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Abstract—This paper describes compact image descriptors enabling accurate object categorization with linear classification
models, which offer the advantage of being efficient to both train and test. The shared property of our descriptors is the use of
classifiers to produce the features of each image. Intuitively, these classifiers evaluate the presence of a set of basis classes
inside the image. We first propose to train the basis classifiers as recognizers of a hand-selected set of object classes. We then
demonstrate that better accuracy can be achieved by learning the basis classes as “abstract categories” collectively optimized
as features for linear classification. Finally, we describe several strategies to aggregate the outputs of basis classifiers evaluated
on multiple subwindows of the image in order to handle cases when the photo contains multiple objects and large amounts of
clutter. We test our descriptors on challenging benchmarks of object categorization and detection, using a simple linear SVM as
classifier. Our results are on par with those achieved by the best systems in these fields but are produced at orders of magnitude
lower computational costs and using an image representation that is general and not specifically tuned for a predefined set of
test classes.

Index Terms—Object categorization, image features, attributes.

F

1 INTRODUCTION

IN this work we consider the problem of object
class recognition in large image databases. Over

the last few years this topic has received a growing
amount of attention in the vision community [1], [2].
We argue, however, that nearly all proposed systems
have focused on a scenario involving two restrictive
assumptions: the first, is that the recognition problem
involves a fixed set of categories, known before the
creation of the database; the second, is that there are
no constraints on the learning and testing time of the
object classifiers, besides the requirement that training
and testing must be feasible. Such assumptions are re-
flected in the characteristics of the most popular object
categorization benchmarks [3], [4], which measure the
performance of recognition systems solely in terms of
classification accuracy over a predefined set of classes,
and without consideration of the computational costs.

We believe that these two assumptions do not meet
the requirements of modern applications of large-scale
object categorization. For example, test-recognition
efficiency is a fundamental requirement to be able
to scale object classification to Web photo reposito-
ries, such as Flickr, which are growing at rates of
several millions new photos per day. Furthermore,
while a fixed set of object classifiers can be used to
annotate pictures with a set of predefined tags, the
interactive nature of searching and browsing large
image collections calls for the ability to allow users
to define their own personal query categories to be
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recognized and retrieved from the database, ideally in
real-time. Depending on the application, the user can
define the query category either by supplying a set of
image examples of the desired class, by performing
relevance feedback on images retrieved for predefined
tags, or perhaps by bootstrapping the recognition via
text-to-image search. In all these cases, the classifiers
cannot be precomputed during an offline stage and
thus both training and testing must occur efficiently
at query-time in order to be able to provide results in
reasonable time to the user.

In this paper we consider the problem of designing
a system that can address these requirements: our
goal is to develop an approach that enables accurate
real-time recognition of arbitrary categories in gigantic
image collections, where the classes are not defined
in advance, i.e, they are not known at the time of
the creation of the database. We propose to achieve
this goal by means of image descriptors designed to
enable good recognition accuracy with simple linear
classifiers, which can be trained efficiently and –
perhaps even more crucially – can be tested in just a
few seconds even on databases containing millions of
images. Rather than optimizing classification accuracy
for a fixed set of classes, our aim is to learn a general
image representation which can be used to describe
and recognize arbitrary categories, even novel classes
not present in the training set used to learn the
descriptor.

We propose to use as entries of our image de-
scriptor the outputs of a predefined set of nonlinear
classifiers evaluated on low-level features computed
from the photo. This implies that a simple linear
classification model applied to this descriptor effec-
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tively implements a nonlinear function of the original
low-level features. As demonstrated in recent litera-
ture on object categorization [5], these nonlinearities
are critical to achieve good categorization accuracy
with low-level features. However, the advantage of
our approach is that our classification model, albeit
nonlinear in the low-level features, remains linear in
our descriptor and thus it enables efficient training
and testing. In other words, the nonlinear classifiers
implementing our features are used as a classification
basis to recognize new categories via linear models.
Based on this intuition, we refer to our features as basis
classes. The final classifier for a novel class is obtained
by linearly combining the outputs of the nonlinear
classifiers, which we can pre-compute and store for
every image in the database, thus enabling efficient
novel-class recognition even in large datasets.

In this work we investigate and propose several
strategies to define and train the basis classifiers. In
section §3.2 we first propose to use as basis classes a
hand-selected set of object classes from the real-world:
in this case each basis classifier is simply trained as
a traditional object classification model optimized to
recognize a particular object category. This idea is
evocative of the use of attributes [6], [7], [8] which are
fully-supervised classifiers trained to recognize cer-
tain properties in the image such as “has beak”, “near
water”. While attributes have been used as features
for recognition in specialized domains (e.g., animal
recognition [8] or face identification [6]), we demon-
strate that by choosing a large and varied set of object
categories as basis classes, it is possible to employ
the resulting descriptor as an effective universal fea-
ture representation for general object categorization.
Furthermore, we show that this feature vector can
be binarized with little loss of recognition accuracy
to produce a compact binary code that allows even
gigantic image collections to be kept in memory for
more efficient testing.

However, in this work we demonstrate that a bet-
ter classifier-based representation can be obtained by
learning the basis classes as general “abstract cate-
gories” optimized to yield useful features for linear
models rather than hand-defining them as real object
classes. We propose two distinct strategies to learn
automatically the basis classes: the first (§3.3) opti-
mizes the basis classifiers for linear classification, i.e.,
it trains them to produce good recognition accuracy
when used as features with linear models; the second
strategy (§3.4) constrains each basis class to be a
super-category obtained by grouping a set of object
classes such that, collectively, they are easy to distin-
guish from other sets of categories. When compared
to existing work on learning compact image codes, we
show that our feature vectors provide better accuracy
for the same descriptor size.

While multiclass recognition of a fixed set of cat-
egories is not our main motivating application, we

show that our approaches achieve excellent perfor-
mance even on this task. On the Caltech256 bench-
mark, a simple linear SVM trained on our repre-
sentation outperforms the state-of-the-art LP-β classi-
fier [5] trained on the same low-level features used to
learn our descriptor. On the 2010 ImageNet Challenge
(ILSVRC2010) database, linear classification with our
features achieves recognition accuracy only 10.3%
lower than the winner of the competition [9], whose
computational cost for training and testing is sev-
eral orders of magnitude higher compared to our
approach.

Finally, we present the first comprehensive evalua-
tion of classifier-based descriptors on object detection
and scene recognition datasets. In order to render
the descriptor capable of handling the presence of
multiple objects and clutter typical of these datasets,
we propose to apply our basis classifiers on many
subwindows of the photo. We describe and test sev-
eral strategies to aggregate the features produced from
multiple subwindows into a single compact descriptor
that can be used by linear classification models. We
show that the resulting descriptors yield a significant
boost in accuracy compared to feature vectors built
from basis classifiers evaluated on the whole image
and are on par with specialized object detectors tuned
on the test classes. However, the training and testing
of linear classifiers using our descriptors have consid-
erably lower computational cost.

2 RELATED WORK

The problem of object class recognition in large
datasets has been the subject of much recent work.
While nonlinear classifiers are recognized as the state-
of-the-art in terms of categorization accuracy [5],
[10], they are difficult to scale to large training sets.
Thus, much more efficient linear models are typically
adopted in recognition settings involving a large num-
ber of object classes, with many image examples per
class [1]. As a result, much work in the last few years
has focused on methods to retain high recognition
accuracy even with linear classifiers. We can loosely
divide these methods in three categories.

The first category comprises techniques to approx-
imate nonlinear kernel distances via explicit feature
maps [11], [12]. For many popular kernels in computer
vision, these methods provide analytical mappings to
higher-dimensional feature spaces where inner prod-
ucts approximate the kernel distance. This permits
to achieve results comparable to those of the best
nonlinear classifiers with simple linear models. How-
ever, these methods are typically applied to hand-
crafted features that are already high-dimensional and
they map them to spaces of further increased dimen-
sionality (2 or 3 times as large, depending on the
implementation). As a result, they pose high storage
costs in large-scale settings.
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A second line of work [2] involves the use of
vectors containing a huge number of features (up to
several millions) so as to obtain a high degree of
linear separability. The idea similar is similar to that
of explicit feature maps, with the difference that these
high-dimensional signatures are not produced with
the goal of approximating kernel distances between
lower-dimensional features but rather to yield higher
accuracy with linear models. In order to be able to
keep large datasets in memory with such representa-
tions, the vectors must be stored in compressed form
and then decompressed on the fly “one at a time”
during training and testing [2], [13].

Finally, the third strand of related work involves
the use of image descriptors encoding categorical
information as features: the image is represented in
terms of its relation to a set of basis object classes [14],
[15], [16] or as the response map to a set of detec-
tors [17]. Even linear models applied to these high-
level representations have been shown to produce
good categorization accuracy. These descriptors can
be viewed as generalizing attributes [6], [7], [8], which
are semantic characteristics selected by humans as
associated to the classes to recognize.

The three approaches presented in this paper are
closely related to this third line of work, as they all
represent images in terms of the outputs of classifiers
learned for a set of basis classes. Our first approach
– classemes – (§3.2) was originally presented in [15]
and uses a large set of real object classes as features. In
section §3.3 instead we describe PiCoDes (first intro-
duced in [18]), which are binary descriptors explicitly
optimized for linear classification accuracy on a large
set of training object classes. The third method – meta-
classes – (§3.4) was originally presented in [19] and
learns the basis classes as a set of abstract categories
capturing useful properties for object class recogni-
tion. The learning of these abstract categories is much
more efficient than in the case of PiCoDes and it
enables training of descriptors of much larger size.

In this article we also consider how to extend
classifier-based descriptors to yield good recognition
accuracy even for photos containing multiple objects
and clutter. Our approach is inspired by Li et al. [17]
who have proposed to use the localized outputs of
object detectors as image features, to encode spatial
information into a global image descriptor. However,
this representation is very high-dimensional (the “Ob-
jectBank” descriptor includes over 40,000 real-valued
entries) and as such is not suited for recognition in
large databases. Here we present several strategies to
aggregate the outputs of basis classifiers evaluated on
multiple subwindows in a single low-dimensional de-
scriptor. We show that simple linear classifiers trained
on our aggregate vector produce results approach-
ing the state-of-the-art on challenging object-detection
and scene recognition benchmarks.

3 TECHNICAL APPROACH

3.1 General framework
In this section we introduce our general framework
of classifier-based image descriptors. At a high-level,
our approach involves representing an image x as a
C-dimensional vector h(x), where the c-th entry is the
output of a classifier hc evaluated on x:

h(x) =

h1(x)
...

hC(x)

 (1)

The classifiers h1...C (the basis classifiers) are learned
during an offline stage from a large labeled dataset
of images DS = {(x1, y1), . . . , (xN , yN )}, where xi

denotes the i-th image in the database and yi ∈
{1, . . . ,K} indicates the class label of the object
present in the photo. The database DS represents
our general visual knowledge-base; it should be very
large and ideally include all possible visual concepts
of the world. Our approaches analyze DS to auto-
matically extract the C visual classifiers h1...C to be
subsequently used as universal image features for
class recognition. We call these C visual features basis
classes. Note that the basis classes may be abstract cat-
egories, i.e., visual categories that do not necessarily
exist in the real-world but that are useful to represent
and discriminate the K classes in DS .

Before describing how we define and learn the
basis classifiers, we want to discuss the motivation
behind this representation. Intuitively, our descriptor
represents an image in terms of its visual closeness to
the set of C basis classes. We propose to extract this
descriptor for every image x in the database where
we want to perform the final recognition. As shown
in our experiments, these classifier-based representa-
tion provides us with two fundamental advantages:
1) Compactness. Only C entries are are needed to
describe each image. By limiting C to relatively small
values (say, a few thousands), we can store even large
image collections in memory (rather than on the hard-
drive) for more efficient recognition. 2) High accuracy
with linear models. This representation enables good
classification accuracy even with simple linear models
of the form θ>h(x). Intuitively this happens because
a linear combination of these C features implements a
powerful weighted sum of C classifiers, which reuses
the basis classes as building blocks to recognize novel
categories.

Let us now consider the problem of how to define
the basis classifiers. We propose to train our basis
classifiers on a low-level representation of the image:
given an image x we first extract a set of M low-level
features {fm(x)}Mm=1, capturing different visual cues,
such as the color distribution, or the spatial layout
in the image (our low-level features include common
descriptors such as SIFT [20] and GIST [21]; see sec.4.2
for further details). In order to obtain a powerful
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image representation, we want our basis classifiers
h1...C to be nonlinear functions of features {fm(x)}.
This is motivated by the observation that several
recent papers have shown that such nonlinearities
are crucially necessary to achieve good classification
accuracy (see, e.g., [5], [15]). However, at the same
time we want to define a representation that is effi-
cient to compute. This implies that the basis classifiers
h1...C must be fast to evaluate. In order to achieve
this twofold purpose, we lift each feature vector
fm(x) ∈ Rdm to a higher-dimensional feature space
via the explicit map proposed in [12] so that inner
products in this space approximate well a predefined
nonlinear kernel distance Km() over the original fea-
tures fm(x). Formally, the explicit map Ψm for feature
m is defined as a function Ψm : Rdm −→ Rdm(2r+1)

where r ∈ Z+ such that 〈Ψm(fm(x)),Ψm(fm(x′))〉 ≈
Km(fm(x),fm(x′)). For the family of additive kernels
the map can be analytically computed. The parameter
r is a positive integer parameter controlling the target
dimensionality. It has been shown in [12] that good
approximations can be obtained even when setting
r to very small values (in this work we use r = 1;
for more details see Sec. 4.2). This trick allows us
to approximate a computationally-expensive kernel-
based classifier with a linear model that can be trained
and evaluated very efficiently. The concatenation of
the M lifted-up features produces a vector Ψ(x) of
dimensionality D =

∑M
m=1 dm(2r + 1):

Ψ(x) = [Ψ1(f1(x))>, . . . ,ΨM (fM (x))>]> (2)

Using this formulation based on explicit feature
maps, we implement each basis classifier hc as a linear
combination of approximate kernels parameterized by
a single projection vector ac:

hc(x) = τc(a
>
c [Ψ(f(x)); 1]) (3)

where τc is a function to either quantize or scale the
classifier output. The constant value 1 is appended
to the vector Ψ(x) to implement a bias coefficient
without explicitly keeping track of it. We can then
stack together the parameters of all basis classifiers in
a single matrix A = [a1| . . . |aC ]. For notational con-
venience, we set the following equivalences: hc(x) ≡
h(x;ac) = τc(a

>
c [Ψ(f(x)); 1]) and h(x) ≡ h(x;A).

We can now even more clearly recognize the two
above-mentioned advantages enabled by our descrip-
tor, i.e, compactness and high accuracy with linear
models. Specifically, this formulation implies that a
simple linear classification model θ>h(x) trained for
a new class effectively implements an approximate
linear combination of multiple low-level kernel dis-
tances, using our basis classifiers as individual com-
ponents:

θ>h(x) =

C∑
c=1

θcτc(a
>
c [Ψ(f(x)); 1]) (4)

The great advantage is that the model θ, albeit nonlin-
ear in the low-level features, remains linear in our de-
scriptor and thus can be efficiently trained and tested.
Moreover, note that while the extraction of the low-
level features {fm(x)}Mm=1 is needed to calculate the
descriptor h(x), the storage of these low-level features
is not necessary for the subsequent recognition. This
implies that only the compact feature vectors h(x)
need to be stored in the database.

Our descriptors can be interpreted as implementing
a form of deep network [22], where low-level features
are pumped through a set of learned nonlinear func-
tions organized in layers. However, our approach dif-
fers from traditional deep learning methods in terms
of the training objective, the optimization algorithm,
the type of nonlinearities, and also in our use of the
output layer as a general representation for broad class
recognition. Our approach can also be viewed as a
dimensional reduction method: the function h indeed
maps the high-dimensional descriptor represented by
Eq. 2, to a space of much lower dimensionality, i.e.
C � D. In the experimental section we will show that
such representation is able to retain or even enrich the
original representation, allowing efficient linear classi-
fiers to achieve state-of-the-art classification accuracy
on several challenging benchmarks.

In the next sections we propose different methods to
discover the basis classes and learn the basis classifiers
from a given database DS .

3.2 Classemes
CLASSEMES are the classifier-based features that we
first introduced in [15]. In this approach, the basis
classes are defined directly as the real-world object
categories of the labeled training set DS (thus C = K).
Each basis classifier hc is a 1-vs-the-rest binary classi-
fier trained to recognize the c-th category. Specifically,
we train hc using a training set DS

c that contains the
images of the c-th category as positive examples, and
a random subset of images sampled from the other
K − 1 classes as negative examples. In this work
we implement the CLASSEMES hc(x) using the LP-
β classification model [5], which has been shown to
yield state-of-the-art results on several categorization
benchmarks. The LP-β classifier is defined as a linear
combination of M nonlinear SVMs, each trained on
a different low-level feature vector fm(x). While [5],
[15] employ exact kernels to render the classifier
nonlinear, here we use approximate kernel distances
by adopting the explicit feature map described in the
Sec. 3.1. As already noted, this modification speeds up
the training and the evaluation of the basis classifiers
by orders of magnitudes and thus enables a very
efficient extraction of CLASSEMES. Formally, each basis
classifier hc(x) is defined as:

hc(x) = τc

( M∑
m=1

βm,c

[
wT

m,cΨm(fm(x)) + bm,c

])
(5)
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Note that by re-arranging the terms in Eq. 5, we
can expresses hc in the same form as Eq. 3. Follow-
ing the customary training scheme of LP-β, we first
learn the parameters {wm,c, bm,c} for each feature m
independently by training the hypothesis hm,c(x) =[
wT

m,cΨm(fm(x)) + bm,c

]
using the traditional SVM

large-margin objective on training set DS
c . In a sec-

ond step, we optimize over parameter vector βc =

[β1,c, . . . , βm,c]
T subject to the constraint

∑
m βm,c = 1.

This last optimization can be shown to reduce to a
simple linear program (see [5] for further details).
An advantage of this training procedure is that it
is embarassingly parallel, as each hypothesis hc can
be learned independently from the others. This fact
makes this method very scalable to the size of the
training database DS .

The functions τc in Eq. 5 are quantizers applied
after the learning to reduce the dimensionality of the
descriptor. In our original work [15] we evaluated
different levels of quantization, realizing different
trade-offs between the descriptor compactness and
the final accuracy of the visual recognition system.
In this work, we consider the following two options:
• CLASSEMES We use the raw outputs of the LP-
β classifiers as features, i.e., τc(z) = z,∀c ∈
{1, . . . , C};

• CLASSEMES-BIT We create a binary vector by
thresholding the values at zero, i.e., we choose
τc(z) = 1[z > 0],∀c ∈ {1, . . . , C} where 1[.] is the
0-1 indicator function of its boolean argument.

3.3 PiCoDes
As we will show in the experiments, the training
procedure presented in Sec. 3.2 can efficiently learn
classifier-based descriptors yielding state-of-the-art
accuracy. However, it also comes with a few short-
comings:
• The basis classifiers are learned disjointly by op-

timizing an objective that is unrelated to their
actual usage as features at application time (see
Eq. 4).

• The basis classes are hand-selected real object
classes. The choice of classes to use is left to
the designer of the descriptor but there is no
well-defined criterion to determine the best set
of categories.

• The quantization of the descriptor is applied
as a post-processing and not considered in the
learning objective of the basis classifiers.

We now describe a method that addresses these lim-
itations. The idea of the approach is quite simple:
given that we want to use basis classifiers as features
with linear models, we design our learning objective
to enforce that linear combinations of these basis
classifiers must yield good accuracy with respect to
our training set. In other words, rather than hand-
designing the basis classes, we learn abstract cate-

gories aimed at optimizing linear classification when
they are used as features. This learning objective de-
couples the number of training classes from the target
dimensionality of the binary descriptor and thus it
allows us to optimize our descriptor for any arbitrary
length. Furthermore, it enables direct optimization of
the learning parameters with respect to the desired
quantization function τc, avoiding the suboptimal use
of quantizers applied as a post-processing.

Figure 1 provides a visualization of a few basis clas-
sifiers learned by our training procedure. This figure
suggests that our learned features describe the image
in terms of binary visually-interpretable properties
corresponding, e.g., to particular shape, texture or
color patterns.

We first introduced this approach in [18]. We called
these features PICODES, which stands for “Picture
Codes” but also “Pico-Descriptors”. In order to obtain
a highly compact descriptor, we optimize the PI-
CODES features to be binary, i.e., h(x;ac) = 1[aT

c x >
0] (note that this is the same form as in Eq. 1 with
only difference that here we choose τc(z) = 1[z > 0]).

3.3.1 Learning the basis classifiers

In order to learn the PICODES basis classifiers, we
use a binary encoding of the labels for the train-
ing examples in DS : for each example i, we define
yi ∈ {−1,+1}K to be a vector describing its category
label, with yik = +1 iff the i-th example belongs to
class k. As seen shortly, this labeling will allow us
to implement a form of “one-vs-the-rest” strategy for
training the basis classifiers.

We want to optimize the parameter matrixA so that
linear combinations of the resulting basis classifiers
yield good categorization accuracy on DS . In order
to formalize this objective, for each training class k
we introduce auxiliary parameters (wk, bk), which
define a linear classifier operating on the PICODES
features and distinguishing the k-th class from all the
others. Thus, we state our overall objective as joint
optimization over our representation (parameterized
by A) and the auxiliary parameters defining the K
linear classifiers so as to obtain the best possible linear
classification accuracy on DS . Specifically, we use a
large-margin formulation which trades off between
a small classification error and a large margin when
using the output bits of the basis classifiers as features
in a one-versus-all linear SVM:

E(A,w1..K , b1..K) =
K∑

k=1

{
1

2
‖wk‖2 +

λ

N

N∑
i=1

`

[
yi,k(bk +w>k h(xi;A)

]}
(6)

where `[·] is the traditional hinge loss function. Ex-
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Fig. 1. Visualization of PICODES. Each row of images illustrates a particular bit in our 128-bit descriptor. These 6 randomly chosen bits
are shown as follows: for bit c, all images are sorted by non-binarized classifier outputs a>

c x and the 10 smallest and largest are presented
on each row. Note that ac is defined only up to sign, so the patterns to which the bits are specialized may appear in either the “positive” or
“negative” columns.

panding, we get

E(A,w1..K , b1..K) =
K∑

k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

[
yi,k(bk+

C∑
c=1

wkc1[aT
c xi > 0])

]}
We propose to jointly learn the linear SVMs (wk, bk)
and the parameters ac of the basis classifiers using
the method described below.

3.3.2 Optimization
Minimizing this objective requires optimization di-
rectly for binary features, which is difficult and non-
convex. Thus, we use an alternation scheme imple-
menting block-coordinate descent. We alternate be-
tween the two following steps:
1. Learn classifiers.
We fix A and optimize the objective with respect
to w and b jointly. This optimization is convex and
equivalent to traditional linear SVM learning.
2. Learn PICODES
Given the current values of w and b, we min-
imize the objective with respect to A by updat-
ing one basis-classifier at a time. Let us con-
sider the update of ac with fixed parameters
w1..K , b,a1, . . . ,ac−1,ac+1, . . . ,aC . It can be seen (see
the supplementary material) that in this case the
objective becomes:

E(ac) =

N∑
i=1

vi1[zia
T
c xi > 0] + const (7)

where zi ∈ {−1,+1} and vi ∈ R+ are known values
computed from the fixed parameters. Unfortunately,
this objective is not convex and not trivial to optimize.
Thus, we replace it with the following convex upper
bound defined in terms of the hinge function `:

Ê(ac) =

N∑
i=1

vi`(zia
T
c xi) (8)

This objective can be globally optimized using an LP
solver or software for SVM training. We had success
with LIBLINEAR [23], which deals nicely with the
large problem sizes of both our optimization steps.

We have also experimented with several other op-
timization methods, including stochastic gradient de-
scent applied to a modified version of our objective,
but they led to inferior results. Please refer to the
supplementary material for further details.

3.4 Meta-Classes

We have seen that the method to learn CLASSEMES
introduced in Sec. 3.2 is very simple to implement
and scalable to the size of the training database but
it is sub-optimal in several aspects. Conversely, the
PICODES approach described in Sec. 3.3 provides
principled learning of abstract basis classes explicitly
optimized for good accuracy with linear models, but
it requires a computationally expensive minimization,
which in practice can be run only for very compact
dimensionalities (our largest PiCoDes contain 2048
bits and required several weeks to be learned). We
now introduce a descriptor-learning algorithm that
combines the advantages of the previous two meth-
ods: 1) scalable learning; 2) automatic discovery of
abstract basis-classes yielding good recognition when
used as features with linear models. We originally
presented this approach in [19].

We refer to the basis classes learned by this method
as “meta-classes”. Intuitively, we want our meta-class
classifiers to be “repeatable” (i.e., they should produce
similar outputs on images of the same object cate-
gory) and to capture properties of the image that are
useful for categorization. We formalize this intuition
by defining each meta-class to be a subset of object
classes in the training set. Specifically, we hierarchi-
cally partition the set of training object classes such
that each meta-class subset can be easily recognized
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Fig. 2. Meta-class tree. This figure shows a small portion of the tree learned by the meta-class approach described in Sec 3.4. The
rectangular nodes represent the leaves of the tree, associated with real categories of the ImageNet dataset. The inner round nodes represent
the meta-classes automatically learned by our method, which tends to group together categories that are difficult to tell apart.

from the others. This criterion forces the classifiers
trained on the meta-classes to be repeatable. At the
same time, since the meta-classes are superclasses of
the original training categories, by definition the clas-
sifiers trained on them will capture common visual
properties shared by similar classes while being effec-
tive to discriminate visually-dissimilar object classes.

3.4.1 Discovering the meta-classes

In this section we describe the procedure to discover
the meta-classes. Our method is an instance of the
algorithm for label tree learning described in [24].
(Note that other label-tree learning methods, such
as [25], [26], could also be applied to our task of meta-
class training.) This algorithm learns a tree-structure
of classifiers (the label tree) and was proposed to
speed up categorization in settings where the number
of classes is very large. Instead, here we use the label
tree training procedure to learn meta-classes, i.e, sets
of classes that can be easily recognized from others.
We provide below a review of the label tree algorithm,
contextualized for our objective.

Let `D be the set of distinct class labels in the
training set DS , i.e. `D ≡ {1, . . . ,K}. The label tree
is generated in a top-down fashion starting from the
root of the tree. Each node has associated a set of
object class labels. The label set of the root node is
set equal to `D. Let us now consider a node with
label set `. We now describe how to generate its two
children. (Although the label tree can have arbitrary
branching factor at each node, in our work we use
binary trees.) The two children define a partition of
the label set of the parent: if we denote with `L and
`R the label sets of the two children, then we want
`L ∪ `R = ` and `L ∩ `R = ∅. Ideally, we want to
choose the partition {`L, `R} so that a binary classifier

h(`L,`R)(x) trained to distinguish these two meta-
classes makes as few mistakes as possible. In order
to select the best classifier, we should train a classifier
for each of the possible (|`|(|`| − 1)/2 − 1) partitions
of `, but this operation is prohibitively expensive.
Instead, we take inspiration from the work of [24]
and we use the confusion matrix of one-vs-the-rest
classifiers learned for the individual object classes to
determine a good partition of `: intuitively, our goal
is to include classes that tend to be confused with
each other in the same label subset. More formally,
let ĥ1, . . . , ĥ|`D| be the one-vs-the-rest LP-β classifiers
learned for the individual object classes using the
training set DS . Let A ∈ R|`D|×|`D| be the confusion
matrix of these classifiers evaluated on a separate
validation set Dval ⊂ DS : Aij gives the number of
samples of class i in Dval that have been predicted
to belong to class j (we assume the winner-take-
all strategy for multiclass classification). Since this
matrix is not symmetric in general, we compute its
symmetrized version as B = (A + AT )/2. Then, for
each node we propose to partition its label set ` into
the subsets `L ⊂ `, `R ≡ ` − `L that maximize the
following objective:

E(`) =
∑

i,j∈`L
Bij +

∑
p,q∈`R

Bpq . (9)

The objective encourages to include in the same subset
classes that are difficult to tell apart, thus favoring
the creation of meta-classes containing common visual
properties. At the same time, maximizing this objec-
tive will tend to produce meta-classes `L, `R that are
easy to separate from each other.

Note that optimization of eq. 9 can be formulated
as a graph partitioning problem [27]. We compute
the solution `L by applying spectral clustering [28] to
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the matrix B: this is equivalent to solving a relaxed,
normalized version of eq. 9 that penalizes unbalanced
partitions. We repeat this process recursively on each
node until it contains a single class label, i.e., |`| = 1.

Fig. 2 shows a portion of our meta-class tree learned
from the ImageNet dataset [1]. As expected, we found
that our meta-classes tend to group together object
classes that are visually similar although not neces-
sarily semantically related (e.g., lantern and electric
lamp but also hurricane lamp and perfume).

3.4.2 Learning the meta-class classifiers
The learning of the basis classifiers is now straight-
forward: at each node ` of the label tree we train
an LP-β classifier on the binary split {`L, `R}. Specif-
ically, let I` denote the indices of training examples
having class labels in `. Then, we form the labeled set
D(`L,`R) = {(xi,+1) : i ∈ I`

L} ∪ {(xi,−1) : i ∈ I`
R}

and use it to train meta-class classifier h(`L,`R)(x). This
procedure yields in total C̃ basis classifiers, where C̃
is the number of inner nodes of the label tree. Note
that this learning is embarrassingly parallelizable as
we can learn the hypothesis independently. We also
include in the descriptor the outputs of the one-vs-
the-rest classifiers ĥ1, . . . , ĥ|`D|, as we have found that
this improves the final performance of the classifier.
The image descriptor h(x) is then a C-dimensional
vector, where C = C̃ +K.

We experiment with two versions of the function τ
in Eq. 1, thus giving rise to the two following variants
of the meta-class descriptor:
• MC: We convert the raw score of each

LP-β classifier into a probabilistic output by
means of a sigmoid function, i.e., we set
τc(z) = 1/(1 + exp(−αcz + βc)). We learn the
parameters of the sigmoid by means of Platt’s
scaling procedure [29], using the validation set
Dval. We found that this sigmoidal normalization
yields a large boost in the accuracy of the final
classifier trained on this representation, probably
as it makes the range of classification scores
more homogeneous and reduces outlier values.

• MC-BIT: We create a binary vector by setting set
τc(z) = 1[z > 0],∀c ∈ {1, . . . , C}.

3.5 Encoding local information
The framework described in Sec. 3.1 describes meth-
ods to compute global classifier-based descriptors, i.e.,
feature vectors where each individual entry is the
output of a classifier evaluated over the entire image.
While our experiments show that these representa-
tions produce high accuracy on the task of whole-
image classification, they are clearly not suitable for
recognition when the object of interest occupies only a
small region of the photo. In this section we describe
how to extend our framework to encode local infor-
mation in the descriptor so as to handle cases when
the image contains small or multiple objects.

We present three different strategies to capture local
information. Each of these local encoding methods
can be applied to any of the descriptors described
in Sec. 3.2, 3.3, and 3.4. At a high-level, each local
encoding method is defined by a splitting function s
that decomposes the image into a set of M subimages,
and a combiner m that aggregates the M vectors
produced by extracting our classifier-based descriptor
h from the individual subimages. More formally, let X
be the space of all images. Thus, the splitting function
s : X → XM takes an image x ∈ X as input and
outputs M rectangular subimages {x(m)}Mm=1. Then,
we define our final image descriptor h̄(x) capturing
local information as h̄(x) = m(h(x(1)), . . . ,h(x(M))).
In the next subsections we describe several choices of
functions s and m, giving rise to different h̄(x).

3.5.1 SPCAT: Spatial Pyramid + Concatenation
This is an instantiation of the spatial pyramid method
proposed in [30] where the function s decomposes
the image into a hierarchical partition of rectangular
subimages. The pyramid consists of L layers, where
the first layer (layer 0) is the image itself. Each layer
spatially subdivides each subimage of the previous
layer into a grid of 2x2 subimages of equal size. Hence
the total number of rectangular subimages defined by
the pyramid is M =

∑L−1
l=0 4l.

The combiner m takes as input the set of descrip-
tors computed from the individual subimages of the
pyramid, and concatenates them together:

h̄(x) =
[
h(x(1))>, . . . ,h(x(M))>

]>
.

The final descriptor h̄ has dimensionality C ·M , where
C is the length of the individual descriptors associated
to the regions (as defined in Sec. 3.1).

3.5.2 SPLPOOL: Spatial Pyramid + Layer Pooling
In this strategy the function s still implements a
Spatial Pyramid. Instead, the combiner function m
now concatenates descriptors obtained by pooling (or
aggregating) the feature vectors within each layer.
Specifically, let x(l,g) be the g-th subimage of the l-
th layer. In case of binary descriptors (CLASSEMES-
BIT, PICODES, and MC-BIT) we keep the final features
binary by performing max-pooling within each layer:

h̄(x) =


h(x)

maxg=1,...,4 h(x(1,g))
...

maxg=1,...,4L−1 h(x(L−1,g))


where the function max computes the component-
wise maximum. In case of real-valued descriptors
(CLASSEMES and MC), instead we average the feature
values within each layer (thus replacing max with
the sample mean of each feature). We also tried max-
pooling for the real-valued descriptor but we found
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empirically that this yields lower accuracy. With this
local encoding strategy, the final vector h̄(x) has
dimensionality L · C.

3.5.3 OBJPOOL: Objectness + Pooling
The encoding methods of subsections 3.5.1 and 3.5.2
are limited by the fact that the subdivision of the
image is fixed, and does not take into account the
actual locations of the objects in the photo. Intuitively,
we would like the function s to split the image into re-
gions containing objects so as to encode more relevant
subimages. To this end, we propose to implement s as
a class-generic object detector producing a candidate
set of regions that are likely to contain an object. For
this purpose, we define the function s to return the M
rectangular subimages {x(m)}Mm=1 that have the great-
est ObjectNess measure [31]. Then, the combiner m
performs average pooling, i.e., computes the average
of each feature entry over all M subimages. Even in
this case we tried max-pooling, but again we found
this strategy to produce inferior results compared to
average pooling. We append the resulting descriptor
to the feature vector computed from the entire image:

h̄(x) =

[
h(x)>,

1

M

M∑
m=1

h(x(m))>

]>
.

Thus, the final dimensionality is in this case 2 · C.

4 EXPERIMENTS
4.1 Datasets
In this work we make use of several datasets, for
both learning and testing our descriptors. Here we
summarize briefly their characteristics:
• Caltech 256 [3]: Popular benchmark for object cate-
gorization involving ∼ 30K images partitioned into
256 visual categories. Each photo contains a single
centered object.
• ImageNet [1] (Spring 2010 release): Large-scale im-
age dataset consisting of more than 15K object cat-
egories and 11M pictures. Most images contain a
single object.
• ILSVRC2010 [4]: Large-scale benchmark for object
categorization. It is a subset of the ImageNet dataset:
it contains 1000 categories and 1.2M images.
• PASCAL VOC 2007 [32]: Benchmark for object de-
tection and classification including 20 object cate-
gories and 9,963 images. Despite the small size of
this dataset, the classification is very challenging as
each image might contain multiple objects whose
positions and scales vary greatly.
• MIT 67 [33]: Benchmark for indoor scene recogni-
tion. It consists of 67 indoor scenes (e.g. corridors,
bookstores) for a total of 15,620 images, each usually
containing multiple objects.
• SUN 397 [34]: Large-scale benchmark for in-
door/outdoor scene recognition. It contains 397
scene categories for a total number of 108,754 images.

4.2 Low-level descriptors

As previously described in Sec. 3.1, our descriptors are
built upon a set of low-level features. For the features
that are based on the aggregation of local descriptors,
we also exploit the Spatial Pyramid method [30] to
encode weak geometry into the representation. In
particular we use a pyramid (SP) of L layers, and for
each layer l ∈ {0, . . . , L − 1} we partition the image
into a 2l × 2l grid of cells and we extract a low-level
feature vector from each cell. We use the following
low-level features:
• Color GIST [21]: we first resized the images to 32×32

pixels, without maintaining the aspect ratio, and then
we compute the orientation histograms on a 4 × 4
grid. We use 3 scales with the number or orientation
per scale being 8, 8, 4.
• Oriented HOG [35] (4 SP layers): Histogram of Ori-
ented Gradients computed using 20 bins.
• Unoriented HOG [35] (4 SP layers): an histogram of
unoriented gradients quantized into 40 bins.
• SSIM [36] (3 SP layers): we compute a histogram
by extracting the 30-dimensional self-similarity de-
scriptor every 5 pixels, and by quantizing it into 300
cluster centroids obtained from K-means.
• SIFT [20] (3 SP layers): The 128-dimensional SIFT
descriptors are computed from the interest points
returned by a DoG detector [37]. We finally compute
a Bag-Of-Word histogram of these descriptors, using
a K-means vocabulary of 500 words.

In our work we treat each pyramid layer as if it was
a separate low-level feature vector. The concatenation
of all these M = 15 feature vectors, yields a 22, 860-
dimensional vector. As described in Sec. 3.1 we
make use of the explicit map proposed in [12] to
perform efficient non-linear classification with an
approximated Intersection Kernel. The map is a
function Ψ(f ; r, L, γ) that takes a feature vector f as
input and is parameterized by r (number of samples),
L (period of the sampling), and γ (normalization
of the kernel). We set r = 1 for all the features,
producing feature vectors three times as big as the
original vectors, and γ = 1 as suggested in [12]. For
each feature vector, we select the parameter L by
grid search, minimizing the error between the exact
kernel distance K, and the approximated one, i.e.
minL

∑N
i,j=1

∣∣〈Ψ(f i),Ψ(f j)
〉
−K(f i,f j)

∣∣ computed
on a validation set consisting of N = 2560 images
randomly sampled from the Caltech 256 dataset [3].
The concatenation of all these mapped low-level
feature vectors form the vector Ψ introduced in Eq. 2,
which for this implementation has dimensionality
D = 68, 580. In this section we will refer to this
descriptor as PSI. Finally, we want to emphasize
that our approach is obviously not constrained to
work only with the particular choice of low-level
features described above. Therefore, it could easily
take advantage of more powerful low-level features,
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Name Dimens. Storage size
per image

Our descriptors
PSI (Sec. 4.2) 68580 268 KB
CLASSEMES (Sec. 3.2) 2659 11 KB
CLASSEMES-BIT (Sec. 3.2) 2659 (bin) 0.33 KB
PICODES (Sec. 3.3) 2048 (bin) 0.25 KB
MC (Sec. 3.4) 15232 60 KB
MC-BIT (Sec. 3.4) 15232 (bin) 1.9 KB
MC-LSH (Sec. 3.4) 200 K (bin) 25 KB
X+SPCAT L0L1 (Sec. 3.5.1) 5× 5×
X+SPLPOOL L0L1 (Sec. 3.5.2) 2× 2×
X+OBJPOOL (Sec. 3.5.3) 2× 2×

Prior work
Gong et al. 2011, [38] (ITQ) 2048 (bin) 0.25 KB
Gong et al. 2011 [38] (CCA-ITQ) 2048 (bin) 0.25 KB
Li et al. 2010 [17] (OBJECTBANK) 44.6 K 175 KB
Lin et al. 2011 [9] 1.1 M 4.5 MB
Sanchez et al. 2011 [2] (FV) 1 M 4 MB
Harzallah et al. 2009 [39] 69.3 K 4.78 MB
Song et al. 2011 [40] 192 K 750 KB
Elfiky et al. 2012 [41] 18 K 71 KB
Xiao et al. 2010 [34] 40 K 155 KB

TABLE 1
Descriptors considered in our comparison. This table presents: the
name of the descriptor and the section where it is introduced; the

native dimensionality and whether the descriptor is binary; the
required memory to store a single image descriptor.

such as the recently introduced Fisher Vectors [2],
which have been shown to lead to state-of-the-art
results in object categorization.

4.3 Learning classifier-based descriptors

In this section we describe in detail how we imple-
mented the classifier-based descriptors proposed in
Sec. 3. A summary of the descriptors described in this
section is provided in Table 1.

4.3.1 Classemes
The training dataset DS for Classemes is obtained
from concepts in the Large Scale Concept Ontology
for Multimedia (LSCOM) [42], which includes textual
descriptions of a collection of concepts selected to be
useful, observable and feasible for automatic visual
detection, and as such are likely to form a good basis
for image retrieval and object recognition tasks.

For each of the selected 2659 categories, the top
150 images were gathered from the bing.com image
search engine, using the LSCOM textual descriptions
as queries. These pictures form the training set DS

that in total has ∼400K images. We finally learned
the classeme descriptors CLASSEMES and CLASSEMES-
BIT, using the procedure described in Sec. 3.2. Since
the basis classifiers can be learned independently, we
exploited a cluster of machines to reduce the training
time.

Note that the textual descriptions of 28 categories
overlap with the name of some categories of the
popular benchmark Caltech 256 [43], which is used

as one of the test datasets in Sec. 4.5.1. This “pre-
training” of the query classes is in practice not signif-
icant: removing the corresponding 28 values from the
descriptor, causes a negligible drop in performance on
Caltech 256, < 1%.

4.3.2 PiCoDes

We built the training set DS from 2659 randomly se-
lected ImageNet synsets using 30 images per category,
for a total of ∼ 80K images. In order to avoid pre-
learning the test classes in the descriptor, we avoided
picking as training synsets categories belonging to
the ILSVRC2010 dataset or related to Caltech 256 (we
performed sub-string matching comparison between
the synset tags and the Caltech 256 keywords, remov-
ing in total 711 ImageNet classes). This allows us to
evaluate our descriptor in a scenario where each test
class to recognize is effectively novel, i.e., not present
in the training set used to learn the descriptor.

Note that the learning procedure described in
Sec. 3.3 is not easily parallelizable, and it requires
continuous access to the high-dimensional image de-
scriptors Ψ(x) of Eq. 2, which are very costly in
terms of storage (see PSI in Tab. 1). Thus, in practice,
we compress down the vectors via PCA, producing
a vector of 6415 dimensions. More formally, for the
PICODES learning, we set Ψ(x) ≡ PΨ(x) where P
contains the top 6415 PCA components. The dimen-
sionality of 6415 was chosen based on a preliminary
experiment of multiclass classification on Caltech 256
(please refer to the supplementary material).

Given the training set DS we can train the Pi-
CoDes descriptor as described in Sec. 3.3, performing
15 iterations. For each target dimensionality C, we
learned multiple descriptors using different values for
the hyper-parameter λ, and kept the descriptor that
gave the lowest multiclass error on a validation set
consisting of 5 images per class. In this paper we
report results for C = 2048.

4.3.3 Meta-Classes

We formed the training set DS from 8000 randomly
sampled synsets, using at most 1000 examples per
category. We also created a validation set Dval with
the same categories and 80 examples per class. As
done for PiCoDes, we selected the training classes
such that the synsets of these categories do not contain
any of the Caltech 256 or ILSVRC2010 class labels, so
as to avoid “pre-learning” the test classes during the
feature-training stage. We learned the MC and MC-
BIT descriptors following the procedure described in
Sec. 3.4, using the validation set to compute the con-
fusion matrix and the two parameters of the sigmoid
function for each meta-class. Since the basis classifiers
can be learned independently, we use a cluster of
multiple machines to reduce the training time.
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Fig. 3. Multi-class recognition on Caltech 256 using different image
representations. The classification model is a linear SVM (except for
LP-β ). The accuracy is plotted as a function of the training set size.

4.4 Evaluation setup
The next sections will describe the experimental eval-
uations that we have done using our descriptors,
as well as other popular image representations. All
the experiments involve the usage of a classifier to
predict the correct object/scene label of an image,
and we decided to use the very efficient linear SVM
model (with the only exception of LP-β ). In cases
of multi-class categorization, we used the 1-vs-the-
rest strategy and performed the prediction using the
winner-take-all strategy. The SVM hyperparameter is
selected using either 5-fold cross validation or using
the validation set when available.

4.5 Experiments: Object Class Recognition
4.5.1 Caltech 256
We present experiments obtained with several image
descriptors on the challenging Caltech 256 bench-
mark. We follow the standard approach of learning
the classifier for different number of training examples
per class {5, 10, . . . , 50}. We evaluate the model on
a test set consisting of 25 examples per class, and
report the accuracy as the mean of the diagonal of
the confusion matrix. We compare our descriptors
CLASSEMES, CLASSEMES-BIT, PICODES, MC and MC-
BIT with the following methods:
• PSI: the concatenation of the mapped low-level

features (introduced in Sec. 4.2). This baseline is
interesting to consider as it shows the accuracy
that can be obtained by directly training the final
classifier on the low-level image representation
that we have used to learn our descriptors.

• ITQ: the embedding method introduced in [38],
which learns a binary code by directly mini-
mizing the quantization error of mapping the
input data to vertices of the binary hypercube. As
training data for the learning we use 2560 images

from the Caltech 256 dataset: the samples are
converted into PSI descriptors by using the same
low-level features, feature mapping, and PCA
projection that we have adopted for PiCoDes. We
have tried different PCA subspace dimensional-
ity; here we report the results obtained with the
setting yielding the best final accuracy. We learn
a ITQ descriptor of 2048 bits in order to compare
it with PICODES.

• CCA-ITQ. Same as ITQ but instead of PCA we
use Canonical Correlation Analysis (CCA) (as
suggested in [38]), which performs discrimina-
tive dimensionality reduction.

• OBJECTBANK: the descriptor introduced in [17]
which encodes into a single vector both semantic
and spatial information of objects detected in the
input image, using a set of pre-trained detectors.

• LP-β : this denotes the variant of the LP-β [5]
multiple-kernel combiner described in Sec. 3.2,
based on the same low-level features used by
classemes and PiCodes (see Sec. 4.2).

Figure 3 shows the multi-class recognition accuracy
of the different approaches as a function of the
number of training examples per class. Note that
the differences in performance between CLASSEMES
and CLASSEMES-BIT is negligible on this benchmark,
probably indicating that the accuracy of the classi-
fier is saturated at this dimensionality and cannot
exploit the additional information provided by the
continuous data. OBJECTBANK performs moderately
well but much worse than our descriptors. PICODES
outperforms CLASSEMES as the former are explicitly
optimized for linear classification, which is the actual
usage of the descriptors in this test. For the same
dimensionality and storage cost, PICODES outper-
form also ITQ and CCA-ITQ. We observed that for
very small descriptor dimensionalities, CCA-ITQ per-
forms slightly better than PICODES (e.g., by a margin
of 2% for 128 bits). Note however that in our tests
the CCA transformation was given the advantage of
using the Caltech 256 classes as training data.

The methods PSI and LP-β use multiple features
and nonlinear kernels (albeit in approximate form)
and hence their recognition accuracies are among the
best in the literature. However, for small numbers
of training examples per class, PICODES surprisingly
matches LP-β . Furthermore, note from Table 1 that
the storage cost is 2 order of magnitude higher than
PICODES.

Finally, we can see that our descriptors MC and MC-
BIT greatly outperform all the other representations;
note that the binarized version (MC-BIT) is only 1%
worse than the real-valued descriptor (MC) while
being 32 times more compact (the storage size for MC-
BIT is less than 2KB per image). Moreover we use a
simple linear model, which enables efficient training
and recognition, and the storage requirement for these
descriptors is only a few KBytes per image.
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Method Top-1
accuracy
(%)

Storage
10M
images
(GB)

Recognition
time (µs)

CLASSEMES-BIT 22.15 3.09 6.67
CLASSEMES 29.95 99.05 1.53
PICODES 22.66 2.38 5.14
MC-BIT 36.71 18 38.23
MC-LSH 42.15 232 501.97
Lin et al. 2011 [9] 52.9 43,945 796.60
Sanchez et al. 2011 [2]
(FV)

n/a 39,041 603.1

Sanchez et al. 2011 [2]
(FV+PQ)

54.3 1,220 2131.0

Gong et al. 2011, [38]
(ITQ)

21.24 2.38 5.14

TABLE 2
Object class recognition on ILSVRC 2010. For each descriptor, we

report: the top-1 accuracy on the test set; the storage size of an
hypothetical database consisting of 10 million images; the average

time required to evaluate a linear classifier on a single image,
without including the feature-extraction time (see supplementary
material for details). All the methods use linear SVM as classifier.

4.5.2 ILSVRC 2010

We now present results of multiclass recognition
on the ILSVRC 2010 dataset. The large size of this
database poses new challenges and issues that are not
present in smaller databases, as already noted in [44],
[2], [9]. Yet, our binary CLASSEMES-BIT, PICODES, and
MC-BIT features render the learning on this database
relatively fast to accomplish even on a budget PC, as
we can represent these descriptors using a single bit
per dimension, storing the entire ILSVRC2010 training
set in at most 2.13 GB of memory. This allows us to
use efficient software for batch training of linear SVM:
we have had good success with LIBLINEAR [23], by
simply modifying the code to support input data in
bitmap format. To further speed-up the learning we
reduce the negative training set by sampling n =
150 examples per class. According to our study, this
sampling causes only a negligible drop in accuracy.
Training a single one-vs-the-rest linear SVM using our
MC-BIT descriptor takes on average 50 seconds. So
the entire multiclass training for ILSVRC2010 can be
accomplished in 14 hours on a single-core computer.
In practice the learning can be made highly parallel
when multiple cores and machines are available. As a
comparison, the winning system of the ILSVRC2010
challenge [9] required a week of training with a pow-
erful cluster of machines and specialized hardware.

In table 2 we show the results of the analysis
we made with our descriptors and other approaches
reported in the literature on the ILSVRC2010 dataset.
Note that the MC-LSH method is just a compressed
form of MC, obtained using LSH with 200K random
projections. Our experiments suggest that this com-
pression yields no significant degradation in accuracy,
while reducing considerably the storage requirement.
We can notice that the performances of the descriptors

CLASSEMES and MC-LSH are remarkably superior to
the binary versions CLASSEMES-BIT and MC-BIT, yield-
ing an improvement of +7.8% and +5.44%, respec-
tively. This indicates that the real-valued descriptors
are more informative than the corresponding binary
versions, but this additional expressiveness is exhib-
ited only in large-scale scenarios (again, we remind
the reader that on the small Caltech 256 dataset,
no significant improvement was obtained using real-
valued descriptors). In particular MC-LSH achieves
a recognition rate of 42.15% and a top-5 accuracy
of 64.01% (top-5 accuracy is the traditonal perfor-
mance measure of ILSVRC 2010). The systems of [2]
and [9] are based on very high-dimensional image
signatures and linear classifiers. Note that although
these approaches provides better raw accuracy, stor-
age requirements and prediction times are orders of
magnitude more costly and clearly inapplicable in our
motivational large scale scenarios (see a discussion in
Sec. 4.7). The embedding method proposed in [38]
produces a descriptor that is comparable in storage
size and recognition time to CLASSEMES-BIT and PI-
CODES, but it yields lower accuracy.

We also provide results achieved with the individ-
ual subcomponents of MC-BIT: “MC-BIT-TREE”, which
consists of the 7232 meta-class classifiers learned for
the inner nodes of the label tree, yields 33.87% of
Top-1 accuracy; “MC-BIT-1VSALL”, which contains the
outputs of the 8000 one-vs-the-rest classeme classifiers
yields 30.64%. Note that the accuracy obtained using
only the label tree features is clearly superior to the
one generated by only the classeme features. This
indicates that the grouping of classes performed by
the label tree learning produces features that lead
to better generalization on novel classes. However,
the complete MC-BIT descriptor yields even higher
accuracy (36.71%), suggesting that there is value in
using both subcomponents. Please refer to the sup-
plementary material for additional information.

A natural question is: how do our learned meta-
classes compare to the nodes in the hand-constructed
ImageNet hierarchy? For example, [16] showed that
this hierarchy provides semantic knowledge that can
be exploited to define an effective metric for retrieval.
In order to run a fair comparison with our method,
we pruned the original ImageNet tree so as to leave
only the nodes corresponding to the 8,000 synsets
used to train our MC descriptor. This produced a new
semantic tree with 1,528 internal nodes. As before,
we then trained a binary classifier for each of these
semantic classes and obtained a new binary descriptor
of 1,528 features. We found that these “semantic meta-
classes” yield an accuracy of 18.37% on ILSVRC 2010.
However, a random selection of 1,528 features from
our MC-BIT descriptor performs much better, yield-
ing an average accuracy of 21.14% (the average is
computed over 10 random selections of 1,528 fea-
tures). This suggests that meta-class features automat-
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Method mAP
CLASSEMES-BIT 0.427
CLASSEMES-BIT + SPLPOOL
L0L1

0.452

CLASSEMES 0.438
CLASSEMES + SPLPOOL L0L1 0.447
PICODES 0.437
PICODES + SPLPOOL L0L1 0.455
MC-BIT 0.527
MC-BIT + SPLPOOL L0L1 0.53
MC 0.532
MC + OBJPOOL 0.55
Li et al. 2010 [17]
(OBJECTBANK)

0.452

Harzallah et al. 2009 [39]∗ 0.635
Song et al. 2011 [40]∗ 0.705

TABLE 3
Object-class categorization results obtained on PASCAL 2007 using

our descriptors and other methods in the literature. The
performance measure is the mean of the Average Precision. Note

that the methods marked with ∗ make additional use of ground truth
bounding boxes for training the model. For our descriptors, the

classification model is a linear SVM.

ically learned by considering visual relations between
classes are more effective than attributes based on
human-defined notions of semantic similarity. Further
results are given in the supplementary material.

4.5.3 PASCAL 2007
We now present categorization results on PAS-
CAL 2007. To the best of our knowledge, this is
the first comprehensive analysis of the recognition
accuracy of classifier-based descriptors on a detec-
tion dataset, which includes images containing mul-
tiple objects whose position and scale varies greatly.
For this reason we tested our descriptors using the
local-encoding extensions described in Sec. 3.5. We
implemented SPLPOOL L0L1 using a pyramid of
two levels, and the extension OBJPOOL using the
25 subwindows with the greatest ObjectNess score.
Table 3 summarizes the results in terms of mAP. De-
spite the simplicity of the linear classification model
that we are using, we can see that our descriptors
yield good accuracy while enabling extremely efficient
prediction. Moreover note that all the proposed local-
encoding strategies boost the accuracies of the raw
descriptors. In particular OBJPOOL produces the best
results while only doubling the storage cost.

4.6 Experiments on Scene Recognition
4.6.1 MIT 67
In this section we present experiments performed on
the MIT 67 benchmark. We tested our descriptor MC
and the variants described in Sec. 3.5. Specifically: for
a first set of experiments, we tested the descriptor
MC-2048dims created by selecting from MC the 2048
most active features according to the criterion of
Recursive Feature Elimination [45] (RFE). The fea-
ture selection was performed using ILSVRC 2010,

Method Accuracy
MC-2048dims 44.6
MC-2048dims + SPCAT L0L1 46.9
MC-2048dims + SPLPOOL
L0L1L2

49.6

MC-2048dims + OBJPOOL 49.6
MC + OBJPOOL 55.9
Elfiky et al. 2012 [41] 48.9
Li et al. 2010 [17]
(OBJECTBANK)

37.6

TABLE 4
Scene recognition on MIT 2007 using our descriptors and other

methods in the literature. For our image representations, the
classification model is a linear SVM. Our descriptor

MC +OBJPOOL outperforms all prior methods on this test.

by removing at each iteration 50% of the features.
This lower-dimensional descriptor reduced the com-
putational requirements and allowed us to easily
perform an extensive set of evaluations. Table 4
summarizes the results of our experiments, and in-
cludes the recognition rates of several other meth-
ods presented in the literature. We can see that the
plain descriptor MC-2048dims is already very com-
petitive, yielding accuracy close to other state-of-
the-art methods. All the local encoding variants of
Sec. 3.5 are able to boost the accuracy. In particular the
method MC-2048dims+SPLPOOL L0L1L2 is supe-
rior to MC-2048dims+SPCAT L0L1 while producing
a smaller descriptor; MC-2048dims+OBJPOOL is the
best method as it produces a descriptor that is only
twice as big as the original one and it yields the
best recognition accuracy (+2.5% over MC-2048dims).
Finally the full-dimensional MC +OBJPOOL yields an
accuracy of 56% that, to the best of our knowledge, is
the best published result for this benchmark.

4.6.2 SUN 397
To conclude, we present experiments on the large-
scale scene recognition benchmark SUN 397. We
tested our binary descriptors CLASSEMES-BIT, PI-
CODES and MC-BIT, and the real-valued MC. Table 5
shows our results. As already noticed in our prior
evaluations, PICODES outperforms CLASSEMES-BIT,
and the larger MC-BIT is the best performing one.
The accuracy obtained with MC approaches the results
provided by the method introduced in [34] which is a
multiple-kernel combiner with 15 types of features,
and thus orders of magnitudes more expensive to
train and test and requiring much higher storage size.

4.7 Experiments on Object-Class Search
4.7.1 ILSVRC 2010
We present here results for our motivating problem:
fast novel-class recognition in a large-scale database.
For this experiment we use again the ILSVRC2010
data set. However, this time for each class we learn a
binary linear SVM using as positive examples all the
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Method Accuracy
CLASSEMES-BIT 17.6
PICODES 27.1
MC-BIT 34.8
MC 36.8
Xiao et al. 2010 [34] 38.00

TABLE 5
Scene recognition on SUN 397 using our descriptors and other
methods in the literature. The classification model for our image

representations is a linear SVM.
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Fig. 4. Object-class search on ILSVRC2010: precision in retrieving
images of a novel class from a dataset of 150,000 photos. For
each query, the true positives are only 0.1% of the database. The
classification model is a linear SVM.

images of that class in the ILSVRC2010 training set;
as negative examples we use 4995 images obtained
by sampling 5 images from each of the other 999 cat-
egories. Then we use the classifier to rank the 150,000
images of the test set. We measure performance in
terms of mean precision at K, i.e., the average pro-
portion of images of the relevant class in the top-K.
Note that for each class, the database contains only
150 positive examples and 149,850 distractors from the
other classes. Figure 4 shows the accuracy obtained
with MC-BIT, which on this task outperforms by 15%
CLASSEMES-BIT. We also compared our descriptors
to 2048-bit codes learned by ITQ [38] and LSH (we
ran these methods on a compressed version of the
representation PSI obtained via PCA). It can be seen
that, for the same target dimensionality, all of our
methods outperform these baselines.

While the systems described in [2], [9] achieve
higher multiclass recognition accuracy than our
method on ILSVRC2010 where the classes are pre-
defined (see Sec. 4.5.2), we point out that these ap-
proaches are not scalable in the context of real-time
object-class search in large databases. Table 2 (col-
umn three) reports the storage required by different
methods for a database containing 10M images. In
their proposed form, [2] and [9] require to store
high-dimensional real-valued vectors. Even if splitting
the data across different machines, these approaches
remain clearly not scalable in real scenarios. In [2],

product quantization (PQ) is used to compress down
the size of the data but even in this case a 10M-images
database would require 610 GB. Our approach saves
an order of magnitude of storage, resulting in the most
scalable method in terms of memory utilization.

In addition, our system is also outperforming the
other competing methods in terms of recognition
time. The last column of Table 2 shows the average
search time per image for a single object-class query.
Our methods are by far the fastest. The system pro-
posed by [2], which was relatively scalable in terms of
storage, is the slowest one. Our approach provides a
10-fold or greater speedup over these systems and is
the only one computing results in times acceptable for
interactive search. We also note that sparse retrieval
models and top-k ranking methods [46] could be used
with our binary code to achieve further speedups on
the problem of class-search.

5 CONCLUSIONS

In this paper we have presented three image descrip-
tors, which measure the closeness of a given image to
a set of high-level visual concepts, called basis classes.
The concepts are either chosen a priori or automati-
cally learned. We implement this similarity measure
using the outputs of non-linear classifiers trained on
an offline labeled dataset. We also propose methods to
aggregate the outputs of the basis classifiers evaluated
on subwindows of the image into a single feature
vector, thus rendering the descriptor more robust
to clutter and multiple objects. Our descriptors are
designed to be very compact, yet they achieve state-
of-the art accuracy even with simple linear classifiers.
We tested and compared our descriptors on sev-
eral challenging benchmarks, on several tasks: object
categorization, scene recognition and novel object-
class search. Thank to the compactness and the rich
visual information incorporated into the descriptors,
the proposed framework enables real-time object-class
training and search in databases containing millions
of images with good accuracy. The software for the
extraction of all our descriptors is publicly available.
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