
Remarks for Japan Prize award ceremony for
Dennis Ritchie, May 19, 2011, Murray Hill, NJ

M. Douglas McIlroy

Lots of people have exclaimed about what a revelation Unix was. As
Tony Hoare said of Algol 60, Unix was not only an improvement on its
predecessors but also on most of its successors. The successors today are
certainly more capable than Unix was in the 1970s, but rarely as elegant.
Adoring admirers have fed Linux goodies to a disheartening state of obesity.
If only some reincarnation with the genius and sensibility of Ken Thompson
and Dennis Ritchie were still guiding the evolution of Unix!

Unix was shaped both by the remarkable players who brought it into
being and by the research environment of Bell Labs. Nobody has told that
story better than Dennis himself did in the Bell System Technical Journal in
1984, but perhaps I can add some footnotes.

When Bell Labs pulled out of Multics, a visionary but
underperforming project to create the computer utility of the future, Ken,
Dennis and Joe Ossanna became convinced that a less ambitious system
could provide an equally productive environment. Inbull sessions Ken,
Dennis and Rudd Canaday outlined a basic architecture that has stood the
test of time.

Having been burned by Multics, management was disinclined to pony
up for more hardware to try their ideas on, but through the good offices of a
sister center in Bell Labs research they obtained first a cast-off PDP-7
computer and then a shiny new PDP-11. Early on, I, as Ken’s department
head, became fascinated by the system and switched my allegiance from the
big iron of the comp center to this tiny experimental system. As they would
state later in their famous 1974 paper, the system offered ‘‘features seldom
found in even much larger operating systems’’. And ... it was downright fun
to use.



-2-

The astonishingly capable little system attracted visitors like flies.
Folks immediately saw how they could use it for their own purposes.
Because it was cheap they could convincetheir management to let them try
it. Almost overnight Unix flew out of the lab to sites all over the Bell
System, from typing pools to the maintenance floor in telephone switching
centers.

Thanks to cheap licensing, Unix also flew into academic computer
science departments − most notably Berkeley, which molded it into the
standard platform for Arpanet, from which in turn sprang the internet.

Much good came from Unix having been forced to fly under Bell Labs
budgetary radar. Had it been richly endowed, it could not have percolated so
fast and far, and might well have ended up a niche system like Multics.
Much good also came from Bell Labs culture. Management always believed
that the best research was inner-directed, and did not attempt to dissuade the
Multics alumni from further operating-system research. The fact that another
center − Visual and Acoustics Research − contributed both equipment and
staff to a project in Computing Science Research well illustrates the
collegiality of Bell Labs research, where organization charts didn’t
necessarily reflect project affinities.

Ken Thompson was undoubtedly the original moving spirit for Unix,
but Dennis Ritchie was in on it from the start. And it is Dennis we have to
thank for the C language. C made Unix easy to modify and eventually easy
to install on new hardware.

With hindsight one might view C as a distillation of previous practice.
Not so. Dennis discussed at length the puzzle of how to fully exploit byte-
addressed machines. He finally came up with a beautiful way to reconcile
address arithmetic with indexing − one of those inventions that is so right
that once you see it you think you always knew it. Therightness of C is
further attested by the fact that while Unix spread to all kinds of computer, C
and its descendents spread even further. C became the language of choice for
implementing all kinds of system software both in and outside of Unix
shops. Cev en influenced hardware architecture: proposed instruction sets
came to be evaluated partly on the basis of how well they could be exploited
by a C compiler.



-3-

The spread of Unix was enabled by a major effort of Dennis and Steve
Johnson to make both Unix and C portable across machines. The value of
portability of applications had long been recognized, but operating systems,
which brokered the interaction between applications and hardware, had been
seen as inherently tied to the hardware. Yet from a more general perspective
an operating system is just a program that happens to run forever. Only
small corners of it deal with the idiosyncrasies of a particular machine. Unix
proved that the reasons for standardizing Fortran or Cobol also weighed in
favor of standard operating systems. New computers get off to a flying start
with a corpus of tried and true software and the learning curve is minimized.
I well remember how easy it was to get aboard the Bell Labs Cray machine,
which came with Unix. There was almost no potential barrier to flipping
back and forth between the supercomputer downstairs and microcomputers
in the labs.

Another important, but largely overlooked, contribution of Dennis’s
was the page template for the Unix manual. Devised for the very first Unix
manual, that template and the concise writing style that went with it, has
stood the test of time. Latter-day deviations from the pattern seem flabby and
obscure by comparison.

A distinctive feature of the man-page template was the BUGS section.
Here real troubles were disclosed and infelicitous design decisions were
noted as challenges for improvement. Atone point, the gnomes of AT&T
bowdlerized it: in the official Unix product BUGS became APPLICATION
USAGE! But in general this beacon of honesty has persisted as part of the
Unix ethos.

Dennis was a fixture at meetings of the Usenix users group. Crowds
networking in the corridors would break to pack his talks about current
developments. Ofcourse every newcomer wanted to see and hear the man
behind the system. Old hands came to listen to the master perhaps even
more eagerly. If you read one of his papers, you’ll see why. Dennis
combines perfect control of the technical matter with a polished, but easy
writing style, and an unerring sense of how much to say. That felicity is also
on display on his home page, which offers engaging pieces about many
things he’s worked on. One tells of a foray into cryptography wherein he
implemented a remarkable code-breaking technique due to Jim Reeds. This
resulted in a visit by spooks from NSA, who gently discouraged conspicuous



-4-

publication.

On Dennis’s home page you can also read about Labscam, a
wonderful practical joke that I won’t spoil by summarizing today.

Ritchie and Thompson made an amazing team; and they played Unix
and C like a fine instrument. They sometimes divided up work almost on a
subroutine-by-subroutine basis with such rapport that it almost seemed like
the work of a single person. In fact, as Dennis has recounted, they once got
their signals crossed and both wrote the same subroutine. The two versions
did not merely compute the same result, they did it with identical source
code!

Their output was prodigious. Once I counted how much production
code they had written in the preceding year − 100,000 lines! Prodigious
didn’t mean slapdash. Ken and Dennis have unerring design sense. They
write code that works, code that can be read, code that can evolve.

A mathematician’s distance from the center of his universe is often
measured by Erd̈os number − how many degrees of coauthorship separate
him and the legendary Paul Erdos. It has been my good fortune to snag a
Ritchie-Thompson number of one. But I am only one among thousands for
whom Unix and C have been both an enabler and an inspiration. I’m sure all
will join me in applauding the wisdom of the Japan-Prize judges who
recognized the singularity and pervasive influence of those inventions.

Dennis, it is an honor to have this opportunity to both congratulate and
thank you for the achievement.

Reformatted, with proofreading corrections, October 13, 2011


