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Abstract. We present a robust framework for estimating non-rigid 3D
shape and motion in video sequences. Given an input video sequence, and
a user-specified region to reconstruct, the algorithm automatically solves
for the 3D time-varying shape and motion of the object, and estimates
which pixels are outliers, while learning all system parameters, including
a PDF over non-rigid deformations. There are no user-tuned parameters
(other than initialization); all parameters are learned by maximizing the
likelihood of the entire image stream. We apply our method to both rigid
and non-rigid shape reconstruction, and demonstrate it in challenging
cases of occlusion and variable illumination.

1 Introduction

Reconstruction from video promises to produce high-quality 3D models for many
applications, such as video analysis and computer animation. Recenly, several
“direct” methods for shape reconstruction from video sequences have been demon-
strated [1–3] that can give good 3D reconstructions of non-rigid 3D shape, even
from single-view video. Such methods estimate shape by direct optimization
with respect to raw image data, thus avoiding the difficult problem of tracking
features in advance of reconstruction. However, many difficulties remain for de-
veloping general-purpose video-based reconstruction algorithms. First, existing
algorithms make the restrictive assumption of color constancy, that object fea-
tures appear the same in all views. Almost all sequences of interest violate this
assumption at times, such as with occlusions, lighting changes, motion blur, and
many other common effects. Second, non-rigid shape reconstruction requires a
number of regularization parameters (or, equivalently, prior distributions), due
to fundamental ambiguities in non-rigid reconstruction [4, 5], and to handle noise
and prevent over-fitting. Such weights must either be tuned by hand (which is
difficult and inaccurate, especially for models with many parameters) or learned
from annotated training data (which is often unavailable, or inappropriate to
the target data).

In this paper, we describe an algorithm for robust non-rigid shape recon-
struction from uncalibrated video. Our general approach is to pose shape recon-
struction as a maximum likelihood estimation problem, to be optimized with
respect to the entire input video sequence. We solve for 3D time-varying shape,
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correspondence, and outlier pixels, while simultaneously solving for all weight-
ing/PDF parameters. By doing so, we exploit the general property of Bayesian
learning that all parameters may be estimated by maximizing the posterior dis-
tribution for a suitable model. No prior training data or parameter tuning is
required. This general methodology — of simultaneously solving for shape while
learning all weights/PDF parameters — has not been applied to 3D shape re-
construction from video, and has only rarely been exploited in computer vision
in general (one example is [6]).

This paper begins with a general framework for robust shape reconstruc-
tion from video. This model is based on robust statistics: all violations of color
constancy are modeled as outliers. Unlike robust tracking algorithms, we solve
for shape globally over an entire sequence, allowing us to handle cases where
many features are completely occluded in some frames. (A disadvantage of our
approach is that it cannot currently be applied to one-frame-at-a-time tracking).
We demonstrate sequences for which previous global reconstruction methods fail.
For example, previous direct methods require that all feature points be visible
in all video frames, i.e. all features are visible in a single “reference frame;” our
method relaxes this assumption and allows sequences for which no single “refer-
ence frame” exists. We also show examples where existing techniques fail due to
local changes in lighting and shape. Our method is based on the EM algorithm
for robust outlier detection. Additionally, we show how to simultaneously solve
for the outlier probabilities for the target sequence.

We demonstrate the reconstruction framework in the case of rigid motion
under weak perspective projection, and non-rigid shape under orthographic pro-
jection. In the latter case, we do not assume that the non-rigid geometry is
known in advance. Separating non-rigid deformation from rigid motion is am-
biguous without some assumptions about deformation [4, 5]. Rather than specify
the parameters of a shape prior in advance, our algorithm learns a shape PDF
simultaneously with estimating correspondence, 3D shape reconstruction, and
outliers.

1.1 Relation to Previous Work

We build on recent techniques for exploiting rank constraints on optical flow in
uncalibrated single-view video. Conventional optical flow algorithms use only lo-
cal information; namely, every track in every frame is estimated separately [7, 8].
In contrast, so-called “direct methods” optimize directly with respect to the raw
image sequence [9]. Irani [1] treated optical flow in rigid 3D scenes as a global
problem, combining information from the entire sequence — along with rank
constraints on motion — to yield better tracking. Bregler et al. [10] describe an
algorithm for solving for non-rigid 3D shape from known point tracks. Extending
these ideas, Torresani et al. [2, 11] and Brand [3] describe tracking and recon-
struction algorithms that solve for 3D shape and motion from sequences, even
for non-rigid scenes. Note that adding robustness to the above methods is non-
trivial, since this would require defining a unified objective function for tracking
and reconstruction that is not present in the previous work. Furthermore, one
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must introduce a large number of hand-tuned weighting and regularization con-
straints, especially for non-rigid motion, for which reconstruction is ill-posed
without some form of regularization [4, 5]. In our paper, we show how to cast
the problem of estimating 3D shape and motion from video sequences as op-
timization of a well-defined likelihood function. This framework allows several
extensions: our method automatically detects outliers, and all regularization pa-
rameters are automatically learned via Bayesian learning. Our non-rigid model
incorporates our previous work on non-rigid structure-from-motion [5], in which
reliable tracking data was assumed to be available in advance.

A common approach to acquiring rigid shape from video is to separate fea-
ture selection, outlier rejection, and shape reconstruction into a series of stages,
each of which has a separate optimization process (e.g. [12]). Dellaert et al. [13]
solve for rigid shape while detecting outliers, assuming that good features can
be located in advance. The above methods assume that good features can be de-
tected in each frame by a feature detector, and that noise/outlier parameters are
known in advance. In contrast to these methods, we optimize the reconstruction
directly with respect to the video sequence.

Robust algorithms for tracking have been widely explored in local tracking
(e.g. [14–16]). Unlike local robust methods, our method can handle features that
are completely occluded, by making use of global constraints on motion. Similar
to Jepson et al. [16], we also learn the parameters at the same time as tracking,
rather than assuming that they are known a priori. Our outlier model is closely
related to layer-based motion segmentation algorithms [6, 17, 18], which are also
often applied globally to a sequence. We use the outlier model to handle general
violations of color constancy, rather than to specifically model multiple layers.

2 Robust Shape Reconstruction Framework

We now describe our general framework for robust shape reconstruction from
uncalibrated video. We then specialize this framework to rigid 3D motion in
Section 3, and to non-rigid motion in Section 4.

2.1 Motion model

We assume that 3D shape can be described in terms of the 3D coordinates
sj,t = [Xj,t, Yj,t, Zj,t]

T of J scene points, over T time steps. The parameter
j indexes over points in the model, and t over time. We collect these points
in a matrix St = [s1,t, ..., sJ,t]. We parameterize 3D shape with a function as
St = Γ (zt;ψ), where zt is a hidden random variable describing the shape at
each time t, with a prior p(zt); ψ are shape model parameters. The details of
these functions depend on the application. For example, in the case of rigid shape
(Section 3), we use Γ (zt;ψ) = S̄, i.e. the shape stays fixed at a constant value S̄,
and ψ = {S̄}. For non-rigid shape (Section 4), Γ (zt;ψ) is a linear combination
of basis shapes, determined by the time-varying weights zt; ψ contains the shape
basis.
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Additionally, we define a camera model Π. At a given time t, point j projects
to a 2D position pj,t = [xj,t, yj,t]

T = Π(sj,t; ξt), where ξt are the time-varying
parameters of the camera model. For example, ξt might define the position and
orientation of the camera with respect to the object.

In cases when the object is undergoing rigid motion, we subsume it in the
rigid motion of the camera. This applies in both the case of rigid shape and non-
rigid shape. In the non-rigid case, we can generally think of the object’s motion
as consisting of a rigid component plus a non-rigid deformation. For example, a
person’s head can move rigidly (e.g. turning left or right) while deforming (due to
changing facial expressions). One might wish to separate rigid object motion from
rigid camera motion in other applications, such as under perspective projection.

2.2 Image model

We now introduce a generative model for video sequences, given the motion
of the 2D point tracks pj,t. Individual images in a video sequence are created
from the 2D points. Ideally, the window of pixels around each point pj,t should
remain constant over time; however, this window may be corrupted by noise and
outliers. Let w be an index over a pixel window, so that Iw(pj,t) is the intensity
of a pixel in the window1 of point j in frame t. This pixel intensity should ideally
be a constant Īw,j ; however, it will be corrupted by Gaussian noise with variance
σ2. Moreover, it may be replaced by an outlier, with probability 1−τ . We define
a hidden variable Ww,j,t so that Ww,j,t = 0 if the pixel is replaced by an outlier,
and Ww,j,t = 1 if it is valid. The complete PDF over individual pixels in a
window is given by:

p(Ww,j,t = 1) = τ (1)

p(Iw(pj,t)|Ww,j,t = 1,pj,t, Īw,j , σ
2) = N (Iw(pj,t)|Īw,j ;σ

2) (2)

p(Iw(pj,t)|Ww,j,t = 0,pj,t, Īw,j , σ
2) = c (3)

where N (Iw(pj,t)|Īw,j ;σ
2) denotes a 1D Gaussian distribution with mean Īw,j

and variance σ2, and c is a constant corresponding to the uniform distribution
over the range of valid pixel intensities. The values Īw,j are determined by the
corresponding pixel in the reference frame.

For convenience, we do not model the appearance of video pixels that do not
appear near 2D points, or correlations between pixels when windows overlap.

2.3 Problem statement

Given a video sequence I and 2D point positions specified in some reference
frames, we would like to estimate the positions of the points in all other frames,
and, additionally, learn the 3D shape and associated parameters.

1 In other words, Iw(pj,t) = I(t)(pj,t + dw) where I(t) is the image at time t, and dw

represents the offset of point w inside the window.



Automatic Non-Rigid 3D Modeling from Video 5

We propose to solve this estimation problem by maximizing the likelihood of
the image sequence given the model. We encapsulate the parameters for the im-
age, shape, and camera model into the parameter vector θ = {Ī , σ2, τ, ψ, ξ1, ..., ξT }.
The likelihood itself marginalizes over the hidden variables Ww,j,t and zt. Con-
sequently, our goal is to solve for θ to maximize

p(I|θ) =
∏

w,j,t

p(Iw(pj,t)|θ) =
∏

w,j,t

∫

zt

∑

Ww,j,t∈{0,1}

p(I, zt,Ww,j,t|θ)dzt (4)

(We have replaced Iw(pj,t) with I for brevity). In other words, we wish to solve
for the camera motion, shape PDF, and outlier distribution from the video se-
quence I, averaging over the unknown shapes and outliers.

2.4 Variational bound

In order to optimize Equation 4, we use an approach based on variational learn-
ing [19]. Specifically, we introduce a distribution Q(Ww,j,t, zt) to approximate
the distribution over the hidden parameters at time t, and then apply Jensen’s
inequality to derive an upper bound on the negative log likelihood:2

− ln p(I|θ) = − ln
∏

w,j,t

∫

zt

∑

Ww,j,t∈{0,1}

p(I, zt,Ww,j,t|θ)dzt (5)

= −
∑

w,j,t

ln

∫

zt

∑

Ww,j,t∈{0,1}

p(I, zt,Ww,j,t|θ)
Q(Ww,j,t, zt)

Q(Ww,j,t, zt)
dzt (6)

≤ −
∑

w,j,t

∫

zt

∑

Ww,j,t∈{0,1}

Q(Ww,j,t, zt) ln
p(I, zt,Ww,j,t|θ)
Q(Ww,j,t, zt)

dzt (7)

We can minimize the negative log likelihood by minimizing Equation 7 with
respect to θ and Q. Unfortunately, even representing the optimal distribution
Q(Ww,j,t, zt) would be intractable, due to the large number of point tracks.
To make it manageable, we represent the distribution Q with a factored form:
Q(Ww,j,t, zt) = q(zt)q(Ww,j,t), where q(zt) is a distribution over zt for each
frame, and q(Ww,j,t) is a distribution over whether each pixel (w, j, t) is valid
or an outlier. The distribution q(zt) can be thought of as approximating to
p(zt|I, θ), and q(Ww,j,t) approximates the distribution p(Ww,j,t|I, θ). Substitut-
ing the factored form into Equation 7 gives the variational free energy (VFE)
F(θ, q):

F(θ, q) = −
∑

w,j,t

∫

zt

∑

Ww,j,t∈{0,1}

q(Ww,j,t)q(zt) ln
p(I, zt,Ww,j,t|θ)
q(Ww,j,t)q(zt)

dzt (8)

In order to estimate shape and motion from video, our new goal is to minimize
F with respect to θ and q over all points j and frames t. For brevity, we write
2 We require that

∏

w,j,t

∫

zt

∑

Ww,j,t∈{0,1}
Q(Ww,j,t, zt) = 1, in order for Jensen’s

inequality to hold.
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γw,j,t ≡ q(Ww,j,t = 1). Substituting the image model from Section 2.2 and
defining the expectation Eq(zt)[f(zt)] ≡

∫

q(zt)f(zt)dzt gives

F(θ, q, γ) =
∑

w,j,t

γw,j,tEq(zt)[(Iw(pt,j)− Īw,j)
2]/(2σ2) + ln

√
2πσ2

∑

w,j,t

γw,j,t

−NJ
∑

t

Eq(zt)[ln p(zt)]− ln c
∑

w,j,t

(1− γw,j,t)− ln τ
∑

w,j,t

γw,j,t

− ln(1− τ)
∑

w,j,t

(1− γw,j,t) +NJ
∑

t

Eq(zt)[ln q(zt)] +

∑

w,j,t

(1− γw,j,t) ln(1− γw,j,t) +
∑

w,j,t

γw,j,t ln γw,j,t + constants (9)

where N is the number of pixels in a window. Although there are many terms in
this expression, most terms have a simple interpretation. Specifically, we point
out that the first term is a weighted image matching term: for each pixel, it
measures the expected reconstruction error from comparing an image pixel to
its mean intensity Īw,j , weighted by the likelihood γw,j,t that the pixel is valid.

2.5 Generalized EM algorithm

We optimize the VFE using a generalized EM algorithm. In the E-step we keep
the model parameters fixed and update our estimate of the hidden variable
distributions. The update rule for q(zt) will depend on the particular motion
model specified by Γ . The distribution γw,j,t (which indicates whether pixel
(w, j, t) is an outlier) is estimated as:

α0 = p(Iw(pj,t)|Ww,j,t = 0,pj,t, θ)p(Ww,j,t = 0|θ) = (1− τ)c (10)

α1 = p(Iw(pj,t)|Ww,j,t = 1,pj,t, θ)p(Ww,j,t = 1|θ) (11)

=
τ√

2πσ2
e−Eq(zt)

[(Iw(pt,j)−Īw,j)
2]/(2σ2) (12)

Then, using Bayes’ Rule, we have the E-step for γw,j,t:

γw,j,t ← α1/(α0 + α1) (13)

In the generalized M-step, we solve for optical flow and 3D shape given the
outlier probabilities γw,j,t. The outlier probabilities provide a weighting function
for tracking and reconstruction: pixels likely to be valid are given more weight.
Let p0

j,t represent the current estimate of pj,t at a step during the optimization.
To solve for the motion parameters that define pj,t, we linearize the target image
around p0

j,t:

Iw(pj,t) ≈ Iw(p0
j,t) +∇IT

w (pj,t − p0
j,t) (14)

where ∇Iw denotes a 2D vector of image derivatives at Iw(p0
j,t). One such lin-

earization is applied for every pixel w in every window j for every frame t at
every iteration of the algorithm.
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Substituting Equation 14 into the first term of the VFE (Equation 9) yields
the following quadratic energy function for the motion:3

∑

w,j,t

γw,j,t

2σ2
Eq(zt)[(Iw(pt,j)− Īw,j)

2] ≈
∑

j,t

Eq(zt)[(pj,t − p̂j,t)
T ej,t(pj,t − p̂j,t)]

(15)
where

ej,t =
1

2σ2

∑

w

γw,j,t∇Iw∇IT
w (16)

p̂j,t = p0
j,t +

1

2σ2
e−1

j,t

∑

w

γw,j,t(Īw,j − Iw(p0
j,t))∇Iw (17)

Hence, optimizing the shape and motion with respect to the image is equivalent
to solving the structure-from-motion problem of fitting the “virtual point tracks”
p̂j,t, each of which has uncertainty specified by a 2×2 covariance matrix e−1

j,t . In
the next sections, we will outline the details of this optimization for both rigid
and non-rigid motion.

The noise variance and the outlier prior probability are also updated in the
M-step, by optimizing F(θ, q, γ) for τ and σ2:

τ ←
∑

w,j

γw,j,t/(JNT ) (18)

σ2 ←
∑

w,j,t

γw,j,tEq(zt)[(Iw(pj,t)− Īw,j)
2]/
∑

w,j

γw,j,t (19)

The σ2 update can be computed with Equation 15. These updates can be inter-
preted as the expected percentage of outliers, and the expected image variance,
respectively.

3 Rigid 3D Shape Reconstruction from Video

The general-purpose framework presented in the previous section can be spe-
cialized to a variety of projection and motion models. In this section we outline
the algorithm in the case of rigid motion under weak orthographic projection.

This projection model can be described in terms of parameters ξt = {αt,Rt, tt}
and projection function

Π(sj,t; {αt,Rt, tt}) = αtRtsj,t + tt (20)

where Rt is a 2 × 3 matrix combining rotation with orthographic projection,
tt is a 2 × 1 translation vector and αt is a scalar implicitly representing the
weak perspective scaling (f/Zavg). The 3D shape of the object is assumed to

3 The linearized VFE is not guaranteed to bound the negative log-likelihood, but
provides a local approximation to the actual VFE.
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remain constant over the entire sequence and, thus, we can use as our shape
model Γ (ψ) = S̄, without introducing a time-dependent latent variable zt. In
other words, the model for 2D points is pj,t = αtRts̄j,t + tt.

For this case, the objective function in Equation 9 reduces to:

F(θ,R, t, γ) =
∑

w,j,t

γw,j,t(Iw(pt,j)− Īw,j)
2/(2σ2) +

∑

w,j,t

γw,j,t ln
√

2πσ2

−
∑

w,j,t

γw,j,t ln τ −
∑

w,j,t

(1− γw,j,t) ln c(1− τ)

+
∑

w,j,t

γw,j,t ln γw,j,t +
∑

w,j,t

(1− γw,j,t) ln(1− γw,j,t) (21)

Note that, in the case where all pixels are completely reliable (all γw,j,t = 1), this
reduces to a global image matching objective function. Again, we can rewrite
the first term in the free energy in terms of virtual point tracks p̂j,t and co-
variances, as in Equation 15. Covariance-weighted factorization [20] can then be
applied to minimize this objective function to estimate the rigid shape S̄ and
the motion parameters Rt, tt and αt for all frames. Orthonormality constraints
on rotation matrices are enforced in a fashion similar to [21]. To summarize the
entire algorithm, we alternate between optimizing each of γw,j,t, Rt, tt, αt, τ ,
and σ2. Between each of the updates, p̂j,t and ej,t are recomputed.

Implementation details. We initialize our algorithm using conventional coarse-
to-fine Lucas-Kanade tracking [8]. Since the conventional tracker will diverge if
applied to the entire sequence at once, we correct the motion every few frames by
applying our generalized EM algorithm over the subsequence thus far initialized.
This process is repeated until we reach the end of the sequence. We refine this
estimate by additional EM iterations. The values of σ2 and τ are initially held
fixed at 10 and 0.3, respectively. They are then updated in every M-step after
the first few iterations.

Experiments. We applied the robust reconstruction algorithm to a sequence
assuming rigid motion under weak perspective projection. This video contains
100 frames of mostly-rigid head/face motion. The sequence is challenging due to
the low resolution and low frame rate (15 fps). In this example, there is no single
frame in which feature points from both sides of the face are clearly visible, so
existing global techniques cannot be applied.

To test our algorithm, we manually indicated regions-of-interest in two refer-
ence frames, from which 45 features were automatically selected (Figure 1(a)).
Points from the left side of the subject’s face are occluded for more than 50% of
the sequence. Some of the features on the left side of the face are lost or incor-
rectly tracked by local methods after just four frames from the reference image
where they were selected. Within 14 frames, all points from the left side are
completely invisible, and thus would be lost by conventional techniques. With
robust reconstruction, our algorithm successfully tracks all features, making use
of learned geometry constraints to fill in missing features (Figure 2).
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(a) (b)

Fig. 1. Reference frames. Regions of interest were selected manually, and individual
point locations selected automatically using Shi and Tomasi’s method [22]. Note that,
in the first sequence, most points are clearly visible in only one reference frame. (Refer
to the electronic version of this paper to view the points in color.)

(a)

(b)
Frame 2 Frame 60 Frame 100

Fig. 2. (a) Rank-constrained tracking of the rigid sequence without outlier detection
(i.e. using τ = 0), using the reference frames shown in Figure 1(a). Tracks on occluded
portions of the face are consistently lost. (b) Robust, rank-constrained tracking applied
to the same sequence. Tracks are colored according to the average value of γw,j,t for the
pixels in the track’s window: green for completely valid pixels, and red for all outliers.

4 Non-Rigid 3D Shape Reconstruction from Video

We now apply our framework to the case where 3D shape consists of both rigid
motion and non-rigid deformation, and show how to solve for the deforming
shape from video, while detecting outliers and solving for the shape and outlier
PDFs. Our approach builds on our previous algorithm for non-rigid structure-
from-motion [5], which, as previously demonstrated on toy examples, yields much
better reconstructions than applying a user-defined regularization.
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We assume that the nonrigid shape St at time t can be described as a “shape
average” S̄ plus a linear combination of K basis shapes Vk:

St = Γ (zt;ψ) = S̄ +
K
∑

k=1

Vkzk,t (22)

where k indexes elements of zt and ψ = {S̄,V1, ...,VK}. The scalar weights zk,t

indicate the deformation in each frame t. Together, S̄ and Vk are referred to as
the shape basis. The zt are Gaussian hidden variables with zero mean and unit
variance (p(zt) = N (zt|0; I)). With zt treated as a hidden variable, this model
is a factor analyzer, and the distribution over shape p(St) is Gaussian. See [5]
for a more detailed discussion of this model. Scene points are viewed under
orthographic projection according to the model: Π(sj,t; {Rt, tt}) = Rtsj,t + tt.
The imaging model is the same as described in Section 2.2. We encapsulate the
model in the parameter vector θ = {Ī , σ2, τ,R1, ...,RT , t1, ..., tT , S̄,V1, ...,VK}.

We optimize the VFE by alternating updates of each of the parameters. Each
update entails setting ∂F to zero with respect to each of the parameters; e.g. tt

is updated by solving ∂F
∂tt

= 0. The algorithm is given in the appendix.

Experiments. We tested our integrated 3D reconstruction algorithm on a chal-
lenging video sequence of non-rigid human motion. The video consists of 660
frames recorded in our lab with a consumer digital video camera and contains
non-rigid deformations of a human torso. Although most of the features tracked
are characterized by distinctive 2D texture, their local appearance changes con-
siderably during the sequence due to occlusions, shape deformations, varying
illumination in patches, and motion blur. More than 25% of the frames con-
tain occluded features, due to arm motion and large torso rotations. 77 features
were selected automatically in the first frame using the criterion described by
Shi and Tomasi [22]. Figure 1(b) shows their initial locations in the reference
frame. The sequence was initially processed assuming K = 1 (corresponding
to rigid motion plus a single mode of deformation), and increased to K = 2
during optimization. Estimated positions of features with and without robust-
ness are shown in Figure 3. As shown in Figure 3(a), tracking without out-
lier detection fails to converge to a reasonable result, even if initialized with
the results of the robust algorithm. 3D reconstructions from our algorithm
are shown in Figure 4(b). The resulting 3D shape is highly detailed, even for
occluded regions. For comparison, we applied robust rank-constrained track-
ing to solve for maximum likelihood zt and θ, followed by applying the EM-
Gaussian algorithm [5] to the recovered point tracks. Although the results are
mostly reasonable, a few significant errors occur in an occluded region. Our al-
gorithm avoids these errors, because it optimizes all parameters directly with
respect to the raw image data. Additional results and visualizations are shown
at http://movement.stanford.edu/automatic-nr-modeling/
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(a)

(b)
Frame 325 Frame 388 Frame 528

Fig. 3. (a) Rank-constrained tracking of the second sequence without outlier detection
fails to converge to a reasonable result. Here we show that, even when initialized with
the solution from the robust method, tracking without robustness causes the results to
degrade. (b) Robust, rank-constrained tracking applied to the same sequence. Tracks
are colored according to the average value of γw,j,t for the pixels in the track’s window:
green for completely valid pixels, and red for all outliers.

(a)

(b)

Fig. 4. 3D reconstruction comparison. (a) Robust covariance-weighted factorization,
plus EM-Gaussian [5]. (b) Our result, using integrated non-rigid reconstruction. Note
that even occluded areas are accurately reconstructed by the integrated solution.

5 Discussion and future work

We have presented techniques for tracking and reconstruction from video se-
quences that contain occlusions and other common violations of color constancy,
as well as complicated non-rigid shape and unknown system parameters. Pre-
viously, tracking challenging footage with severe occlusions or non-rigid defor-
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Fig. 5. Tracking and 3D reconstruction from a bullfight sequence, taken from the movie
Talk To Her. (The camera is out-of-focus in the second image).

mations could only be achieved with very strong shape and appearance models.
We have shown how to track such difficult sequences without prior knowledge
of appearance and dynamics.

We expect that these techniques can provide a bridge to very practical track-
ing and reconstruction algorithms, by allowing one to model important variations
in detail without having to model all other sources of non-constancy. There are
a wide variety of possible extensions to this work, including: more sophisticated
lighting models (e.g. [23]), layer-based decomposition (e.g. [6]), and temporal
smoothness in motion and shape (e.g. [24, 5]).

It would be straightforward to handle true perspective projection for rigid
scenes in our framework, by performing bundle adjustment in the generalized
M-step. Our model could also be learned incrementally in a real-time setting
[16], although it would be necessary to bootstrap with a suitable initialization.
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A Non-rigid reconstruction algorithm

The non-rigid reconstruction algorithm of Section 4 alternates between opti-
mizing the VFE with respect to each of the unknowns. The linearization in
Equation 14 is used to make these updates closed-form. This linearization also
means that the distribution q(zt) is Gaussian. We represent it with the variables
µt ≡ Eq(zt)[zt] and φt ≡ Eq(zt)[ztz

T
t ].

We additionally define H̃ = [vec(S̄), vec(V1), ..., vec(VK)] and z̃t = [1, zT
t ]T ;

hence, St = H̃z̃t. Additionally, we define µ̃t = E[z̃t] and φ̃ = E[z̃tz̃
T
t ]. H̃j refers

to the rows of H̃j corresponding to the j-th scene point (i.e. sj,t = H̃j z̃t).
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A.1 Outlier variables

We first note the following identity, which gives the expected reconstruction error
for a pixel, taken with respect to q(zt):

Eq(zt)[(Iw(pt,j)− Īw,j)
2] = ∇IT

w (RtH̃j φ̃tH̃
T
j RT

t + 2RtH̃j µ̃tt
T
t + ttt

T
t )∇Iw −

2(∇IT
wp0

j,t + Īw,j − Iw(p0
j,t))∇IT

w (RtH̃j µ̃t + tt)

(∇IT
wp0

j,t + Īw,j − Iw(p0
j,t))

2 (23)

We can then use this identity to evaluate the update steps for the outlier
probabilities γw,j,t and the noise variance σ2 according to Equation 13 and 19,
respectively.

A.2 Shape parameter updates

The following shape updates are very similar to our previous algorithm [5], but
with a specified covariance matrix for each track. We combine the virtual tracks
for each frame into a single vector ft = [p̂T

1,t, ..., p̂
T
J,t]

T ; this vector has covariance

E−1
t , which is a block-diagonal matrix containing e−1

j,t along the diagonal. We

also define f̄t = vec(RtS̄), and stack the J copies of the 2D translation as Tt =
[tT

t , t
T
t , ...t

T
t ]T .

Shape may be thus updated with respect to the virtual tracks as:

Mt ← [vec(RtV1), ..., vec(RtVK)] (24)

β ←M
T
t (MtM

T
t + E

−1
t )−1 (25)

µt ← β(ft − f̄t −Tt), µ̃t ← [1, µ
T
t ]T (26)

φt ← I− βMt + µtµ
T
t , φ̃←

[

1 µT
t

µt φt

]

(27)

vec(H̃) ←

(

∑

t

(φ̃t ⊗ ((I⊗R
T
t )Et(I⊗Rt)))

)−1

vec

(

∑

t

(I⊗Rt)
T
Et(ft −Tt)µ̃

T
t

)

(28)

tt ←

(

∑

j

et,j

)−1
∑

j

et,j(ftj −Rt(̄sj +
∑

k

Vkjµtk)) (29)

Rt ← arg min
Rt

||
∑

j

((H̃j φ̃tH̃
T
j )⊗ et,j)vec(Rt)− vec(

∑

j

(et,j(ftj − tt)µ̃
T
t H̃

T
j ))||

(30)

where the symbol ⊗ denotes Kronecker product. Note that Equation 28 updates
the shape basis S̄ and V; conjugate gradient is used for this update. The rotation
matrix Rt is updated by linearizing the objective in Equation 30 with exponential
maps, and solving for an improved estimate.


