Communication Files:
Inter process 10 beafre Pipes

M. Douglas Mclloy

Dartmouth Collge
doug@cs.dartmouth.edu
February2017

Intr oduction

Some time after the introduction of pipes to Unix, we in the Bell Labs Unix lab learned
that the Dartmouthime-Sharing System (DTSS) had a mechanism for process-to-
process |0 called communication files. Unfortunately we tidmw exactly haw they
worked. When | retired from Bell Labs to Dartmouth in 1997, kedskround fruitlessly

for further information. At last, at a DTSS reuniogamized by ®m Kurtz, who had fos-
tered the project, | met Sidpdarshall, who had beenvalved in the implementation.

He eplained the concept. The pictur@swounded out in discussion with another partici-
pant, Stephen Garland, who had edited the DT8§@&mming Manual.

Communication files were much more complicated than Unix pipesy Wée also
more paverful. Pipes could be simulated by communication filasnbt vice ersa. A
pipe can handle neither thedvway communication nor the out-of-band signaling that
communication files support.

The programming manualdescription of communication files ran to maages. [@ail-

able at http://wwwes.dartmouth.edu/~doug/DTSS/DTSSchapter5.pdf] As a result, com-
munication files remained pend the verking toolkit ezen of mag DTSS insiders. Ne
ertheless communication files played an indispensable role: one or more communication
files mediated\eery users interaction with the system.

Much of the detail bele comes from collections of DTSS documents that Garland and
Marshall hae deposited with the Dartmouth libraRurther information w&s gleaned

from an email coversation among DTSS alumni, to which PeteylBdindly introduced
me.

Dates

Communication files significantly antedated Unix pipes. Evidence from design docu-
ments puts the origin of the concept sometime in 1967, between the writing of an outline
of features for the Phase Il DTSS system dated March, which tdogsmtion communi-
cation files, and a summary ofezutve services dated 29 August, which does. As com-
munication files were used for terminal sessiong;, tiere operational when the system
went live on January 6, 1969 [Johmeikery, January 20, 1969]. (More than three years
before pipes delied in UNIX.) A DTSS glossary from the time contains the description,



-2-

“Communications [sic] file — A type of file ganization which alles direct communica-
tion with a job in the system rather than with an input/outputdé The facility was
described briefly in a 1969 conference session about DTSS:
A communications file alles two jobs to interact directly without the use of
secondary storage. A communications file has one end in eacb jofasy It
is the softvare analog of a channel-to-channel adagitbis structure all@s
job-to-job interactions using the same procedures as for moverdmnal
files. The tvo ends are labeled master end andesénd. A job at the sta
end of a communications file cannot easily distinguish this file from a con-
ventional file. Since a job at the master end of a communications file can
control and monitor all data transmitted on that file, a master end job
can simulate a data file, theeby providing a useful delugging aid and
also providing a corvenient mechanism ér interfacing running jobs to
unexpected data structues. [my emphasis; Robert Ragraves, Jrand
Andrewn G. Stephenson’Design considerations for an educational time-
sharing systerty AFIPS Spring Joint Computer Conference 1969, pages
657-664]
Dim reflections of the insight in the highlighted sentengabéo appear in Unixaimily
systems in the 1980s. The full concept finally took hold as a guiding principle in Plan 9,
still without avareness of this early formulation.

Functionality

Communication files@e complete control of the open-file API to a user process. The
concept, which SidneMarshall and other DTSS alumni attrtb to Ken Lochner
[http://www.cs.rit.edu/swm/history/DTSS.doclas motvated by the intent to handle the
details of terminal sessions outside tleerlel, in accord with the poyicdhat an “absolute
minimum of the gecutve system \&s written to run in mastenode, so as to mak
dehugging and modification of sofewe as easy as possiblfK emety, ibid] The Har
graves/Stephenson paper describes the terminal-handling mechanism in considerable
detail.

In full generality communication files supported synchronous and asynchronous data
transfer random access, status inquiries, out-of-band signaling, error reporting and access
control in addition to the primary read, write and close operatiortkin/this broad out-

line, the semantics of the APlaw determined by each indlual master process.

A process could set up a communication file, hold on to one end-hstér—and
pass the othelslave” end to a descendent process. Data transfers weaginitiated
at a slae end. The master end, alerted by interrupylds match a slae write with one or
more master reads.

A process could acquire awaend in tvo ways. The shke end could be inherited by a
newly created child process, in which case the child could beiob$ to the &ct that it
was dealing with a communication file. Alterwaty, the slae end could be transmitted
by a ASS operationxecuted by a process that had access to the communication file.
The taget process had tosertly prepare to recee a ASS, which came via interrupt.



Usage

A notable application of communication filessvin support of confences, which

behaed somwhat like conference phone calls. Conferences were a service of SIMON
(SImple MON:itor), the primary user intexde to the system, kka shell in Multics or

Unix. A conference as created by a LINK operation, which started an arbitrary program
to manage the conference. Other user sessions could subsequently JOIN the named con-
ference link. The program managing a conference did not hold the master ends for the
conference. That functionas performed by a program called M® (Multiple On-line
Terminal Interface), which handled avals and departures andtgered communication

into a single multipleed data stream to the conference managehn McGeachie,
“Multiple terminals under user program control in a time-sharirvgr@mment’, CACM

16 (1973) 587-590]

Among the uses of conferences were multipersones, and online coursegigtration.
One conference, which weowld nav call a chat room, ran essentially continuously for
some 15 years.

Comparative success of communication files and pipes

Why did communication files attract little notice in the computing communityle
Unix pipes had lasting influence?

A major reason is simply the huge spread of Unix, which caught attention for its simplic-
ity, utility and lav cost. ¥t even at home in Dartmouth, communication files were used
for only a fev specific applications, while pipes became partvefyeUnix programmes
toolkit. Unix’s command-line combinatdf'* fostered the habit; nothing in DTSS did.

The question then becomesyntot?

A facile answer is that Unix pipes and the pipe combinator were created as (almost)
inseparable twins. By contrast, Lochisegrand concept stood nearly alone, abetted only
by MOTIF for conferences. Communication files becaameiliar to \ery fev people.

There vas a forbidding amount of detail to learn. The potential barrier between the mech-
anism and a simple usedilpipes vas quite high.

A similar phenomenon can be seen in the rarity in Unix of pipe topologies other than sim-
ple chains. Nothing li&k MOTIF has gined purchase to supppodrnges and analogous
applications. Although manshells, including theery popular bash, lva ofered some
facilities for conncting processes in tree- ameinedag-shaped topologies, the capability

has barely beerxploited. One deterrent is the lack of a standardeation for passing

open IO connections Bend stdin and stdout, which might enatdadier plumbing. Per

haps Diomidis Spinellis’recent and quite comprehesgsdgsh has a chance of injecting

dag connections into theknacular [http://www.spinelllis.gr/cs/dgsh.html]

Using communication files, itould hare been easy to implement a pipe combinator in
SIMON. | have not heard that the possibilityas @er discussed. En if it had been pro-
posed, a pipe auld efectively have been lile a tw-party conference coordinated by a
pass-through process in the middle. The prospect of increasing the populatioveof acti
processes might kia been wrrisome. Itis also likly that some motating factors were
uncommon in the lgely student enronment: (1) multistep computations made of cas-
cading programs and (2) a library of discrete utility programeme compilers, editors
and word processorsyailable for combining.



Ahead of its time?

Pipes simply enabled interprocess |0—a smailation on the pregsting Unix model.
Communication files were a concept of dafiént order—a lifting of the file API to user

level implementation. In this, it as more akin to Plan®9P protocol than tamiliar 10.
Shoehorned into the 10 model, instead of being engineered from the ground up, commuu-
nication files became complicatedybad necessity for the purpose of pipingt bot
comprehensie enough to enable a completely fresh approach to digtdlzomputing as

Plan 9 vould eventually do.

Had it been widely knen, the underlying idea of separating the file irsteeffrom its
implementation in order to enable alternate implementations migétihspired Plan

9-like eforts earlier As events actually transpired, Plan 9 attracted considerable interest,
and some of its suate features were promptly incorporated into other systems, while its
central principle had little influencew€&nty years after Plan 9 and nearly fifty after

DTSS, the incumbent mechanisms of disti#al computing remain Igely unafected by
either By the time Plan 9 &dred the distilled essence of communication files, the
momentum of the old model seems todnhecome too great to deflect.



