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Abstract

This paper describes an unsupervised learn-
ing technique for modeling human locomotion
styles, such as distinct related activities (e.g. run-
ning and striding) or variations of the same mo-
tion performed by different subjects. Model-
ing motion styles requires identifying the com-
mon structure in the motions and detecting style-
specific characteristics. We propose an algorithm
that learns a hierarchical model of styles from
unlabeled motion capture data by exploiting the
cyclic property of human locomotion. We as-
sume that sequences with the same style con-
tain locomotion cycles generated by noisy, tem-
porally warped versions of a single latent cy-
cle. We model these style-specific latent cycles
as random variables drawn from a common "par-
ent” cycle distribution, representing the structure
shared by all motions. Given these hierarchi-
cal priors, the algorithm learns, in a completely
unsupervised fashion, temporally aligned latent
cycle distributions, each modeling a specific lo-
comotion style, and computes for each exam-
ple the style label posterior distribution, the seg-
mentation into cycles, and the temporal warping
with respect to the latent cycles. We demonstrate
the flexibility of the model on several applica-
tion problems such as style clustering, animation,
style blending, and filling in of missing data.

ning efficiency, human tracking in video sequences, and
computer animation. In this paper we focus on the spe-
cific problem of deriving computational models capable
of capturing and representing distinct locomotion styles,
corresponding for example to distinct related activities
(e.g. walking and running) or variations of the same ac-
tivity performed by different subjects. Hand-construgtin
style models is generally not possible due to the sub-
tlety of the style variations and the complexity of the
human dynamics. Because of such challenges, several
researchers have proposed automatically learning motion
style models from human motion examples. Most pre-
viously proposed approaches treat motion style modeling
as a generic data fitting problem by employing general-
purpose learning models. Examples of such models in-
clude Restricted Boltzmann Machines (Taylor et al., 2007),
Gaussian Processes (Wang et al., 2007), linear dynamical
systems (Brand & Hertzmann, 2000; Li et al., 2002; Chi-
appa et al., 2009), and nonlinear manifolds (Elgammal &
Lee, 2004). General-purpose models fail to exploit rele-
vant prior information, such as the cyclic property of loco-
motion or the knowledge that different styles of an activ-
ity must correspond to subtle variations of a common mo-
tion. Recent work (Liu et al., 2005; Urtasun et al., 2008)
has shown that incorporating domain-specific prior infor-
mation in the model yields motion representations that are
more accurate and intuitive, and helps reducing the risk of
overfitting. This is particularly important in the motion-do
main, where the data is high-dimensional and training ex-
amples are scarce. There are many possible ways to en-
code prior knowledge in the model. Liu et al. (2005) use

body physics constraints. Urtasun et al. (2008) force the
learned model to satisfy a specific topological structume. |
Modeling human locomotidnis of fundamental impor- this paper we propose to encode domain knowledge via hi-
tance for a wide range of applications including gait recog-erarchical priors and probability distributions specifica
nition, diagnosis of movement disorders, analysis of runsuited to the properties of human locomotion. We employ
B — hierarchical priors to encode the knowledge that distioct |
%omotion styles must share a common structure. We view
each motion style as a random variable drawn from an un-
known distribution common to all styles. This common
Appearing inProceedings of the 26" International Conference  distribution assumption constrains the styles to repitesen
on Machine Learning, Montreal, Canada, 2009. Copyright 2009 gybtle variations around an average motion. Furthermore,
by the author(s)fowner(s). we exploit the cyclic nature of the data and learn mod-

1. Introduction

1In this paper the term locomotion is used in a wide sense t
indicate any cyclic limb motion, such as walking, runningvel-
ing, swimming.
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els representing single cycles of locomotion instead of de2. A Hierarchical L ocomotion M odel

scribing entire periodic sequences. By doing so we mak®ur approach to style modeling is inspired by the observa-
more efficient use of the available data, reduce the numtion that motions with the same style are characterized by
ber of unknowns in the model, and obtain models that argimilar body pose sequences albeit with possibly different
easy to interpret. We achieve this by inferring cyclic align timing (e.g. walking performed by the same individual at

ment distributions which temporally synchronize the ob-different paces). On the other hand, motions with distinct
servations and describe each sequence as a concatenatidyles contain significant differences in body poses under
of motions generated by single-cycle models. A diStinCtiVGany temporal warping. Therefore, we propose a model
feature of our approach is that the learning is completelyyhich groups within the same cluster motions that can
unsupervised: while the methods in (Liu et al., 2005; Urta-pe temporally aligned to have similar sequences of body
sun et al., 2008) require training examples of a single styl§yoses. Note that in our approach the clustering, the tem-

or data with user-provided style labels, our algorithm camporal alignment, and the learning of the underlying pose
automatically learn distinct style models from a large pOOltrajectories are performed simultaneously.

of unlabeled motion sequences. . . . .
We now describe formally our Hierarchical Locomotion

Our model learns for each style a prototypical, high-Model (HLM). Let X* = (X’f,xg,-.-,Xﬁ;k) denote the:-
resolution fusion of the cycles belonging to sequences ash sequence in a dataset &f locomotion examples shar-
signed to that style (to be more precise, each learned style ing a common structure but containing some stylistic vari-
a PDF describing also how cycle samples can deviate frorations. N, indicates the length of the sequence adfidis

the prototypical style cycle). We demonstrate that these, F-dimensional vector encoding the 3D configuration of
cycle prototypes can be used to generate vivid animationshe body at timei, for example in the form of kinematic
visually undistinguishable from real motion. Furthermore joint angles. We assume that the dataset comp€isdis-
since our algorithm yields motion style prototypes that aretinct locomotion styles. We indicate with ¢ {1,...,C}
time-synchronized, the output of our system is directly usthe unknown style label of sequenkgwhich we assume
able by motion style blending algorithms (Rose et al., 19980 be drawn from a Multinomial distribution with parame-
Kovar et al., 2002) to generate realistic novel motion. Weters+ = {71, ...,7¢}. We model each style by means of
demonstrate this application in our experiments. a hidden variabl&® = (z5, ..., z5,), which we will refer
Our work builds on the Hierarchical Bayesian Continu-to as the latent cycle of style M denotes the length of
ous Profile Model (HB-CPM) proposed by Listgarten etthe latent cycle and¢, is an F-dimensional vector encod-
al. (2007) for detection of differences in time series adass ing the 3D body configuration at time frame in the cy-

We generalize this method to the fully unsupervised casegle. We assume that the cycles of an observed sequence are
where class labels are not available as input. Thus, our agenerated from temporally subsampled versions of a latent
gorithm simultaneously performs clustering, differenee d cycle. Consequently, we would lik&/ to be much larger
tection, and alignment of time-series. HB-CPM was origi-than the typical length of a cycle in the observed motions,
nally proposed to model time-series with class-specific dif as this would yield higher-resolution representationef t
ferences corresponding to impulses at rare but systematimotions. However, care must be taken to avoid overfit-
locations. However, style differences in human motionting. Inspired by the choice of this parameter in (Listgarte
are typically extended in time (see Figure 1) and thus aret al., 2007), we seled/ = 2N whereN is a value pro-
impulse-based model is not appropriate for our purposesided as input to the system and representing the expected
We describe a different set of hierarchical priors, specifdength of a cycle in the training set (note that our system
ically suited to the case of human locomotion. Inferencecan handle cycle lengths in the observed motions differing
in (Listgarten et al., 2007) is handled by means of a Markowonsiderably from N). We assume that a sequétitevith
Chain Monte Carlo (MCMC) method. However, in our motion stylec consists of a concatenation of cycles gen-
case a stochastic approach is not computationally practerated by an HMM which moves cyclically and in left-to-
cal due to the high-dimensionality of the data. Instead weight order through time samples of latent cy@é, and
propose an efficient variational method, which is able toemits noise-corrupted versions of 3D configuratiafis
learn motion style models in just a couple of minutes fromin other words, we assume’ ~ N(ka’Alk—l), where
datasets including up to 39 distinct 62-dimensional time se_,, € {1,..., M} indicates the HMM state anti* is a di-

. . o
ries (compare this performance to the several hours needeadgonal, style-specific, covariance matrix. We denote with
p(rF|7F_|; d¥) the cyclic, left-to-right transition distribu-

by the MCMC algorithm in (Listgarten et al., 2007) to pro-
cess 21 one-dimensional time series). tion governing the HMM of sequende implemented as
follows:



Unsupervised Hierarchical Modeling of L ocomotion Styles

p(rF = m|rF | = n;d¥) As and s, whereA¢ = diag([\S, ..., \%]). We regularize
& ffm-—n=1lorM+m-n=1 parameters andd” via hyperparameterg” andn?.

={ (1) Exact inference in our model is analytically intractable,
dy Hm—n=JrorM+m—n=Jx and thus approximation methods need to be employed.

0 otherwise Listgarten et al. (Listgarten et al., 2007) applied stoehas
wherel < m,n < M, and.J, is the maximum transi- tic approximation (Markov Chain Monte Carlo) to learn
tion length expressed in number of frames. 'm;iedenote a fully-Bayesian Hierarchical Continuous Profile Model
probabilities satisfying the conditioy;~, d¥ = 1. Note " the simplersupervised setting (i.e. when class labels

. M I " are provided), and for the case of one-dimensional time-

that since we usd, << %, the HMM valid transitions . . . .

: o2 . . series. However, a stochastic approach in our case is not
are only either left-to-right or from the tail section to the . . . : . .

. . computationally practical due to the high-dimensionality
head section of the latent trace (corresponding to moves; datd and th | ina deriving f
from staten to statem such tha M + m) — n — J, with of our data and the more complex setting deriving from
. < J.). This latter type of transition is used t’o model the use of unlabeled data. We make the problem tractable
J = Jm)- yp by modeling some of the unknowns as parameters and by
adopting a variational approach to estimate the distribu-

the periodic property of locomotion. Finally, we force the
flons of the other unobservables. Specifically, we model

latent cycles to be aligned to one another, and to share
common structure by assuming that each style-spe&ific the HMM states{=*}, the style labels{*}, and the la-

IS a random variable drawn from a distribution e:u:_ou_rag—tem style cycledZ¢} as hidden variables, which are fully
ing the latent cycle to be temporally smooth and "similar

0 a parent cycld — (z Zx7) common to all styles. In marginalized out during learning. All remaining unobserv-
b yele = (21, ..., 2 ) C i Styles. abled = {Z, \;, \,, A, ...,AC, 7, d", ..., d¥} are treated

summary, we assume the following generative process fof . d usi lized _ lik

a dataseX — {X!,..., XX}: as parameters estimated using a penalized maximum like-
R ' lihood framework, with penalties defined via fixed hyper-

1. Z ~ N (Z1; 20, 07]) Hﬁfﬁ N(Zm; Zm—1, 7°1) parameterg = {n?,n",n%}. Thus we solve fof to maxi-
2. Foreach style € {1,...,C}: mize

M K
Z° ~ N (25: 250, 05 ') [ NV (250251, A0'T) p(6lmp(X|0) = p(0]n) [T p(X*(0)

m=2 k=1
M = p(0ln)
X H N(2E); Z, A5 T K c
m=1 <[] / S0 p(XE Ak k2t 2010)dZt .. dZC
3.7~ D(T]T) k=1 k=1 rnkellk
)
4. For each sequenéec {1, ..., K'}:
(@) 1% ~ Mult(r) wherell* denotes the set of all possible HMM paths for
(b) d* ~ D(y%) sequencé. In the next section we describe the variational

method for maximizing this objective.
(¢) 7 ~ Mult(r¥; 1/Ny) T, p(eb |y ; db) 9 s ool

N, k -1
(d) XF ~ T2 N2, A% ) 3. Inference and learning
whereD() indicates a Dirichlet distribution, and M@jta ~ Using Jensen's inequality we obtain the following lower
Multinomial distribution. The improper prior d (defined ~ PoundLq on the penalized log likelihood (Jordan et al.,
via hyperparameter) is used to enforce temporal smooth- 1999):
ness of the parent cycle. Note that this encourages also the
last frame in the cycle to be similar to the first. The PDF of log p(0)p(X|0) >
the latent cycléZ© is the product between a smoothing dis- K c
tribution correlating configurations of consecutive frame logp(0) + Z/ > D QIR Z L ZO)
and a Gaussian distribution which encourages each latent k=172"2 ) prerk
cycle framez¢, to be close to the corresponding parent cy- p(XF 7k 1k ZY . ZC)0)
cle framez,,. The resulting PDF is a multivariate Gaus- x log Q(xk, %, 71, ... ZO)
sian (Listgarten et al., 2007}, and\; are precision pa-  _ r C 3)
rameters controlling the temporal smoothing and the distri @

bution relating the latent cycle to the parent cycle, respec  2jn our experiments the dimensionality of the observed con-
tively. We assume uninformative priors for parameters  figuration at each frame is 50 or higher.

dzZt...dZ°¢
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where Q(7*, 1%, Z, ..., Z) is an arbitrary distribution.

where<>_; denotes expectation with respect to all hid-

We now assume that this distribution factorizes as follows:den variables except. Note that equations (7, 8, 9) are

C
Q(*,1,2',...2°) = QMeuh [z @
c=1

We maximize the variational boundg, subject to the

mean field assumption in eq. 4, using the EM algorithm

In the E-step we keep fixed and estimate the factor dis-

tributions maximizing the variational bound. This is done
via variational inference as described in the following-sub
section. In the M-step we maximize the expected complete®

penalized log likelihood given the hidden variable distri-

butions. This yields closed-form updates for each of the

parameters id. The complete penalized log-likelihood for
our model is given byC? = £ + P, where. is the log-
likelihod term:

[log 74 log Mult(7¥)

gt

Nk
+> logp(rf|ry 15 d")
i—2
Nk 1
+Zlog]\/ xF 2l k,Alk )

i=1

cC M
30 log N (2, Zm, A7 'T)

c=1m=1

c
+Zlog]\/(z‘{;sz,

c M
+D D logN(zg,iz, 1,

c=1m=2

Py §!

D (5)

and?P is the penalty term:

P

log p(0|n)

M
= |z — zm|* — 0 Z [Zm — Zm ||

m=2

K
+logD(r;n7) + Y _log D(d¥; 1%
k=1

(6)

3.1. Variational Inference

The factor distributions  {Q*(7*)}r=1. k.

{Q*(1")V k=1, x, {Q*(Z)}e=1..c maximizing the
lower boundLg must satisfy the following equations (Jor-

dan et al., 1999):
logQ*(n*) = < L >_. +const (7)
logQ*(I*) = < L >_; +const (8)
log Q" (Z°) < L >.zc +const 9)

coupled. Thus, a closed-form optimal solution is not pos-
sible. However, convergence to the optimal distributions
is guaranteed if we iteratively update the distributions by
solving each equation using the current estimates of the
other factor distributions. The variational update steps
‘are obtained by expanding the expectations on the right-
hand side of equations (7, 8, 9). For brevity, we write

wk( > Q (% = ©), 4(m) = Q*(xf = m), and

é Q*(7F = m|nF | =n).

Variational update for Q*(7*)

Q (7*) is updated by applying the forward-backward al-
gorithm (Rabiner, 1989) to an HMM with transition prob-

abilities given by eq. 1 and unnormalized observation log-
likelihoods given by:

(10)

Variational update for @Q*(Z¢)

Letz;, , be thef-th entry in vectoe;, with f € {1,..., F'}
where F' is the dimensionality of the configuration vector
at each frame. It is easy to verify that, according to our
probabilistic model, the random variables, andz;, ., for
distinct featuresf, /' € {1..., F'} are independent. Thus,
we can writeQ*(Z¢) = H?:l Q*(z%f) wherez®f =

T
[sz, e z]cwf} . Q*(z>7) is a multivariate Gaussian dis-
tribution with precisions®# and mean.®f. The nonzero

entries of S/ are the diagonal entrieS3;,/,, = 2X, +
A+ X/ U S g (0 (m) for mo = 1. M,
the off-diagonal entr|e§fnferl = SmJrl m = —As for

m=1,..,M-1, andSCM = SMl = —\;. The mean
ol is given byucf = Scf()\ zf + volf) wherezf =
czk 1¢ (C)Zl 171
)\j o
Zk 1wk(0) 21 17 (m)

zuy)" andve s = xiy

[Elf,...,

Variational update for Q*(I*)
The class label distribution@ (I = ¢) is updated as

Q*(lk = pc/ Zc 1 pc Where
F K 1 M NP
()= exp =5 D > (m
f=1 m=1i=1
x (k= 25, TAC(xf — zfn)>zgn} (11)
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3.2. Parameter updates

The parameterare updated in the M-step. The update for

each parameter is computed by setting the correspondi
partial derivative of the expected penalized log-likeblo
to zero. The update rules are:

F

Y Aoy = Zms)?)

m, f

(12)

M
A = CMF/ (>3

c=1m=1 f=1

M

C
A = CMF/ Y

c=1m=1

c 2
Zni-1,f) > g
zrcnm,f

(13)

F

Z <(Zf;1f -

f=1
K K

XG = > pF(e)NF/ (Z ¥*(c)
k=1 k=1

kM
XD > AFm) ((@F ;= 25 0)) .

Lo
=1 m=1 ot

(14)
K c K
T — (772 + Zlﬁk(C)) / (Z(né + Z?ZMC’)))
k=1 =1 k=1
(15)
koM
di oY Y dmm|  ae

i=2 m=1neT;(m)

whereT;(m) = {n € {1,..., M}stm—n=jorM +

m —n = j}, ¢ is a constant enforcing the constraint
Ymidh =1, andm B 1 = (m—1)ifm > 1,
m 1 = M otherwise.

In order to update the parent cycle we solve the linear sys-

tem of M equations given by:

(L)

OZm

C
= )\2 Z(< an

c=1

+0*(2Zm—1 — 42 + 2Zm11) = 0 (17)

> —Zm)

form =2,..., M — 1, and by the two analogous equations
corresponding to cases = 1, m = M.

Estimating missing data If some sequences contain
missing entries, we fill in the unobservable data during the
M-step. The idea is to optimize the expected log-likelihood

NRith respect to the missing entries. L@t denote the rows

of the missing entries in frame?. The update rule is:
c -1
(xi)T (Z w’“(c)(AC)T>
c=1

C M
XY M) Y AFm)(A) (o) 1(18)
c=1 m=1

where(A°)T is the square matrix sub-block corresponding
to the missing entries.

4. Experiments

Datapreprocessing We evaluated our method on several
sets of motion capture sequences from the CMU Graphics
Lab Motion Capture Databae The data is represented
in the form of Euler joint angles parameterized so as to
avoid discontinuities. The configuration at each frame is
a 62-dimensional vector. When generating animations, in
addition to the joint angles, we used the 3D global trans-
lations of the body in the form of frame-to-frame 3D dis-
placements of a root marker. In our experiments we have
investigated the usefulness of PCA as a preprocessing step
to reduce the dimensionality of the data. We have found
that, while eliminating the last few principal componests i
generally beneficial, using fewer than 50 PCA dimensions
results consistently in lower performance for all methods.
Thus, here we report results obtained by applying PCA to
each dataset and using only the first 50 dimensions. Fur-
thermore, we show that HLM works equally well without
this preprocessing by including also the results obtairyed b
our method without the use of PCA.

Comparison We consider the following algorithms in
our comparison:

e HLM: this is the novel hierarchical model described in
this paper. We initialize the vecto®s, by linearly in-
terpolating the firsfi/ /2 frames of a sequence randomly
chosen from the training set. For all stylesA} was
initially set equal to the sample precision of tfi¢h co-
ordinate of the data); was initially set to 0.01 times
the sample precision of all the data coordinaiiéf, and

As was set to 0.1. The paramet@iﬁ% were initialized

to 1/J,, with J, = 3. The hyperparameterg,n™, n?
were all set equal to 0.1. We initializégl* (/) by adding
small random noise to an equal-probability distribution
over the labels. Finally, we initialize@*(z¢,) by set-
ting u©™ equal toz,, ands™ equal toA§. Q* (7*) was
then estimated from these initializations. In our experi-
ments we keph; fixed to its initial value, since doing so

3Available at http://mocap.cs.cmu.edu/
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2nd component (aligned by FAM)
2nd component (aligned by K-CPM)

) =TT @ =TT @

Figure 1.(a) Time series corresponding to the second PCA componétits 89 motions. Sequences having the same label in the CMU
database are drawn with the same color. (b) The time seigg®ed by FAM. (c) Viterbi alignment computed using the CPMd=b (d)
Time-series warped according to the Viterbi alignmentwdetifrom our HLM model. Our algorithm successfully alignktiahe series.

produced better results. We believe that our datasets arel. L earning motion styles

too small to be able to estimate this parameter reliably|n, this section we show that HLM can be used to discover
We found that our variational algorithm generally con- vjes from a pool of motions, and to generate novel anima-
verges very rapidly to a minimum. In our experimentSiions for each learned style. For this experiment we used a
we used 15 or fewer EM iterations, with 3 variational gaaset of 39 locomotion sequences, taken from CMU sub-
inference updates in each E-step. ject categories 07, 08, 09, and 35. This set contains regular
e CPM: we modified the original Continuous Profile walking sequences performed by different subjects, as well
Model (Listgarten et al., 2005) to handle the cyclic na-as examples of striding and running. Figure 1(a) shows
ture of our data by using the transition distribution giventhe second PCA component of each sequence plotted as a
by eq. 1. This algorithm aligns all sequences with re-fynction of time. Sequences having the same motion la-
spect to a single learned latent cycle. Finally, for eachpel in the CMU database are plotted with the same color
sequence it produces a prototypical cycle of length  (there are four distinct CMU labels in this set). Note, how-
obtained by averaging the motion warped according tQver, that these labels are not provided to the algorithoh, an
the Viterbi alignment over the multiple observed cycles.that the motion styles are learned in a fully unsupervised
Note that HLM differs from CPM in several ways. CPM way. We trained HLM and our ”Cyc|ic” version of CPM
aligns the data without performing clustering. In HLM on this dataset. After training, we aligned the time series
each example is aligned with respect to style-specific laysing the maximum likelihood HMM state path computed
tent cycles, which in turn are forced to be aligned with by applying the Viterbi algorithm (Rabiner, 1989) to both
respect to the parent cycle. As we show in our experifearned models. The results are shown in Figure 1(c) and
ments, this hierarchy leads to more accurate alignmentd) for CPM and HLM, respectively. Figure 1(b) shows
than when warping all examples with respect to a singlethe sequences aligned by FAM. There are significant align-
generic cycle. Furthermore, our approach learns for eachent errors with the FAM and CPM models, while HLM
style a full PDF rather than a single point estimate.  synchronizes the time-series successfully, even segsence
e FAM: this algorithm uses the Functional Analysis Model having noticeably different characteristics.
described in (Ormoneit et al., 2005) to warp and segmen\tN

the observed sequences into aligned cycles. As HLM e also evaluated the quality of the clusterings by_ using
this model has the ability to fill-in missing data. the CMU style labels as ground truth data. The plot in Fig-

e . . ure 2 reports the average cluster putigpbtained for dif-
* LGE?]M th'st Irrplzegz)t;nts_r;he al?r?rghm fdescrlbled ferent values of”. The purity values are computed by av-
ltgri(ng Igfra]aot?or?s”using )6'1 Ba;?a;]aen I\C/)Iixgﬁgogmjncel;'eraging the results over 50 runs for each algorithm. HLM
ield istently the best clusteri Its. Notedlat
Gaussian State-Space Models. As in HLM, the clusteryle S TonsisTeNty the best CLSIering restits. otedia

. dth del | . q tth " algorithm performs roughly the same when applied to raw
Ing and the modetiearning are done at the same ime. jointangles as opposed to data obtained from PCA. This in-

CPM and FAM produce for each sequence a prototypicadiicates robustness to noise and high-dimensionality. Here
cycle summarizing the motion. Thus, such methods can bg -FAM performs slightly better thaf-CPM, but worse

naturally extended to model styles by applying a clusteringhan HLM. As illustrated in this Figure, LGSSM produces
algorithm to the aligned prototypical cycles. Here we eval-very poor clustering results.

uate these algorithmic extensions by runniikgneanson ——

e oyl s modcs b CPU nd A0 e, 100 LS e e
cluster Ce:\ntr0|ds are finally used as Stylg-prototypgs. Wénalized to sum to 1. The purity of a cluster is the fraction of
denote withK'-CPM andK-FAM the algorithms obtained  motions in the majority ground truth class assigned to thater.

by combiningi -means with CPM and FAM, respectively.
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. _—g::::::t ...... <
2 S Pt SR §----o
2 .,s HLM w/o PCA
g *" -B-HLM w/ PCA
3., -©-K-CPM
g -X-K-FAM
] 05 e \
2 +LGSSM \ NN
ot Feeil o e- e PR _]_ . . . . . |
o Figure 3.An illustration of the animation generated by blending

learned latent cycles corresponding to "taichi” and "strgd. No-

number (;fclasses ) ) . )
tice the varying walking style.

Figure 2 Average cluster purity obtained with LGSSW;-FAM, . o
K-CPM, and HLM (with both raw data and data processed by.the course Of_the sequence. .'_I'he result IS a realistic an-
PCA) for different values of". The figure includes error bars. imation containing style transitions (see videohatt p:

/I www. cs. dart nout h. edu/ hl m.

Examples of animations generated with the different mod-
els can be viewed atttp://ww. cs. dart nmout h. 4.3. Filling in missing data
edu/ hl m The animations show the means of the Style-Despite the recent advances in techno|ogy, motion cap-
specific latent cycles obtained when settifig= 4. The  tyre systems today are still prone to the problem of marker
motions learned by HLM are very realistic and stylisti- dropouts, i.e. markers that are lost by the tracker due to
cally distinct. One of the four learned styles clearly cor-noise or occlusion. This problem is typically addressed in
responds to running, and one to striding. The remaining, post-processing stage via interactive software usirg-int
two motions are different styles of walking. In contrast, polation methods. In contrast, our model can exploit the
the motions produced with’-CPM andK -FAM are noisy  correlation among the joint angles and reconstruct miss-
and jittery, possibly due to the inaccurate alignment. Furing data in a fully automatic way from the available data.
thermore, they appear to mix together different styles. Weror this experiment, we used the 39-sequence dataset pre-
found that motions generated with the LGSSM model devjjously introduced and trained the models on the raw joint
viated considerably from the original motions, particlylar angles. We selected a new walking sequence, not included
as time progressed. This problem occurs even when thg our original training set, from CMU subject category 7.
method clusters the sequences correctly, as this model gegye left the first half of this sequence unchanged. How-
erates the Configuration at each time by USing the eStima@/er’ we eliminated 48 joint ang|esi Corresponding to all
at the previous time step, and thus propagates errors ov@ie degrees of freedom of the upper body, including arms,
time. It typically generates body poses inconsistent withthe head, and the hips (note that this affects also the leg
the training set within 20 frames. configuration) from the entire second half of the example.
We use the update in eq. 18 to predict the missing entries.
4.2. Style blending During inference we used the previously learned model to
Several authors (Rose et al.,, 1998; Kovar et al., 2002estimate the style label and the HMM state distributions for
Grochow et al., 2004; Torresani et al., 2007) have prothe new sequence. Note that the M-step update for missing
posed methods that generate novel styles by interpolatindgata can also be used to fill-in unobservable entries in the
(or blending)corresponding body-poses taken from stylis- training data during learning, although here we do not test
tically different sequences. Our algorithm can be used tsuch case. We compare our approach for handling missing
establish these pose correspondences. Our approach aligerstries with FAM, and a simple solution based on nearest
all sequences together and thus it can even support multikeighbor (NN), as in (Taylor et al., 2007): for each frame
way (as opposed to pairwise) interpolation. Furthermorecontaining missing entries, we find the most similar body
our approach learns synchronized latent cycle distribstio configuration in the training set (in terms of Euclidean dis-
Consequently, novel styles can be directly generated frontance) and copy from it the data corresponding to the un-
them, for example by interpolating the latent cycle expec-observed angles. We show reconstruction of missing joint
tationsy© of different styles. Here we demonstrate this ap-angles using HLM and NN in Figure 4. The mean squared
plication using a dataset of six sequences, comprisingthreerror per joint is 23.9 when using NN, and 9.3 with HLM.
distinct styles: taichi walking, striding, and regularkiag ~ The motion filled in with HLM appears real, while the NN
(note that as usual the style labels have not been providemhd FAM reconstructions look unnatural (see Figure 5).
to the algorithm). Figure 3 shows the result of blendingWe found that the FAM model can effectively handle only
together two of the learned latent cycles. The blendingcases where the number of missing entries is very small.
is obtained by computinga(m)usl + (1 — a(m))uc?),  On our challenging experiment FAM yields a reconstruc-
where a(m) is a value varying smoothly in0, 1] over tion error greater than 200.
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] graphs.ACM Trans. on Graphics, 21, 473-482.
5. Conclusions
) _ Li, Y., Wang, T., & Shum, H.-Y. (2002). Motion texture: A
We have described a novel unsupervised method for learn- yyo-level statistical model for character motion synthe-

ing locomotion styles using hierarchical priors and shown  gjs. ACM Trans. on Graphics, 21, 465-472.

its versatility with a variety of applications. We have

demonstrated that our algorithm outperforms state-of-theListgarten, J., Neal, R. M., Roweis, S. T., & Emili, A.
art methods on the tasks of animation, style clustering, (2005). Multiple alignment of continuous time series.
and filling in missing data. Our system uses a new effi- In Adv.in Neural Inform. Proc. Systems 17, 817-824.
cient variational method which can infer the dlsmbu“onsListgarten, J. Neal, R. M., Roweis. S. T., Puckrin, R., &

of the model in a few minutes even when applied to large Cutler, S. (2007). Bayesian detection of infrequent dif-

datasets of motions. Currently, our algorithm requires the . . . :

number of classes as input. Future research will inves- ferer_1ces in sets of time series with shared structure. In
tigate Bayesian approaches for model selection. We are Adv.in Neural Inform. Proc. Systems 19, 905-912.
also interested in extending our model to represent motiongjy, K., Hertzmann, A., & Popovic, Z. (2005). Learning

with non-cyclic properties, such as turning or bending. physics-based motion style with nonlinear inverse opti-
More complex hierarchies and distributions may be needed mjzation. ACM Trans. on Graphics, 24, 1071-1081.

to model these combinations of styles. Furthermore, we

would like to study how our model can be adapted to creatérmoneit, D., Black, M., Hastie, T., & Kjellstrom, H.
animations that simultaneously satisfy user-specified con (2005). Representing cyclic human motion using func-
straints and exhibit the styles learned during training. Al  tional analysislmage and Vision Comp., 1264-1276.

though in this paper we have focused on the problem o . .
modeling locomotion styles, we believe that our hierar-Eabm?r’ L R. _(1989)' A tutona! on HMMs and selected
applications in speech recognitioroc. |[EEE, 77.

chical approach can be applied effectively to model time-

series in many other domains. Rose, C., Cohen, M., & Bodenheimer, B. (1998). Verbs and
adverbs: multidimensional motion interpolatiolrEEE
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