EHipses Not Yet Made Easy

M. D. Mcliroy

AT&T Bell Laboratories
Murray Hill, New Jersey (07974

ABSTRACT

A paper by N. Wirth, "*Drawing Lines, Circles and Ellipses in a Raster,”” ! excerpted here
by permission, illustrates methodological issues that arise in the simple problem of draw-
ing ellipses. The paper, like others on the subject, attempts to generalize from a highly
optimized algorithm for drawing circles. The result is foredoomed because the modet has
been specialized beyond the point of no return. More engagingly and crisply written than
much practcal literature i computer science, the paper affords an anractive and instruc-
tive addition to that branch of the literamre which Wirth himself has acknowledged as
having **taught how not to do it,"’ % in matters of both style and subsiance.

Wirth's words appear in full-size type, my annotations in small size.

Abstract. In a tutonial style, Bresenham’s algorithms for drawing straight lines and circles are developed
using Dijkstra’s notation and discipline. The circle algorithm is then generalized for drawing ellipses.

The ""tutorial’” exposition is admirably suited as a case study, for it reveals just how the design of the
ellipse-drawing aigorithm went astray, as had many similar algorithms published previously. It does not,
however, well illustrate Dijkstra’s rigor, as i later admits; **We adopt his notation but deviate from his
discipline by specifying the task algorithmically rather than by a result predicate.”” Concentrating on
method without careful regard for purpose, the development fails to consider the problem and the pro-
gram as a connected whote. No precise objective is stated. and single statements are anaiyzed in isala-
tion, without reference to boundary conditions imposed by context. The result is a program with
unknown properties, which cannot be trusted for general use.

|Beware of programs with imprecise specifications. |

Iatroduction. Recently, [needed to incorporate a raster drawing algontiun into one of my programs. The
Bresenharn algonithm is known to be efficient and therefore was the target of my search. Literature quickly
revealed descriptions in several sources [1.3]; all | needed to do was to ranslate them into my favourite
notation. However, I wished—in contrast to the computer—not to interpret the algorithms but to
understand them. [had to discover that the sources picked were, albeit typical, quite inadequate for this
purpose. They reflected the widespread view that programming courses are to teach the use of a (specific)
programming language, whereas the algorithms are simply given.

How frequently technical papers utter the word *“recent’” in the first sentence to suggest labor at the sci-
entific fronner! The present topic. though admittedly not at the frontier, has more than passing interest.
Everybody (including me) who conscientiously studies algorithms of the Pitteway-Bresenham type seems
impelled 1o improve the never quite compiete analysis.? The analysis is delicate—more delicate than
the paper recognizes.

If, as Wirth charges, graphics texts intend to help teach programming languages, then so does the present
paper. More analysis 1s aimed at getting efficient code for languages like Pascal than at entical under-
standing of the problem. The avowed concem for efficiency upstages considerations of purpose.

The unusual dictron of the last phrase, " whereas the algonthms are simply given,” inspires a comple-
meniary interpretation: a good tutorial will strive to give algorithms simply, but it will also strive to jus-
tify them adequately. Wirth succeeds on presentation, but not justification: one can't justify the unjustifi-
able. A more thorough atterpt might have uncovered the impasse.

Dijkstra was an early and outspoken critic of this view, and he correctly pointed out that the difficul-
ties of programming are primarily inherent in the subject. namely in constructive reasoning. In order to
emphasize this central theme, he compressed the notational issue to a bare minimum by postulating his own
notation that is concisely defined within a few formulas [21.

The capsule description misses the geniugs of Dijkstra’s notation: its suppression of spurious detail about
sequencing. Had mere ““compression of the nofationai issue™” been the central purpose, the notation
would not stand out among others.

The present treatment ulustrates Dijkstra’s notation little more than it does his discipline. Guarded com-
mands appear only as trivial equivalents for everyday while and if-then-el=se constructs. The
deployment of synenyms is window-dressing, not a methodological advance. The notation that is
mainiy—and productively—used in the paper is elementary algebra; no computer scientist should be
without it.

[Further introduction, a section on lines, and a section on circles are omitted.]

Ellipses. Similary to the circle algorithm, we wish to design an algorithm for piotting ellipses by proceed-
ing in steps to find raster points to be marked.

Grammatically the adverb *'similarly”” has to modify the main verb, but that gives, "'We wish simi-
larly.”” However algorithms wish, it is probabiy not as we do. Perhaps it is as computers do; see Wirth's
introductory paragraph. The slapdash English, even though well above threshold for mest computing
journals, symptomzes a less than careful approach to the whole work. In wnting inexactiy one hides
inexact reasoning, even from oneself.

|What's worth telling is worth telling well.|

We concentrate on the first quadrant; the other three quadrants can be covered by symmetry arguments and
require no additional computation.

**No additional computation’ really means **no more code to be displayed in this paper.™

Let the ellipse be defined by the following equation. Again without loss of generality, we assume
0<a<sh

E: (,:rfa)2 + (yhb)2 = &

The customary meaning of *“without loss of generality’” is that in some obvious way the general problem
can be mapped into a special case, Here, however, generality has certainly been lost. The possibility of
a = (), an ellipse of zero width, and a perfectly reasonable limiting case, shouid be restored in any real
implementation. Imagine a fime-lapse animation of Satum dying at the moment the nngs appear edge
on.

|Hand!le imiting cases.|

More senously, the highly technical restriction a £ b is “'simply given'’'—never explained and never
appeated to in the development. Yet the program can fail without it.

We start with the point P{0.b) and proceed by incrementing x in each step, and decrementing v if neces-
sary.

Here, as throughout the paper, the reader is left to infer that & and b are integers. The assumption is cen-

trai to the correctness of the algonthm.

The extra identifier P, like £ in the previous equation, serves no purpose whatever.

The exact ordinate of the next point follows from the defining equation:

Y = bJ(l - {(x+ Lya)®)

The notation here depends on the omitted part of the paper. Y is an ordinate on the true ellipse: v is a ras-
ter approximation. ““Next point'" was defined informally by usage to mean the potnt on the true ellipse
at the next integer abscissa.

The raster point coordinate must satisfy
Vo= 12 < b = ({x+ 1)!3}2)

v oy 1 < BT b (x4 14 st

2 a
A y: - @ty +atid < g bt - byt — 2h%x - b7

hZx

T2+ @ty @ty rata -t + 80 < 0
The second line of the denvation 1s unjustified if v < /2 orifx + 1 > 2. The former event can happen

and cause trouble, as we shall see later. The latter cannot, but that fact is not foreseeable at this stage of
the dertvation.

[Artend to boundary conditions. |

The necessary and sufficient condition for decrementing y is therefore £ > (with the auxiliary vanable A
being defined as
h=bx

T2 v a’yi @ty 4+ atid - a7t + 57
Although tt appears suddenly and unexplainedly here, the discussion about decrementing vy paraliels that
in the omitted discussion of circles.

As in the case of the circle, the termination condition is met as soon as y might have to be decreased by
more than 1 after an increase of x by [, i.e. when the tangent to the curve is greater than 45°. Unlike in the
case of the circle, however, this condition is not obviously given by x = y. We reject the obvious solution
of computing the ordinate for which the curve’s derivative is -1, [sic] because this computation alone would
involve at least the square root function.

The English of the paragraph. and especially of the sentence begunning, '"Unlike in the case of,"” won't
stand up to scrutiny.

The notion of decreasing y after increasing x is excessively sequential. To simplify the maintenance of
the loop invariant, and 10 avoid needlessly overspecifying the code. one wouid prefer to say that at each
siep either x alone is modified, or ¥ and y are modified simultaneously. The presentation here, which
decides which to do first, bears on Pascal more than on the problem.

The last sentence betrays a lack of analysis. The ordinate in question is y = b*(a’® + b*)"'*. The
square root can be removed by squaring to get a polynomial discriminator tunction, as Wirth has just
done to obtain 1. The resuliing fourth powers, however, threaten 1o overflow small registers. Unless
unusually wide arithmetic is at hand, it is well to seek a discriminator of lower degree, which the paper
proceeds o do in a novel way.

Instead we compute a function g, similar to #, incrementally. Its ongin stems [sic] from the inequality
v - 32 < bl - ({x + 1¥a)")

implying that the ordinate of the next point be at least 3/2 units below the current raster point. Therefore, a
decrease of v by 2 would be necessary for an increase of x by | only. A similar development as for h yields
the function g as

g =b%x? +20% + a¥yt — 347y + 92%/4 - &b + BP
and x can be incremented as long as g < 0.
Beware, the explanation is backward. Vioiation, not satisfaction, of the inequality would imply the unde-
sired outcome. Furthermore, if the ellipse is sufficiently narrow, v can decrease by any integer amount,
not just 1 or 2. More significantly, what if y should never decrease by more than 1?7 This happens when

@ = b =1. Inthis case the g test turns out to work by luck of a compensating error: the derzvation of g is
tlawed by the same inattention 1o range restrictions as was the denvation of /.

The first quadrant of the ellipse is then completed by the same process, starting at the point P(a, 0), of [sic]
mncrementing v and conditionally decrementing x. The auxiliary funciion here is obtained from the previous
case of i by systematically substituting x,v,a,b for y.x, b, 4.

The wording 15 imprecise. [f one understands ““the same process’ 1o 1est for letmination the same way,
then it will not necessarily work for drawing the long branch of a skinny ellipse. Here the asymmertry
imposed by the unexplained precondition 2 € b comes into play.

The derivation of the incrementing values for # and g follow [sic] from the application of the axiom of
assignment: on incrementing x the incrementation of / is obtained from

-

{h = b3x2 + 2b%x + k)

Bz ho+ B3 (2x + 3)

th = 6207 + 2b%x + b% + 2b°x + 26 + k)
X :=x 4+ 1

[h = 67x7 + 2b%% + k)

on incrementing v, the incrementation of % is obtained from

(h=a’y® - a’y + k}

h=h 7202(_\; - 1)

(h=a’v? = 2a°v + a® = (@°y - a°) + k}
yvi=y -1

(h=a’v’ +a’y + k)

[f

and the incrementation of g is obtained from

lg = a’yt = 3a’y + k}
g =8 - '-_’al(y—l)
fg =a’v: =2a°v+a® =3a’y—a') + k}
yoi=y = |

lg = a’y” = 3ay + k}

og

In each stretch of the preceding derivation, & represents nonchanging terms, as was explained in the omit-
ted part of the paper. All this formalism. however, is misplaced methodelogy. It sumply says that the
update step 1s

oy, hogi=x+ 1,y +Ay, &+ AR, g+ Ap

where A#t = Ala+ 1, y+Ay) — A(x,y) and Ag is defined similarly. Most of the development is con-
cemed with inconsistent intermediate states. Their necessity in Pascal is no reason to inflict them on an

exposition of an algornthmic idea.

{Use formalism for function, not fashion. |

This completes the design considerations for the following algonthm.

xi=00v:i=0
o= (a? DIV a4y — ba? + b 2= (%4ya’ = 3ba’ + b
dog <0 — Mark(x,v);
ifFh <0 - d:=Qx+3)b*:g:=g+d
[1hz0 = d:=(2x+ 3)b> = 2{y - 1)a*;
gi=g+d+2a°;

i

il

vi=y — 1
fi
A=h+d x =x+1

od:
xo=aiyl = yvivi= 0

ho= (b* DIVE) — ab® + 247,

do y s vl — Mark{x,v);
ifh<0 — hi=h+(2v+ 314"
1hA20 — h:=h+ ('2}'+3)a2 —2{x=1b* x =y - 1
i
yi=m vy {

od

The reader is lefi to puzzle out the inconsistent division operators in the second line. The 4 in the pro-
gram 1s noi the same as the & in the development. It is rounded down to the nearest integer. As the omit-
ted part of the paper explained, rounding does not change the outcome of any test in the algorithm. Simi-
larly, g may be rounded down and the first term of its initializer may be replaced by (9a?) DIV 4.

The second initalization of # should be the same as the first with 2 and b interchanged.

The second loop is fatally flawed, because the unstated side condition for the validity of the / test can be
violated. That condition, x = 1/2, 1s violated whenever an eilipse is so nammow as to be rendered with
tails one pixel wide at either end. See the accompanying figure for the resuit. Apparently the program
was never tested against such obviously stressful cases.

A subtler trouble is that the endpoint of the second toop does not necessarily cotncide with the last point
calculated (but not plotted) in the first loop. For example, with g = 2 and b = 3, the first loop ends at
(1.3}, whue the second loop ends at (0.3). I infer that it was simply assumed that the two endpoints
would ceincide. If the posstbility of mismatch had been recognized, there should have been some analy-
s1s of how bad it can be.

Proper tails and fishy tails, @ = 1, b = 3. Figure rotated 90° to save space.

We close this essay with the remark that values of /# may become quite large and that therefore overflow
may occur when the algonthm is interpreted by computers with insufficient word size. Untortunately, most
computer systems do not indicate integer overflow! Using 32-bit arithmetic, ellipses with values of 2 and &

up to 1000 can be drawn without failure.

The exclamation directs attention away from software to hardware. All ¢omputer hardware that I can
think of indicates integer overflow, although not by trapping. Compiled code for languages such as

Pascal almost universally ignores the indication, however,

The claim of a range up to 1000 is too rosy. Where the slope of the ellipse is near zero, the discriminator
£ may be evaluated at points up to 2 units away from g = 0. (The algonthm visits points as much as 172
unit off the ellipse, and g = 0 is displaced 3/2 units from the ellipse.) At such a point witha = b, x ~
and y ~ a. the magnitude of g, estumated as |(dg/dy) Ayl . 1s approximately 4a°. Thus overtlow is

173

liable to occur at parameter values around (237433 ot much more than 800. Testing confirms this

estunate.

[Big-oh estimates are not quantitative. |

There is more to say. It is bad practice to draw points twice. In pamicular, double plotting is self-
nullifying when drawing by exclusive or into a bitmap. Double plotting at the beginnings of the arcs
points can be averted by proper coding of the Mark procedure. However. double plotting can also occur
where the two branches meet. For exampte, in the poorly closing exampie mentiened above (¢ = 2 and
b = 3. Mark((,3) will be cajled in the second loop as well as in the first.

Other important properties of the algorithm are left to be taken on faith. Will the two branches always
meet without a gap? If not, color would leak out on attempting to shade the inside of an eilipse. (This is
not an idie question. The omitied algorithm for circles can produce gaps.y Will circles drawn by the
algorithm be symmeitric about the diagonal, y = x7 The answer is not immediately obvious, because in
ail but the smallest circles, the yuncture of the tweo branches lies off the diagonal.

{Formulare and confimm proper behavior. |

The ellipse-drawing algorithm works like two ships setting out from fixed points on the shores of the first
yuadrant 1o rendezvous near the octant juncture. The most difficult sailing will be experienced in leaving
the harbors, where the sharpest and most confined turns must be navigated, and at the meeting point,
where precision docking is required. Just as at sea, where the steering of a ship may be trusted to an
apprentice seaman in open water, but needs an experienced pilot for close navigation, so ellipse-drawing
can be entrusted to simple homework-assignment code only 1n the open and needs more attenlton in the
critical stretches. The present algorithm has not eamed a pilot’s License.

REFERENCES [for Wirth]

(L]

2]

(3]

N. Cossitt. Line Drawing with the N532CG16 and Drawing Circles with the NS32CG16. Technical

Report AN-522 and AN-323, National Semiconductor Corp., 1988

E. W. Dijkstra. Guarded commands, non-determinacy, and the formal dertvation of programs.

Comm. ACM, 18(8):453-457, August 1975.

I. D. Foley and A Van Dam. Fundamenwls of Interactive Computer Graphics. Addison-Wesley,

1982,

References [for Mclroy)

(1] Wirth, N., “‘Drawing lines, circles and ellipses in a raster,”’ pp. 427-434 in Beaury is our Business,
Feijen, W. H. I, van Gasteren, A. J. M., Gnes, D., and Misra, J. (Eds.), Spninger-Verlag, New

York (1990},

[2] Wirth, N., “From Modula 10 Oberon,’”’ Software—Practice and Experience 18, pp. 661-670

(1988}, Acknowledgements.

[3] Piteway, M. L. V., “‘Algonthms for drawing ellipses or hyperbolae with a digital plotter,”” Com-

puter . 10, pp. 282-285 (1967).

{4] Bresenham, I., ‘A linear algorithm for incremental digital display of circular arcs,”” Comm. ACM

20, pp. 100-106 (1977).

{5] Mcllroy, M. D., “‘Best approximate circles on imeger grids,”” ACM Trans. on Graphics 2, pp.

237.264 (Oct. 1983).

