ Agents distinguishes itself from other systems by com-
bining a true jump instruction (one that automatically captures the complete agent state),
support for multiple languages, simple but effective security mechanisms, and significant
navigation, communication and debugging tools.

In the software-agents literature, much time and effort has been devoted to designing
task-directed agents and to the cognitive aspects of agents. Agents are called knowbots by
(Kahn and Cerf, 1988), softbots by (Etzione and Weld, 1994), sodabots by (Kautz, Selman,
Coen 1994), software agents by (Genesereth and Ketchpel, 1994), personal assistants by
(Maes, 1994, Mitchell et al., 1994), and information agents by (Rus and Subramanian, 1997,
Rus and Subramanian, 1995). We are interested in the same class of tasks as (Etzione and
Weld, 1994, Maes, 1994, Mitchell, et al., 1994). Etzioni and Weld (Etzione and Weld, 1994)
use classical Al planning techniques to synthesize agents that are Unix shell scripts.
Mitchell and Maes (Mitchell et al., 1994, Maes, 1994) study the interaction between users
and agents and propose statistical and machine-learning methods for building user mod-
els to control the agent actions. Rus and Subramanian (Rus and Subramanian, 1997, Rus
and Subramanian, 1995) propose a modular, open, and customizable agent architecture
organized around a notion of structure recognition. In our previous work (Gray, 1995,
Gray, 1996, Nog, Chawala, and Kotz, 1996, Gray et al., 1996, Kotz, Gray, and Rus, 1996,
Rus, Gray, and Kotz, 1997) we describe other aspects of transportable agents in Agent Tcl.

3. D’Agents: a Transportable Agent System

Like all mobile-agent systems, the main component of D’Agents® is a server that runs on
each machine. When an agent wants to migrate to a new machine, it calls a single function,
agent_jump, which captures the complete state of the agent and sends the state image
to the server on the destination machine. The destination server starts up an appropriate
execution environment (e.g., a Tcl interpreter for an agent written in Tcl), loads the state
image into this execution environment, and restarts the agent from the exact point at which
it left off. Now the agent is executing on the destination machine and can interact with that
machine’s resources without any further network communication. In addition to reducing
migration to a single instruction, D’ Agents has several important features:

e  Multiple languages. The simple, layered architecture supports multiple languages. The
current supported languages are Tcl, Java and Scheme.



218 RUS, GRAY AND KOTZ

o Interagent communication. Agents communicate with either low-level mechanisms
(message passing and streams) or high-level mechanisms (RPC and KQML) that are
implemented at the agent level on top of the lower-level mechanisms. Agents can
communicate freely with each other even if they are written in different languages, and
all communicate primitives work the same whether or not the communicating agents
are on the same machine.

e Security. D’Agents protects individual machines from malicious agents (as well as
groups of machines that are under single administrative control) (Gray, 1996).

e Support services. D’ Agents provides agents with a range of support services, including

network sensing, hierarchical service directories, and transparent migration to and from
mobile computers.

The rest of this section describes the architecture, communication mechanisms, and se-
curity mechanisms. The support services are discussed in the rest of the paper.

3.1. Architecture

Agents i
~ 3 Network
Tcl/Tk | Java | Scheme ! Monitor
T~ 3 Docking
Generic core ! system
| X
| RPC Support
Server ! agents
i i Network host
TCP/IP Electrf)nlc !
mail !

Figure 1. The architecture of Agent Tcl. The core system (left) has five levels: transport mechanisms, a server that
runs on each machine, a language-independent library that provides the basic agent functionality (in cooperation
with the servers), an interpreter for each supported agent language, and the agents themselves. Support agents
(right) provide navigation, communication and resource-management services to other agents.

As Figure 1 shows, Agent Tcl’s architecture has a five-level core system and an agent-level
support system. The lowest-level of the support system is an interface to each available
transport mechanism. The second level is a server that runs at each network site. The server
performs the following tasks:
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o  Status and administration. The server keeps track of the agents that are running on its
machine and answers queries about their status. The server also allows an authorized
user to suspend, resume, and terminate a running agent.

e Migration. The server accepts each incoming agent, authenticates the identity of its
owner, and passes the authenticated agent to the appropriate interpreter.

o Communication. The server provides a two-level namespace for agents and allows
agents to send messages to each other within this namespace. The first level of the
namespace is the network location of the agent; the second level is a location-unique
integer that the server picks for the agent or a location-unique symbolic name that the
agent picks for itself. Location-independent namespaces are provided at the agent level.
A message is an arbitrary sequence of bytes with no predefined syntax or semantics ex-
cept for two types of distinguished messages. An event message provides asynchronous
notification of an important occurrence while a connection message requests, rejects or
accepts the establishment of a direct connection. A direct connection is a named mes-
sage stream between agents and is more convenient and efficient than message passing
(since the programmer can watch for messages on a particular stream and the server
hands control of the connection to the agent). The server buffers incoming messages
and creates a named message stream once a connection request has been accepted.

e Nonvolatile store. The server will (but does not yet) provide a nonvolatile store so that
agents can back up their internal state as desired. The server will restore the agents
from the nonvolatile store in the event of machine failure.

As in Tacoma (Johansen, van Renesse, and Schneider, 1995), all other services are pro-
vided by agents. These services, some of which are shown on the right in Figure 1, include
network sensing, location-independent addressing, and high-level communication. The
most important service agents are the resource manager agents that guard access to critical
system resources such as the screen, network, CPU, and disk. These resource managers are
discussed in the security section below.

The third level of the D’ Agents core is a language-independent library that connects each
agent with its local server. This library, in cooperation with the servers, provides agents
with the operations shown in Table 1. All of the operations are subject to authorization
checks and resource limits. The most important operations are agent_jump, which an
agent uses to migrate, and agent_submit and agent_fork, which an agent uses to create
child agents. The agent_checkin operation is currently a noop, since the server does
not yet provide the nonvolatile store. In addition to the operations shown in the table,
the library provides a cryptographically-secure random number generator for use in agent-
level encryption protocols, and allows event-driven agents to associate event handlers with
incoming messages and connection requests.

The fourth level of the D’Agents core is an execution environment for each supported
agentlanguage. D’ Agents supports Tcl (Welch, 1995), Java (Gosling and McGilton, 1995),
and Scheme (Kelsey and Rees, 1995), so its “execution environments” are a Tcl interpeter
(Tcl 7.5), a Scheme interpeter (Scheme 48), and a Java interpeter (Sun JDK 1.1). Each
interpeter has been extended with three additional modules: (1) a state-capture module that



220 RUS, GRAY AND KOTZ

Table 1. Operations available to agents.

Operation Function
agent_begin/agent_end Register with the local server
Tell the local server that the agent has finished
agent_jump Migrate to a new machine
agent_submit / agent_fork Create a new agent / clone the agent
agent_name Register a unique symbolic name with the local server
agent_send, agent_receive Send and receive messages
agent_meet Request, accept or reject a direct connection
agent_status Obtain information about other agents
agent_notify Ask the server to send an event message when some other
agent comes into existence or terminates
agent_select Wait for messages, connection requests, or input
on arbitrary file descriptors
agent_suspend, agent_resume, | Suspend, resume and terminate other agents
agent_force
agent_checkin Checkpoint the agent’s current state

can capture and restore the state of an executing program; (2) a set of stubs that allow a
program to call the agent operations in the language-independent library; and (3) a security
module that enforces the decisions of the resource managers. For Tcl, the state-capture
module captures and restores all defined variables and procedures, the procedure-call stack
and the control stack, and the library stubs are a set of Tcl commands provided as standard
Tcl extension. The agent_jump routine in the library calls the state-capture module to get
the agent’s current state before migrating. For Java, the state-capture module captures and
restores the state of a single Java thread (i.e., the code, control stack, and all accessible
objects), and the stubs are methods in a special Java class, Agent. Finally, for Scheme,
the state-capture module captures and restores the current continuation (i.e., the rest of the
program), and the stubs are a set of Scheme functions. The security modules for each
language are described in the security section below.

Finally, the last level of the D’Agents core consists of the agents themselves, which
execute in the interpeters and use the facilities provided by the servers (and the library) to
migrate from machine to machine and to communicate with other agents. Agents include
both moving agents, which visit different machines to access needed resources, as well as
stationary agents, which stay on a single machine and provide a specific service to either
the user or other agents. From the system’s point of view, there is no difference between
the two kinds of agents, except that a stationary agent has authority to access more system
resources.

3.2. A sample agent

Figure 2 shows a simple Agent Tcl agent. The agent’s task is to make a list of all users
logged onto some of the machines at Dartmouth and then show this list to its owner. The
agent has several parts:
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Bald (home) agent_begin
set output {}; set machineList {muir tenaya ...}
foreach machine $machineList {
agent_jump $machine
append output [exec who]
}
agent_jump $agent(home)

# display results

Tenaya agent_end

Figure 2. A simple Tcl agent that figures out which users are logged onto some set of machines. bald, muir, and
tenaya are machines at Dartmouth. The agent starts on bald.

e agent_begin. The agent registers with the Agent Tcl servers on its home machine,
bald.’

e agent_jump $machine. The agent migrates sequentially through the machines of
interest (muir, tenaya, and so on). It continues executing from the point of the
agent_jump on each successive machine.

e exec who. The agent executes the Unix who command on each machine. It adds the
list of users to the Tcl variable output, which is automatically carried along with the
agent as it migrates.

e agent_jump $agent (home). Once the agent has migrated through all the machines,
it migrates one last time to return to its home machine, bald.

e # display results. Once on bald, the agent uses the Tk toolkit to create an output
window and display the complete user list to its owner. The window (and the Tk code
for creating it) are not shown in the figure.

e agent_end. The agent tells the server on bald that it has finished.

Although this agent performs a simple task, it illustrates the general form of any agent
that migrates sequentially through some set of machines. The exec who can be replaced
with any desired local processing.

Instead of migrating sequentially like the example “who” agent, some agents will send
out a wave of child agents to interact with multiple resources at the same time. Other
agents will choose to remain stationary and interact with a resource remotely. An agent
chooses remote interaction if (1) the resource provides an extremely high-level interface
(and thus there is no intermediate data transmission to eliminate), (2) the resource’s machine
is overloaded (and there is no replicated copy of the resource), or (3) the resource’s machine
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does not support the D’Agents system. Most agents will use some combination of these
three extremes: migration, children and remote interaction.

3.3.  Security

Security is a critical issue in any mobile-code system. D’ Agents currently protects machines
from malicious agents, but does not yet protect agents from malicious machines. A full
description of the security mechanisms is beyond the scope of this paper and can can be
found in (Gray, 1996) and (Gray, 1997). Here we give only a brief description.

The four main features of our current implementation are:

e encryption of migrating agents to protect agent privacy,

e digital signatures on migrating agents to authenticate the agent’s owner to the new
machine,

e resource managers that decide which agents are allowed to access system resources,
and

e language-specific security modules that enforce the decisions of the resource managers.

Each resource (CPU, memory, file system, screen, network, efc.) has a stationary agent
that acts as a manager. The configuration files for each manager specify which agent
owners are allowed to access which system resources. When an agent tries to access some
system resource, the language-specific security module sends the access request and the
agent’s security information to the appropriate manager. The manager either accepts or
rejects the request, based on its configuration information and the authenticated identity of
the requesting agent’s owner. The security module then enforces the manager’s decision,
either throwing an error or allowing the access to proceed. This division into managers and
enforcement modules clearly separates policy and enforcement, making it much easier to
dynamically change the current security polices. Writing a language-specific enforcement
module for each language is unnecessary, since we instead could modify each interpreter
so that all resource accesses were routed through the agent library. However, a separate
enforcement module for each language minimizes the modifications that need to be made
to the standard Tcl and Scheme interpreters, which has made the prototyping phase of the
D’Agents project much easier.

For Tcl, the enforcement module will be based around Safe Tcl (Levy and Ousterhout, 1995),
which executes a Tcl script in two interpreters, an untrusted “user” interpreter and a trusted
“kernel” interpreter. Dangerous commands, such as open and write, are removed from the
user interpreter and replaced with links to secure versions of those commands in the trusted
interpreter. So, in our case, the visiting agent executes in the untrusted interpreter, and all
resource accesses are trapped into the trusted interpreter, which contacts the appropriate
resource managers and then caches and enforces their decision. For Java, the enforcement
module is a custom Java security manager, and for Scheme, the enforcement module will
be based on the Scheme 48 module facilities. In both cases, the same resource managers
make the same policy decisions.
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The managers can also be configured to provide resource limits for a group of machines
that are under single administrative control. Essentially, the system administrator defines
a group of machines and resource limits for agents migrating among those machines. The
resource amounts that an agent has used so far is propagated from machine to machine
within the group. In addition, we are exploring an electronic-cash mechanism in which
agents must spend money to access resources. Such a mechanism would limit an agent’s
total resource usage even across administrative domains, preventing an agent from living
forever within the network.

3.4. Interagent communication

The base system allows agents to communicate in two ways: (1) the agents can exchange
individual messages, or (2) the agents can establish a direct connection for more efficient,
long-term communication. In both cases, an agent must know the current network location
and identity of the desired recipient. We chose these low-level mechanisms for two rea-
sons: (1) agents with simple communication requirements can communicate with minimal
overhead, and (2) agents are not restricted to a particular high-level protocol. Many agents,
however, need more structured and flexible communication. Thus, higher-level communi-
cation protocols are provided at the agent level on top of the lower-level mechanisms.

One of our higher-level mechanisms is Agent RPC (Nog, Chawala, and Kotz, 1996),
which is analogous to traditional RPC (Birrell and Nelson, 1984), and allows an agent
to invoke operations exported from another agent as if they were local procedures. An
interface definition is compiled into client and server stubs, which are included in the client
and server agents. On startup, the server agent registers its location, keyword description
and interface definition with one or more nameserver agents. To find a server agent that
provides a particular service, a client agent queries a nameserver, either by name or by
interface definition. In the case of interface definition, the nameserver matches the desired
interface against the interface of all registered server agents, returning a list of those agents
that provide the same interface. The interface matching is quite flexible, ignoring parameter
order and considering only the function name, the result type, and the number and types of
the parameters. After the client agent has identified an appropriate server agent, it connects
to the server agent and invokes the exported server operations by calling the client stubs.
Each client stub converts the procedure arguments into a message and sends this message
along the connection to the server agent. The corresponding server stub unpacks the argu-
ments, invokes the appropriate sever operation, and then sends back the result (See (Kotz
et al., 1997) for performance data).

We also plan to use the support for the federated KQML architecture of (Genesereth and
Ketchpel, 1994) developed by Cost et al. 1997. Here, a server agent expresses its ca-
pabilities in a declarative language, and registers this description to a hierarchical system
of “facilitators”. A client agent expresses its request in the same declarative language,
and sends the request to its local facilitator. The local facilitator then uses standard infer-
ence techniques to satisfy the request, reasoning from its database of server capabilities,
contacting other facilitators and specific server agents as needed.
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Both Agent RPC and the KQML architecture, as well as the “yellow pages” service direc-
tories described later, allow an agent to discover the location and identity of an appropriate
service provider. Agents will use one of these communication or directory services as their
needs dictate.

4. Sensing

To remain efficient, agents unleashed in the network must operate without continuous
contact with their home sites, without user intervention, and despite complications. For
example, if the agent was launched from a mobile platform that has since become temporar-
ily disconnected from the network, it must be prepared to proceed on its own rather than
waiting an unknown amount of time for the mobile platform to reappear. Complications
arise because agents operate in a dynamic and uncertain world. Machines go up and down,
the information stored in repositories changes, and the exact sequence of steps needed
to complete an information access task is not completely known at the time the agent is
launched into the world. Without external state (what the agent can perceive about the state
of its world) an autonomous agent is crippled since it has no way of perceiving and adapting
to the dynamic changes in its environment. This section elaborates on the “sensors” that
allow an agent to discover important information about its environment and to establish its
external state. We focus on the following two components of external state: hardware and
software.

4.1. Sensing the state of the network

Our agents can determine whether a network site is reachable and estimate the expected
transit time across the network. This information allows an agent to adapt to currently
unreachable or overloaded sites by visiting other sites first. Adaptive agents can use infor-
mation about reachability, network delays, and available bandwidth to intelligently construct
routing plans. We have implemented several network sensors:

Local connectivity. This sensor determines whether the local host is physically connected
by pinging the broadcast address on the local subnet. If there is any response in a short
interval, the network is connected. Otherwise, the network is disconnected. This sensor is
especially useful when the local host is a laptop, or any other roving device.

Site Reachability. This sensor returns true if a specific site is reachable. This sensor is
implemented by sending an IP ping packet to the remote site. If there is any response from
the remote site in a short interval, the site is reachable. Otherwise, the site is not reachable.
Network Latency. This sensor tests the expected transit time for agents of different
sizes to a remote host. The sensor is implemented by collecting traffic history data about
the latency of each interaction between the local machine and remote sites. This data is
collected and stored in a local table. Fast Fourier Transforms are used to analyze this data
and to predict future performance. The development of this sensor is in progress.
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4.2.  Sensing for disconnected operation

A mobile-computing environment, where the computers themselves are mobile, provides
one of the best demonstrations of the potential for using sensor-based transportable agents.
Mobile computers often disconnect from the network, or change the reliability or speed
of their network connection. When the host computer is disconnected, the adaptability of
agents becomes a critical advantage. Most client-server networking applications require a
continuous connection between the client application and the server application; a mobile
agent moves some of the client code to the server’s machine, or vice versa, so that they can
hold an entirely local dialogue. Thus, once an agent has jumped off of a mobile computer,
this computer may be disconnected, moved to a new site, and reconnected. The agent will
jump back to the mobile computer when the agent has finished its task and the mobile
computer has reconnected. For agents trying to jump into or out of the mobile computer,
however, the traditional approach (try, timeout, sleep, retry, . . .) can often fail, particularly if
the agent does not happen to retry its jump during a brief reconnection period. To overcome
these problems, D’ Agents uses an indirection mechanism called a docking system.
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Jjump to a disconnected . .-* " 2. If device is

laptop St -t unreachable,
‘_.-"' agent goes to
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Figure 3. The docking system. An agent attempts to jump to a disconnected laptop. The agent is sent to the
laptop’s dock instead. When the laptop reconnects, it sends a message to its dock who forwards all the waiting
messages. The laptop detects its local connectivity using the sensor described in Section 4.1.

In the D’ Agents docking system, any machine that is frequently disconnected is assigned
another permanently connected machine as its “dock.” Furthermore, every machine has a
“jump manager” agent.
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Consider an agent running on a disconnected laptop (see Figure 3). When the agent
executes the agent_jump command, the agent system normally captures the state of the
agent and transfers it to the destination machine, where the state is restored and the agent
continues running. The local connectivity sensor is used to determine whether the mobile
computer is connected. In the situation where the mobile computer is not currently con-
nected, the system instead saves the agent state and registers the agent with the local jump
manager. When the mobile computer is reconnected, the local connectivity sensor detects
the event and informs the jump manager. When the jump manager receives this signal, it
sends all waiting agents off the mobile computer toward their destination. If the source ma-
chine (mobile computer or otherwise) is connected but the destination is not reachable, the
system sends the agent instead to the destination’s “dock.” There it is received by another
jump manager.

Whenever a mobile computer reconnects to the network, the local connectivity sensor
detects this event and informs its jump manager. The jump manager sends a message to the
jump manager on the dock machine, informing the manager of the laptop’s connection and
new address. The jump manager then sends all waiting agents to the laptop.

We have measured the performance of agent_jump for disconnected operations. If an
agent has to go through one dock on its way to the destination machine, the total time for the
operation is 0.8 seconds. A normal jump, where the agent goes directly to the destination
machine takes 0.2 seconds. Most of the overhead for a normal jump comes from starting up
a new Tcl interpreter in which to execute the agent. This overhead can be eliminated with
a pool of already started interpreters. We are adding such a pool now. For more details see
(Kotz, et al., 1997).

4.3. Sensing software changes

Agents are often faced with the problem that a resource is unavailable, does not contain the
desired information, or is expected to contain additional relevant information at an unknown
point in the future. Depending on the application, the agent might choose to report failure,
move to an alternative resource, or wait for the desired resource or information to become
available. Our agents use information-retrieval techniques to detect when the state of a
software resource has changed. Significant activity on a resource is signaled by an increase
in the resource size (detected by looking at the size) or a shift in content (detected by the
information-retrieval methods we use in Section 6). Figure 4 shows an agent that monitors
a set of files and directories and sends an email message when it senses significant activity
on a file. The agent works by creating one child agent for each remote filesystem. Each
child monitors one or more directories and sends a message to the parent when there is
significant file activity. The parent then contacts the user’s mail agent to send the message.
Although simplistic, this agent illustrates the general task of waiting for an event to occur
and then reacting appropriately, a task that is faced by nearly every agent.



TRANSPORTABLE INFORMATION AGENTS 227

set email_agent "bald rgray email" # machine and name of email agent
set machines "bald moose"
set directory "~rgray"

# get a name from the server

agent_begin

Bald (email . . . . .
message) # submit the "file" agents that watch for changes in file size
for each m $machines {
agent_submit $m -vars directory -proc file watch {file watch $directory}
}
Moo # wait for one of the "file" agents to send a message saying that a
. essage # file has changed size; then send an alert message to the user by
(file name and Create # asking the user’s email agent to send a message to its owner
size change)
while {1} {
agent_receive code string -blocking
Moose set alert [construct_alert $string]

agent_send $email_agent {SEND OWNER $alert}

Figure 4. The alert agent monitors a set of files and sends an email message to the user when it detects a significant
file activity. A simplified version of this agent appears on the right side. The network location of the various
agents is shown on the left side. file-watch looks at the size of the file and compares the content of the file
against a query or a previous version of the file using information-retrieval techniques (Salton, 1991).

5. Navigation

Agents implemented in D’ Agents have the ability to move by themselves through a network.
But where should they go? Agents need either a partial model or partial knowledge of both
the task and the environment. We use a scheme that provides a system of virtual yellow
pages to help the agents decide where to go. These yellow pages contain listings of services
and resources. By consulting these virtual yellow pages and using the network-sensing
tools, an agent selects a list of services relevant for its task and formulates adaptive plans
to visit some of the sites.

5.1. Virtual Yellow Pages

The virtual yellow pages are a distributed database of service locations maintained by a
hierarchical set of navigation agents. Services register with the Yellow Page Agents that are
scattered throughout the system (Figure 5) and manage the yellow pages. Each machine
has a Navigation Agent that is stationary and knows the location of some of the yellow page
agents in the system (which in turn know the locations of services and other navigation
agents). To locate a service, an agent consults the local navigation agent to obtain a list of
yellow-page agents. It then visits one or more of these yellow page agents and queries the
agent about the location of the required service. This protocol allows application agents to
obtain necessary lists of service locations.

Figure 5 shows an example of using yellow pages in which the agent called Customer for
Service I locates Service I in a distributed system that consists of four machines. There
are two yellow page agents in this system, one residing on Machine 1 called Yellow Page
Agent 1, and one residing on Machine 2 called Yellow Page Agent 2. Customer for Service
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1 interacts with its local navigation agent on Machine 3 to obtain the addresses of the two
yellow-page agents in this system. It then travel to Machine 1, where it queries Yellow-Page
Agent 1 about the location of Service 1. Suppose Service 1 has registered with Yellow-Page
Agent 2 but not with Yellow-Page Agent 1. In this case, Yellow-Page Agent 1 returns a null
response to the Customer for Service 1 who then travels to Machine 2 to query Yellow-Page
Agent 2. Yellow-Page Agent 2 responds by giving Machine 4 as the location of Service 1
and finally, the Customer for Service 1 migrates to Machine 4 to interact with Service 1.

Navigation / Navigation
Agent Agent

- ~ . . , - . =~
,~” Customer “,| migration2 _| Customer N
s T T T T T T =\
v for Service 1. = _ for Serv1cf 1

-
21
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\ 1 !
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for Service 1
9\
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Machine 3 Machine 4

Figure 5. An example of navigation. Each machine has several stationary agents denoted by rectangular blocks.
The moving agents are denoted by oval blocks. Each machine has a navigation agent that knows the location of
yellow-page agents. There are two yellow-page agents in this system. Customer for Service 1 is a transportable
agent that migrates in this system until it locates Service 1. The dotted arrows show the path followed by Customer
for Service 1. The solid arrows show the interactions between Customer for Service 1 and other agents in the
system.

5.2.  Construction of Virtual Yellow Pages

New services register with one or more yellow-page agents to advertise their location. They
describe their service through a list of keywords. To locate yellow-page agents, services
interact with their local navigation agents. For example, in Figure 5, Service 1 first contacts
the navigation agent on its machine to find the location of Yellow-Page Agent 2. Service
1 then sends a registration message to Yellow-Page Agent 2, which adds Service 1 to the
database.
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Yellow pages are maintained as a hierarchical, distributed, dynamic tree. Yellow-page
agents know the location of other yellow-page agents at higher levels in the hierarchy. This
guarantees that any agent will locate any service in the system. In some cases, locating
services will be expensive as the agent will have to propagate its queries to the top of
the yellow-page hierarchy, and down on the correct branch of the tree. A more efficient
alternative is to use a two-level scheme where each yellow-page agent knows the location
of one yellow-page specialist agent. This yellow-page specialist knows the location of all
the yellow page agents in the system.

The yellow-page architecture also permits some dynamic load balancing. When a yellow-
page agent becomes burdened with requests, it can clone its content on other machines and
forward requests there.

In general, yellow pages are not static entities as the information landscape changes. We
use adaptive learning methods to keep the virtual yellow pages up to date, as shown below.

5.3.  Adaptive selection of the best service.

Another feature of the yellow page system is their ability to compile consumer reports on
the services registered with them. When multiple agents provide the same service, these
consumer reports enable the yellow page agents to learn which services are most useful and
to prioritize their lists accordingly.

We have built a protocol for aggregating consumer reports in the yellow pages. After
visiting some of the services, application agents revisit the yellow page agents to provide
feedback about the sites (speed of service and usefulness of results).

We have experimented with policies for prioritizing services using consumer reports. As
a general policy for identifying the optimal service, we keep the average feedback for each
of the service providers. In most cases the yellow page agent should recommend the best
service it knows. This method converges to the best service in a static system.

We then consider a dynamic system, where services appear and disappear” by augmenting
the best-first policy with a method that encourages initial exploration of other agents. The
exploration function returns an overly optimistic estimate of the usefulness of a service
until the service is explored IV times; after that, the real average value of the agent is used
for ranking.

Figure 6 (left) shows the performance of two exploration functions in a system where an
initial yellow page consists of 5 services, not ranked in any particular order. Each agent
is shaded and numbered according to its goodness. The higher the number the better the
service. We ran a simulation in which agents visited these services and returned with
feedback on their goodness. Initially, the yellow-page agent assigns the same value to each
agent. The value of each agent was updated with each consumer report. This value stayed
overly optimistic until each agent was explored N times. After 100 iterations (each iteration
corresponds to one visit) of this experiment, a new and better service (Agent 6) was added.
The system converged to recommending Agent 6. We examined evaluation functions for
several values on N. The case N = 1 is denoted by Avg, and N = 5 is denoted by High
in Figure 6. Both cases converge to Agent 6.
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This algorithm does not take into account that the relative usefulness of an agent may
vary over time. One agent may improve on another’s service, or it may become outdated or
congested. To discover bad services that have radically improved their performance, a small
randomization factor is added in the exploration function (see Figure 6(right) shows the
results with two different randomization factors). Our experiments with dynamic service
landscapes show that the best service is always found, although it may take on the order of
100 trials to converge to it.

Introduction of New Agent Initial Exploration
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40 80
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Figure 6. Selection of the best service. The services are listed in an increasing order of “goodness” and they
are numbered 1-6 on the right hand side of the diagram. The left graph shows the service-selection numbers
after a new and better service (Agent 6) is added. The right graph shows the effects of randomization on the
service-selection numbers.

5.4. Navigation Plans.

A navigation plan is a sequence of machines the agent has to visit. Agents construct an
initial plan from the information provided by the virtual yellow pages. Recall that the
yellow pages provide a sorted list of the best agents for a particular service. The agent uses
this list to sequentially move from site to site, advancing when the necessary processing at
the current site has been completed. The agent might also choose to launch child agents
at certain points. However, this plan need not be static. The agent can formulate and
reformulate the plan by consulting its sensors and adapting on-line to changes in network
configuration and software content. For example, if the plan consists of the sequence A,
B, C, D and machine A is sensed to be down while B is sensed to be up, the agent greedily
rearranges the sequence to B, A, C, D. Analogously, if the bandwidth to A is much lower
than to B, the agent can decide that there is a higher payoff in executing the sequence B, A,
C, D, even though A had the first priority.

The ability to monitor software changes enables an agent to make site-specific decisions
so as to minimize the compute time that it spends at each site. For example, an agent
searching at site B may look for the presence of a specific piece of information and choose
an expensive or inexpensive search procedure depending on the sensed value. The agent
can also use a special-purpose module for detecting changes in the information content to
decide to entirely skip the search at this site.

The results extracted from searching or querying a site can be used to modify a plan. For
example, an agent executing at site B may find an acceptable answer and end the search.
Similarly, the agent may find a piece of information that reprioritizes the plan.
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Figure 7. This figure shows execution time (in seconds) for retrieving all documents containing the word “parallel”
from a remote repository, as a function of the number of documents in the repository. The top graph shows the
time required by an offline http client to download the specified number of documents and search locally. The
middle graph shows the time required by a transportable agent to move to the repository, search locally, and return
with the results, when the security checks are turned on. The bottom graph shows the performance time when the
security checks are off in the agent system.

6. Applications of Transportable Agents to Information Access

We have used transportable agents primarily for distributed information access. In dis-
tributed information access, a distributed collection of corpora is searched based on a query
and the results extracted from each site are fused in a coherent picture. The main ad-
vantages of using agents in distributed information access are flexibility and performance.
With agents, distributed collections can provide primitive operations rather than all pos-
sible search operations. An agent can combine these primitives into efficient, multi-step
searches. By moving a small computation to the location of the data (with transportable
agents), the network traffic and overall computation time is reduced.

In this section we discuss an experiment that demonstrates the performance advantage for
transportable agents. We then describe two applications: a distributed-information-access
agent and an agent that supports the information-gathering needs of a traveling salesperson.

6.1. Performance measurements for moving computation to data

Consider a Web-based application for retrieving the titles of all documents containing a
set of specified keywords, for example the word “parallel,” from a remote repository. Web
search engines may have an inverted index corresponding to the keyword “parallel”, but if
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the location of the documents is known, using universal Web search engines is impractical.
The inverted list may contain thousands of titles from other locations. One possibility is to
write an application that uses http to download all the documents, performs the query, and
aggregates the relevant titles. The alternative is to send a transportable agent to the site to
perform the search locally and to bring back only the relevant titles.

We have performed this experiment for a remote site that contained 10, 20, . .., 100 doc-
uments. The average document size was 2K bytes. There were a total of 25 relevant
document titles in the full (100 document) collection. The document partitions were cho-
sen randomly. The agent was written in Tcl. The agent program size was 350 bytes. In
addition, the agent had a header of size comparable to the http application header. Each
document title was approximately 30 bytes. Figure 7 shows the execution time as a function
of the number of documents at the remote site for (1) the http application, (2) a transportable
agent system with no security checks, and (3) a transportable agent system with security
checks. The transportable agent outperforms the Web application. The times required by
the transportable agent operating without security checks are significantly better than the
times observed when the security checks of the system were on. The slower execution time
is due to a function that converts an arbitrary filename into a canonical, absolute filename
(every conversion currently requires two file system accesses which can be eliminated in
most cases through appropriate caching). This caching optimization would make the two
respective execution times nearly identical.

6.2. Distributed Information Retrieval with Transportable Agents

We have built information-access agents that interface with the Smart information re-
trieval system. The Smart system is a successful statistical information-retrieval system
(Salton, 1991) that uses the vector-space model to measure the textual similarity between
documents. The idea of the vector-space model is that each word that occurs in a collection
defines an axis in the space of all words in the collection. A document is represented as a
weighted vector in this space. The premise of this system is that documents that use the
same words map to neighboring points and that statistics capture content similarity.

Our data is a distributed collection of Smart repositories running the Smart system. Each
collection consists of computer-science technical reports. For a given query, an information
agent visits a sequence of sites; at each site, it interacts with the local Smart agent to search
the local collection. The results retrieved are brought home, or used as relevance feedback
to refine the query.

In our system, users specify queries by typing free text to GUIs (see Figure 8). An
agent is assembled for each user query. The agent is given the query and a list of sites
that run Smart servers. The list of sites is constructed by the user, who selects machines
from a list of sites displayed in the GUI. The agent travels to a proxy site which is selected
dynamically, using the sensors described in Section 4, where it spawns one child agent
per site. At the proxy site, the agent waits for results brought back by the child agents
to perform the data fusion (see Figure 8). Each child travels to the chosen site and runs
the query on the local server. The child returns to the proxy site with a ranked list of
documents. The agent fuses all the data and returns to the user site to display the results
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Figure 8. A sample session for the information-retrieval agent. The GUI interface is shown in the top part of the
figure. The agent travels to a proxy site where it spawns children that search in parallel several sites. When all the
children agents are back with the retrieved results, the agent fuses their data and returns to the home site. Here, it
displays the results as a ranked list of titles, a topic organization graph, and a graph that shows the inter-document
similarities.

(1) as a ranked list; (2) as an interactive graph showing inter-document similarities, and
(3) as an interactive organization graph showing the topic-subtopic content of the returned
documents. The nodes in the similarity graphs represent documents and the edges show
similarity connections. The user may click on a node to view the text of the document. The
blobs in the organization graphs represent topic clusters. The user may click on a cluster
to view the titles of its documents. The topic-subtopic clustering is done by using the star
algorithm described in (Aslam, Pelekhov, and Rus, 1997).
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The star algorithm covers the thresholded similarity graph associated with a collection of
documents with dense star-shaped subgraphs. The similarity graph is a weighted undirected
graph whose vertices denote documents and whose edge weights represent the similarity
between the respective documents measured as the cosine metric in the vector-space model.
The thresholded similarity graph eliminates all edges whose weight is below a given thresh-
old. The advantage of the star-shaped cover algorithm is that it is fast and the result is a
set of clusters with a lower-bound guarantee on the similarity between any two documents
within a cluster.

Some simple error-detection and recovery mechanisms are incorporated into this system.
If the child agent is sent to a crashed or non-existent site, the error-recovery wrapper
around the jump command enables the overall application to continue. In our current
implementation, if the Smart server crashes, the agent times out while waiting for the
answer and continues the task at the next site. If the site crashes while the agent is there,
the agent dies. A sample session from running this information-retrieval agent is shown in
Figure 8.

We have extended this experiment using the mobile computer-support functions described
in Section 4.2 and (Gray et al., 1996) as follows. We started the information access agent on
a laptop computer called Bond, and the agent immediately jumped off the laptop to interact
with Smart agents throughout the network. Before the agent could return, we disconnected
Bond, carried it to another lab, connected it to a different subnet, and reconfigured it with
a new IP address. Meanwhile, the information access agent had finished its task and had
attempted to jump back to Bond. The jump failed so this agent jumped to and waited on
the computer “Bond-dock”. When Bond reconnected to the network, it contacted the dock,
which then forwarded the information access agent on to Bond. This experiment was also
performed several times with an that agent that moved between Dartmouth and California
(at IST) at the Autonomous Agents 1997 Conference in Marina del Ray, California.

6.3. An Agent for a Traveling Salesman

In this application, a traveling salesperson carries a laptop when visiting customers and
uses software that helps to select vendors and products, prepare a quote, and place orders.
Agents represent orders and travel to the corporation’s computers where they interact with
billing, inventory, and shipping agents to arrange for the purchase. Agents are also used to
explore the vendor catalogs and search for products that meet the customer’s needs. In all
cases, the agents can function while the salesperson’s laptop is disconnected.

Figure 9 shows the structure of the application. The traveling salesperson can gather
information about a particular type of purchase by sending an agent to locate all the vendors
of the required type of product. The agents locate vendors by interacting with a distributed
system of yellow pages, and bring back the most recent catalogs from the vendors. The
catalogs are displayed as an interactive window, in which the salesperson can select items.
The selected items are packaged as an order agent. This agent travels to the vendor locations
and purchases the required items. This is done by paying electronic cash, using a banking
system that will be described in a future publication. When the transaction is complete, the
agent returns to the salesperson’s computer with the purchased items (sound clips in our
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Figure 9. The architecture of the salesman application.

prototype), which can be played locally. If the transaction cannot be completed, the agent
returns to the saleman to report on its status.

In this application, several of the computers are inherently mobile and disconnected, so the
agents must depend on the docking system to help them jump from machine to machine.
The use of agents allows for considerable flexibility. Through standard protocols, the
vendors and independent salespeople can use software produced by third party vendors,
which compete on the basis of other features. In particular, this permits the salesperson to
choose order-placement software according to its ability to produce adaptive order agents.
Since the order agents are executable code, they can implement adaptive strategies that may
not have been anticipated by the writers of the vendor software. While it is possible to build
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a traditional system with fixed interfaces that exchange data only, only transportable agents
can allow this kind of flexibility.

7. Summary

We describe a system that implements autonomous software agents, and illustrate applica-
tions of transportable agents to distributed information access. We argue that mobility and
adaptation are key attributes for autonomous agents. Mobility is an important attribute for
agents that function in an increasingly networked world. Adaptation is critical for agents
that need to operate autonomously in a dynamic environment, especially when far from
“home.” As they travel, these agents sense the current network and software conditions
and adapt their behavior to the sensed values. Our agents can be viewed as virtual robots
that are equipped with virtual sensors and effectors and are capable of maintaining internal
state, registering external state, and interacting with their environment. We describe the
architecture of a system called D’ Agents that supports transportable agents written in ex-
tensions of Tcl, Java, and Scheme. We discuss the main features of the system that allow
D’ Agents agents to interact securely with each other, to navigate through a partially con-
nected network, and adapt to the network configuration. We presented several information
access applications built with Agent Tcl.

8. Availability

The public release of D’ Agents supports Tcl agents only and provides migration, low-level
communication and some security mechanisms. The public release of D’Agents can be
downloaded from http://www.cs.dartmouth.edu/"agent. Our internal release has
complete, working versions of all the components described in this paper, including the
RPC, docking and network monitoring systems, the complete security system, the yellow
pages, and the extended Java and Scheme interpreters. These components will be made
available starting in Fall 1997 as we complete final testing and documentation.

Acknowledgments

This paper describes research done in the Transportable Agents Laboratory at Dartmouth.
This work is supported in part by the Navy and Air Force under contracts ONR N00O14-
95-1-1204, AFOSR F49620-93-1-0266, and MURI F49620-97-1-0382. Joe Edelman im-
plemented the virtual yellow-page system and the traveling salesman application. David
Hofer, Saurab Nog and Jeff Zimpleman implemented the network sensors and the docking
code. Katya Pelekhov extended the Smart system with clustering algorithms and wrote the
technical-report searcher. Sumit Chawala and Saurab Nog wrote the RPC utility.



TRANSPORTABLE INFORMATION AGENTS 237

Notes

1. Formerly known as Agent Tcl.

N

In follow-me computing, a user’s applications are sent to her current location so that she may interact with
them more effectively.

http://www.genmagic.com/agents
http://www.trl.ibm.co.jp/aglets/
Agent Tcl is the name of the overall system: Agent Tcl is one of the supported languages

An agent’s “home machine” is just the machine on which it starts.

N o kW

When a new service appears in the system it registers with a yellow page. When a service disappears, we use
a lazy method to detect it. When an agent is sent to the location of a service that is out of business, the agent
comes back to report this finding to the yellow page.
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