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Abstract In this paper we present EXMOVES - learned exemplar-based features for
efficient recognition and analysis of actions in videos. The entries in our descriptor are
produced by evaluating a set of movement classifiers over spatial-temporal volumes
of the input video sequences. Each movement classifier is a simple exemplar-SVM
trained on low-level features, i.e., an SVM learned using a single annotated positive
space-time volume and a large number of unannotated videos.

Our representation offers several advantages. First, since our mid-level features
are learned from individual video exemplars, they require minimal amount of su-
pervision. Second, we show that simple linear classification models trained on our
global video descriptor yield action recognition accuracy approaching the state-of-
the-art but at orders of magnitude lower cost, since at test-time no sliding window is
necessary and linear models are efficient to train and test. This enables scalable action
recognition, i.e., efficient classification of a large number of actions even in massive
video databases. Third, we show the generality of our approach by training our mid-
level descriptors from different low-level features and testing them on two distinct
video analysis tasks: human activity recognition as well as action similarity labeling.
Experiments on large-scale benchmarks demonstrate the accuracy and efficiency of
our proposed method on both these tasks.
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1 Introduction

Human action recognition and matching are important but still largely-unsolved com-
puter vision problems motivated by many useful applications, including content-
based video retrieval, automatic surveillance, and human-computer interaction. The
difficulty of the task stems from the large intra-class variations in terms of subject
and scene appearance, motion, viewing positions, as well as action duration.

We argue that most of the existing action recognition methods are not designed
to handle such heterogeneity. Typically, these approaches are evaluated only on sim-
ple datasets involving a small number of action classes and videos recorded in lab-
controlled environments [1} 40]]. Furthermore, in the design of the action recognizer
very little consideration is usually given to the computational cost which, as a result,
is often very high.

We believe that modern applications of action recognition demand scalable sys-
tems that can operate efficiently on large databases of unconstrained image sequences,
such as YouTube videos. For this purpose, we identify three key-requirements to ad-
dress: 1) the action recognition system must be able to handle the substantial varia-
tions of motion and appearance exhibited by realistic videos; 2) the training of each
action classifier must have low-computational complexity and require little human
intervention in order to be able to learn models for a large number of human actions;
3) the testing of the action classifier must be efficient so as to enable recognition in
large repositories, such as video-sharing websites.

This work addresses these requirements by proposing a global video descriptor
that yields state-of-the-art action recognition accuracy even with simple linear clas-
sification models. The feature entries of our descriptor are obtained by evaluating a
set of movement classifiers over the video. Each of these classifiers is an exemplar-
SVM [30] trained on low-level features [22, 43]] and optimized to separate a single
positive video exemplar from an army of “background” negative videos. Because
only one annotated video is needed to train an exemplar-SVM, our features can be
learned with very little human supervision. The intuition behind our proposed de-
scriptor is that it provides a semantically-rich description of a video by measuring
the presence/absence of movements similar to those in the exemplars. Thus, a lin-
ear classifier trained on this representation will express a new action-class as a linear
combination of the exemplar movements (which we abbreviate as EXMOVES). We
demonstrate that these simple linear classification models produce surprisingly good
results on challenging action datasets. In addition to yielding high-accuracy, these
linear models are obviously very efficient to train and test, thus enabling scalable
action recognition, i.e., efficient recognition of many actions in large databases.

Our approach can be viewed as extending to videos the idea of classifier-based
image descriptors [3} 127,138} 142] which describe a photo in terms of its relation to a set
of predefined object classes. To represent videos, instead of using object classes, we
adopt a set of movement exemplars. In the domain of action recognition, our approach
is most closely related to the work of Sadanand and Corso [35], who have been the
first to describe videos in terms of a set of actions, which they call the Action Bank.
The individual features in Action Bank are computed by convolving the video with
a set of predefined action templates. This representation achieves high accuracy on
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several benchmarks. However, the template-matching step to extract these mid-level
features is very computationally expensive. As reported in [35], extracting mid-level
features from a single video of UCF50 [37]] takes a minimum of 0.4 hours up to a
maximum of 34 hours. This computational bottleneck effectively limits the number of
basis templates that can be used for the representation and constrains the applicability
of the approach to small datasets.

Our first contribution is to replace this prohibitively expensive procedure with
a technique that is almost two orders of magnitude faster. This makes our descrip-
tor applicable to action recognition in large video databases, where the Action Bank
framework is simply too costly to be used. The second advantage of our approach is
that our mid-level representation can be built on top of any arbitrary spatial-temporal
low-level features, such as appearance-based descriptors computed at interest points
or over temporal trajectories. This allows us to leverage the recent advances in design
of low-level features: for example, we show that when we use dense trajectories [43]
as low-level features, a simple linear classifier trained on the HMDBS1 dataset using
our mid-level representation yields a 41.6% relative improvement in accuracy over
the Action Bank built from the same set of video exemplars. Furthermore, we demon-
strate that our representation is general in the sense that it can be applied to different
low-level features and it can be used for several video analysis tasks, such as action
recognition and action similarity labeling. Finally, the experiments reported in this
article show that a linear classifier applied to our mid-level representation produces
consistently much higher accuracy than the same linear model directly trained on the
low-level features used by our descriptor.

Our EXMOVES are also related to Discriminative Patches [[14]], which are spatial-
temporal volumes selected from a large collection of random video patches by op-
timizing a discriminative criterion. The selected patches are then used as a mid-
level vocabulary for action recognition. Our approach differs from this prior work
in several ways. As discussed in each EXMOVE feature can be computed from
simple summations over individual voxels. This model enables the use of Integral
Videos [16]], which reduce dramatically the time needed to extract our features. Dis-
criminative Patches cannot take advantage of the Integral Video speedup and thus
they are much more computationally expensive to compute. This prevents their ap-
plication in large-scale scenarios. On the other hand, Discriminative Patches offer
the advantage that they are automatically mined, without any human intervention.
EXMOVES require some amount of human supervision, although minimal (just one
hand-selected volume per exemplar). In practice such annotations are inexpensive to
obtain. In our experiments we show that EXMOVES learned from only 188 volumes
greatly outperform Discriminative Patches using 4000 volumes.

2 Related Work

Human action recognition and analysis have a long history in computer vision litera-
ture, which is more than a decade for now. The previous approaches can be roughly
classified into low-level feature-based, mid-level feature-based, and top-level action
modeling approaches.
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2.1 Low-level feature-based approaches

Low-level feature-based approaches mostly represent videos by low-level feature
primitives. These features can be either sparsely or densely sampled from the videos.
Spatio-temporal interest points can also be applied for sparse features. Efros et al.
used optical flows to represent and classify actions [8]. Laptev and Lindeberg ex-
tended Harris corner detector to 3D to detect spatio-temporal interest points (STIPs) [22]
23|]. Dollér et al. used a 1D Gabor filter and 2D Gaussian smoothing kernel to detect
Cuboids for behavior recognition[7]]. The Cuboids interest point detector is denser
compared to STIPs and allows the users to adjust their desired level of sparsity.
Gorelick et al. proposed Space-Time Shapes for modeling actions [1] by solving a
Poisson equation. Derpanis et al. used 3D Gabor filters to extract “Space-time ori-
entation” for action recognition [6]. Motivated by the success of image-based fea-
tures such as HOG [3] and SIFT [29], HOG3D [36]] and SIFT3D [17] were also pro-
posed for modeling features. Ke et al. used boosting to learn volumetric features for
event detection [15]. Quoc ef al. demonstrated that spatio-temporal features can be
learned under unsupervised setting using stacked ISA with strong performance [26].
Recently, Wang et al. proposed Dense Trajectories [45] and its improved version,
namely improved Dense Trajectories [43] which is considering current state-of-the-
art video features for human action recognition with strong performance on various
benchmarks.

2.2 Mid-level feature-based approaches

Mid-level feature-based approaches represent videos using a set of mid-level fea-
tures, which are normally classifiers on low-level representations. Fathi and Mori
used Adaboost to train a set of mid-level weak classifiers for human action recogni-
tion [10] with optical flows as low-level features. Similarly, Ke et al. also used Boost-
ing method to learn volumetric features for action detection [[L6], but rather on raw
video voxels. Along the stream of image visual attributes 9} [12, 21]], Liu et al. pro-
posed to represent human actions by data-driven attributes and used them for action
recognizing [28]]. Inspired from the success of Classemes [38] and ObjectBank [27],
Sadanand and Corso proposed to represent videos as set of video templates called
Action-Bank [35]. Despite the its promising discriminative power, the computational
cost is the bottle-neck of this method and prevent it from being scalable. Jian et al.
used Discriminative Patches to represent videos for action classification [14]. The
main benefit of this method is being trained unsupervised. However, due to unsuper-
vised training, the method does need to have a large number of mid-level features
to maintain a reasonable discriminative capacity (see experimental section). Our EX-
MOVES is closely related Action Bank and Discriminative Patches approaches in
term of mid-level representation. Compared to Action Bank, our mid-level classi-
fiers are linear SVMs while Action Bank build on template matching which is much
more computationally expensive. On the other hand, while Discriminative Patches
are under unsupervised training, our EXMOVES is weakly supervised therefore have
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Fig. 1 Overview of our approach. During an offline stage, a collection of exemplar-movement SVMs
(EXMOVES) is learned. Each EXMOVE is trained using a single positive video exemplar and a large
number of negative sequences. These classifiers are then used as mid-level feature extractors to produce a
semantically-rich representation of videos.

better discriminative power but also using minimum efforts on annotating, e.g. one
annotated example per class.

2.3 Top-level action modeling approaches

The top-level action modeling approaches basically use low-level feature represen-
tation, and mainly focus on top level action modeling to improve the classification
accuracy. Wang and Suter proposed the use of silhouettes to describe human activ-
ities [44]]. Niebles and Fei-Fei used bag-of-word representation to model videos for
action recognition [32]. Tran ef al. showed metric learning [46] can improve action
recognition [39]. Laptev et al. used Boosting method to classify human action in re-
alistic movies [24, 23]]. Yuan et al. used mutual information maximization to detect
and recognize actions in videos [49] [50]. Yu et al. used random forest to indexing
and fast retrieving actions in videos [47]. Hu er al. used multiple-instance learning to
detect human actions [[13]]. Hough transform was also used to recognize actions [48]].

Although many of these approaches have been shown to yield good accuracy
on standard human action benchmarks, they are difficult to scale to recognition in
large repositories as they involve complex feature representations or learning models,
which are too costly to compute on vast datasets.

3 Approach Overview

We explain the approach at a high level using the schematic illustration in Figure [T}
During an offline stage, our method learns N, exemplar-movement SVMs (EX-
MOVES), shown on the left side of the figure. Each EXMOVE is a binary classifier
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optimized to recognize a specific action exemplar (e.g., an instance of “biking”’) and
it uses histograms of quantized space-time low-level features for the classification.
Note that in order to capture different forms of each activity, we use multiple exem-
plars per activity (e.g., multiple instances of “biking”), each contributing a separate
EXMOVE. The set of learned EXMOVES are then used as mid-level feature extrac-
tors to produce an intermediate representation for any new input video: we evaluate
each EXMOVE on subvolumes of the input video in order to compute the probabil-
ity of the action at different space-time positions in the sequence. Specifically, we
slide the subvolume of each EXMOVE exemplar at N, different scales over the input
video. As discussed in section {f.4] this evaluation can be performed efficiently by
using Integral Videos [[16]. Finally, for each EXMOVE, we perform max-pooling of
the classifier scores within IV, spatial-temporal pyramid volumes. Thus, for any input
video this procedure produces a feature vector with N, X N, x N,, dimensions. Be-
cause the EXMOVE features provide a semantically-rich representation of the video,
even simple linear classification models trained on our descriptor achieve good action
categorization accuracy.

4 Exemplar-Movement SVMs (EXMOVES)

Our EXMOVE classifiers are linear SVMs applied to histograms of quantized space-
time low-level features calculated from subvolumes of the video. In section 1] we
describe the two space-time low-level descriptors used in our experiments, but any
quantize-able appearance or motion features can be employed in our approach.

In principle, to train each SVM classifier we need a reasonable number of both
positive and negative examples so as to produce good generalization. Unfortunately,
we do not have many positive examples due to the high human cost of annotating
videos. Thus, we resort to training each SVM using only one positive example, by
extending to videos the exemplar-SVM model first introduced by Malisiewicz et al.
for the case of still images [30]. Specifically, for each positive exemplar, we manually
specify a space-time volume enclosing the action of interest and excluding the irrele-
vant portions of the video. The histogram of quantized low-level space-time features
contained in this volume becomes the representation used to describe the positive
exemplar. Then, our objective is to learn a linear SVM that separates the positive ex-
emplar from the histograms computed from all possible subvolumes of the same size
in negative videos.

It may appear that training a movement classifier from a single example will lead
to severe overfitting. However, as already noted in [30], exemplar-SVMs actually
have good generalization as their decision boundary is tightly constrained by the
millions of negative examples that the classifier must distinguish from the positive
one. In a sense, the classifier is given access to an incredible amount of training
examples to learn what the positive class is not. Furthermore, we use the exemplar-
SVMs simply as mid-level feature extractors to find movements similar to the positive
exemplar. Thus, their individual categorization accuracy is secondary. In other words,
rather than applying the individual exemplar-SVMs as action recognizers, we use
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them collectively as building blocks to define our action categorization model, in a
role similar to the weak-learners of boosting techniques [41].

4.1 Low-level features used in EXMOVES

Although any arbitrary low-level description of space-time points or trajectories can
be used in our framework, here we experiment with the two following representa-
tions:

— HOG-HOF-STIPs. Given the input video, we first extract spatial-temporal interest
points (STIPs) [22]. At each STIP we compute a Histogram of Oriented Gradients
(HOG) and a Histogram of Flows (HOF) [4]] using the implementation in [24]. We
concatenate the HOG and the HOF descriptor to form a 162-dimensional vector
representing the STIP. Finally, we run k-means on these vectors to learn a code-
book of D = 5, 000 cluster centroids. Given the codebook, any space-time volume
in a video is represented in terms of the histogram of codewords occurring within
that volume. We normalize the final histogram using the L1 norm.

— Dense Trajectories. These are the low-level motion and appearance descriptors
obtained from dense trajectories according to the algorithm described in [43]]. The
trajectories are computed for non-stationary points using a median-filtered opti-
cal flow method and are truncated every 15 frames. Each trajectory is then de-
scribed in terms of its shape (point coordinate features, 30 dimensions), appearance
(HOG features, 96 dimensions), optical flow (HOF features, 108 dimensions) and
boundary motion (MBHx and MBHy features, 96 dimensions each). As in [43],
we learn a separate dictionary for each of these 5 descriptors. We use a codebook
of d = 5,000 cluster centroids for each descriptor. Thus, each space-time volume
in a video is then represented as a vector of D = 25,000 dimensions obtained by
concatenating the 5 histograms of trajectories occurring within that volume. We
L1-normalize the final histogram.

4.2 Learning EXMOVES

The input for learning an EXMOVE consists of a positive video VT containing a
manually-annotated space-time 3D box bounding the action of interest x g, and thou-
sands of negative videos V; 5 without action volume annotations. The only require-
ment on the negative videos is that they must represent action classes different from
the category of the positive exemplar (e.g., if the exemplar contains the action danc-
ing, we exclude dancing videos from the negative set). But this constraint can be sim-
ply enforced given action class labels for the videos, without the need to know the
space-time volumes of these negative actions. For example, tagged Internet videos
(e.g., YouTube sequences) could be used as negative videos, by choosing action tags
different from the activity of the positive exemplar.

It is worth noting that different movement exemplars will have different 3D box
shapes. For example, we expect a walking action to require a tall volume while swim-
ming may have a volume more horizontally elongated. As further discussed below,
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we maintain the original shape-ratio of the exemplar volume in both training and
testing. This means that we look for only tall volumes when detecting walking, and
short-and-wide volumes when searching for the swimming action.

Let xg be the manually-specified volume in the positive sequence V. Let us
denote with ¢(x) the L1-normalized histogram of codewords (computed from ei-
ther HOG-HOF-STIPs or Dense Trajectories) within a video volume x, i.e., ¢(x) =
ﬁ [c1(x),...,ep(x)]", where ¢;(x) is the number of codeword i occurring in vol-
ume x, and ¢(x) is the total number of codewords in x. Note that in the case of Dense
Trajectories, each trajectory contributes 5 codewords into the histogram since it is
quantized according to the 5 separate dictionaries.

Adopting the exemplar-SVM method in [30]], our exemplar-SVM training pro-
cedure learns a linear classifier f(x) = w’ ¢(x) + b, by minimizing the following
objective function:

rvrslg [wl||? + Cy Z h(w'¢(x) +b)

xeV+ s.t.MZOE
xpl

N
+Co Y Y h(—wp(x) —b) (1)

=1 xev,”

where h(s) = max(0,1 — s) is the hinge loss, while C; and Cj are pre-defined
parameters that we set so as to equalize the unbalanced proportion of positive and
negative examples. Note that the first summation in the objective involves subvol-
umes whose spatial overlap with xg is greater than 50% and thus are expected to
yield a positive score, while the second summation is over all negative subvolumes.
Unfortunately, direct minimization of the objective in Eq. [I] is not feasible since it
requires optimizing the SVM parameters on a gigantic number of subvolumes. Thus,
we resort to an alternation scheme similar to that used in [30] and [11]: we iterate
between 1) learning the parameters (w,b) given an active set S of negative volumes
and 2) mining new negative volumes with the current SVM parameters.

We first initialize the parameters of the classifier by traditional SVM training
using the manually-selected volume x g as positive example and a randomly selected
subvolumes from each of the other videos as negative example. At each iteration
the current SVM is evaluated exhaustively on every negative video to find violating
subvolumes, i.e., subvolumes yielding an SVM score below exceeding —1. These
subvolumes are added as negative examples to the active set S to be used in the
successive iterations of SVM learning. Furthermore, our training procedure adds as
positive examples the subvolumes of V7 that have spatial overlap with xp greater
than 50% and SVM score below 1. We stop the iterative alternation between these
two steps when either no new subvolumes are added to the active set or a maximum
number of iterations M is reached. In our implementation we use M = 10, but we
find that in more than 85% of the cases, the learning procedure converges before
reaching this maximum number of iterations.

The pseudocode of our learning procedure is given in Algorithm 1. Lines 1 — 3
initialize the active set. The function svm_training in line 5 learns a traditional bi-
nary linear SVM using the labeled examples in the active set. Note that we found that
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Algorithm 1 EXMOVE training

Input: A set of negative videos {V, , ...,V } and a manually-selected volume x i in exemplar video
V.
Output: Parameters (w, b) of exemplar-SVM.
I: S+ {(xg,+1)}
2: fori =1to N do

3: S SU{(x4,—1)} with x; randomly chosen from V;
4: for iter = 1to M do

5:  (w,b) < svm_training(S)

6: Sold +— S

7. forallxin Vst wTx +b<1& B0XEL > 0.5 do
8: S+ SU{(x,+1)} /false negative

9: for: = 1to N do

10: forallxin V; st.wlx+b> —1 do

11: S « S U{(x,—1)} /false positive

12: if Sold = S then

13: break

at each iteration we typically have millions of subvolumes violating the constraints
(lines 7-11). In order to maintain the learning of the SVM feasible, in practice we add
to the active set only the volumes that yield the largest violations in each video, for a
maximum of k¥~ = 3 per negative video and k™ = 10 for the positive video.

4.3 Calibrating the ensemble of EXMOVES

The learning procedure described above is applied to each positive exemplar inde-
pendently to produce a collection of EXMOVES. However, because the exemplar
classifiers are trained dis-jointly, their score ranges and distributions may vary con-
siderably. A standard solution to this problem is to calibrate the outputs by learning
for each classifier a function that converts the raw SVM score into a proper poste-
rior probability compatible across different classes. To achieve this goal we use the
procedure proposed by Platt in [33]]: for each exemplar-SVM (w g, bg) we learn pa-
rameters (ag, Sg) to produce calibrated probabilities through the sigmoid function
9(x;Wg,bg, ap, Br) = 1/[1 + exp(ap(WEx + bg) + Br)]. The fitting of param-
eters (ag, fg) is performed according to the iterative optimization described in [33]]
using as labeled examples the positive/negative volumes that are in the active set at
the completion of the EXMOVE training procedure. As already noted in [30], we
also found that this calibration procedure yields a significant improvement in accu-
racy since it makes the range of scores more homogeneous and diminishes the effect
of outlier values.

4.4 Efficient computation of EXMOVE scores
Although replacing the template matching procedure of Action Bank with linear

SVMs applied to histograms of space-time features yields a good computational sav-
ing, this by itself is still not fast enough to be used in large-scale datasets due to
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the exhaustive sliding volume scheme. In fact, the sliding volume scheme is used in
both training and testing. In training, we need to slide the current SVM over negative
videos to find volumes violating the classification constraint. In testing, we need to
slide the entire set of EXMOVE classifiers over the input video in order to extract the
mid-level features for the subsequent recognition. Below, we describe a solution to
speed up the sliding volume evaluation of the SVMs.

Let V be an input video of size R x C' x T. Given an EXMOVE with parame-
ters (Wg, bg), we need to efficiently evaluate it over all subvolumes of V having size
equal to the positive exemplar subvolume xg (in practice, we slide the subvolume
at N, different scales but for simplicity we illustrate the procedure assuming we use
the original scale). It is worth noting that the branch-and-bound method of Lampert
et al. [20] cannot be applied to our problem because it can only find the subwin-
dow maximizing the classification score while we need the scores of all subvolumes;
moreover it requires unnormalized histograms.

Instead, we use integral videos [[16] to efficiently compute the EXMOVE score for
each subvolume. An integral video is a volumetric data-structure having size equal to
the input sequence (in this case R x C'x T). It is useful to speed up the computation of
functions defined over subvolumes and expressed as cumulative sums over voxels, i.e,
functions of the form H(x) = >, . ;) ex 17, ¢,t), where (r, ¢, t) denotes a space-
time point in volume x and A is a function over individual space-time voxels. The
integral video for h at point (r, ¢, t) is simply an accumulation buffer B storing the
sum of h over all voxels at locations less than or equal to (r, ¢, t), i.e., B(r,c,t) =
Doy 2oer<e 2op<y (1, ¢/, t'). This buffer can be built with complexity linear in
the video size. Once built, it can be used to compute H (x) for any subvolume x via
a handful of additions/subtractions of the values in 5.

In our case, the use of integral video is enabled by the fact that the classifier
score can be expressed in terms of cumulative sums of individual point contributions,
as we illustrate next. For simplicity we describe the procedure assuming that ¢(x)
consists of a single histogram (as is the case for HOG-HOF-STIPs) but the method is
straightforward to adapt for the scenario where ¢(x) is the concatenation of multiple
histograms (e.g., the 5 histograms of Dense Trajectories). Let us indicate with P(x)
the set of quantized low-level features (either STIPs or Dense Trajectories) included
in subvolume x of video V and let i, be the codeword index of a point p € P(x).
Then we can rewrite the classification score of exemplar-SVM (w, b) on a subvolume
x as follows (we omit the constant bias term b for brevity):

Zp€P(x) Wi,

2
2 pep(x) | @

WT¢(X) = ﬁ Zwici(x) =

Equation [2] shows that the classifier score is expressed as a ratio where both the nu-
merator and the denominator are computed as sums over individual voxels. Thus, the
classifier score for any x can be efficiently calculated using two integral videos (one
for the numerator, one for the denominator), without ever explicitly computing the
histogram ¢(x) or the inner product between w and ¢(x). In the case where ¢(x)
contains the concatenation of multiple histograms, then we would need an integral
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video for each of the histograms (thus 5 for Dense Trajectories), in addition to the
common integral video for the denominator.

5 Implementation Details

Training data for EXMOVES. Since our approach shares many similarities with
Action Bank, we adopt training and design settings similar to those used in [35] so as
to facilitate the comparison between these two methods. Specifically, our EXMOVES
are learned from the same set of UCF50 [37] videos used to build the Action Bank
templates. This set consists of 188 sequences spanning a total of 50 actions. Since the
Action Bank volume annotations are not publicly available, we manually selected the
action volume x g on each of these exemplar sequences to obtain N, = 188 exem-
plars. As negative set of videos we use the remaining 6492 sequences in the UCF50
dataset: for these videos no manual labeling of the action volume is available nor it
is needed by our method. Action Bank also includes 6 templates taken from other
sources but these videos have not been made publicly available; it also uses 10 tem-
plates taken from the KTH dataset. However, as the KTH videos are lower-resolution
and contain much simpler actions compared to those in UCF50, we have not used
them to build our EXMOVES. In the experiments we show that, while our descrip-
tor is defined by a smaller number of movement classifiers (188 instead of 205), the
recognition performance obtained with our mid-level features is consistently on par
with or better than Action Bank.

Parameters of EXMOVE features. In order to compute the EXMOVE features
from a new video, we perform max-pooling of the EXMOVE scores using a space-
time pyramid based on the same settings as those of Action Bank, i.e., N, = 3 scaled
versions of the exemplar volume x g (the scales are 1, 0.75, 0.5), and IV,, = 73 space-
time volumes obtained by recursive octree subdivision of the entire video using 3
levels (this yields 1 volume at level 1, 8 subvolumes at level 2, 64 subvolumes at level
3). Thus, the final dimensionality of our EXMOVE descriptor is N, X Ny X N, =
41,172.

6 Experiments
6.1 Action Recognition

Action classification model. All our action recognition experiments are performed
by training a one-vs-the-rest linear SVM on the EXMOVES extracted from a set of
training videos. We opted for this classifier as it is very efficient to train and test, and
thus it is a suitable choice for the scenario of large-scale action recognition that we
are interested in addressing. The hyperparameter C' of the SVM is tuned via cross-
validation for all baselines, Action Bank, and our EXMOVES.

Test datasets. We test our approach on the following large-scale action recognition
datasets:
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Datasets
Low-level Mid-level Descriptor UCF101
features descriptor di ionality | HMDBS1 Hollywood-2 | UCF50 (part 2)
[ 3D Gaussians | Action Bank | 44,895 [ 26.9 [ n/a [ 579 ] n/a |
Discriminative
HOG3D Patches 9,360 n/a n/a 61.2 n/a
BOW 5,000 20.0 32.6 52.8 49.1
’ HOG-HOF-STIPs | pxMovEs ‘ 41,172 ‘ 277 ‘ 447 ‘ 63.4 ‘ 57.2 ‘
Dense Traiectorics BOW 25,000 344 437 81.8 60.9
J EXMOVES 41,172 419 56.6 82.8 71.6

Table 1 Comparison of recognition accuracies on four datasets. The classification model is an efficient lin-
ear SVM applied to 4 distinct global mid-level descriptors: Action Bank [35]], Discriminative Patches [[14],
Histogram of Space-Time Visual Words (BOW) and our EXMOVES. We consider two different low-
level features to build BOW and EXMOVES: HOG-HOF-STIPs and Dense Trajectories. Our EXMOVES
achieve the best recognition accuracy on all four datasets using Dense Trajectories, and greatly outperform
the BOW descriptor for both our choices of low-level features, HOG-HOF-STIPs and Dense Trajectories.

1. HMDBS51 [19]: It consists of 6849 image sequences collected from movies as
well as YouTube and Google videos. They represent 51 action categories. The
results for this dataset are presented using 3-fold cross validation on the 3 publicly
available training/testing splits.

2. Hollywood-2 [31]: This dataset includes over 20 hours of video, subdivided in
3669 sequences, spanning 12 action classes. We use the publicly available split of
training and testing examples.

3. UCF50: This dataset contains 6676 videos taken from YouTube for a total of 50
action categories. This dataset was used in [35] and [14] to train and evaluate
Action Bank and Discriminative Patches.

4. UCF101 [37] (part 2): UCF101 is a superset of UCF50. For this test we only
use videos from action classes 51 to 101 (from now on denoted as part 2), thus
omitting the above-mentioned classes and videos of UCF50. This leaves a total
of 6851 videos and 51 action classes. We report the accuracy of 25-fold cross
validation using the publicly available training/testing splits.

Comparison of recognition accuracies. We now present the classification perfor-
mance obtained with our features on the four benchmarks described above. We con-
sider in our comparison three other mid-level video descriptors that can be used for
action recognition with linear SVMs: Action Bank [35]], Discriminative Patches [14]]
as well as histograms of visual words (BOW) built for the two types of low-level fea-
tures that we use in EXMOVES, i.e., HOG-HOF-STIPs and Dense Trajectories. As
in [43]], we use a dictionary of 25,000 visual words for Dense Trajectories and 5,000
visual words for HOG-HOF-STIPs. Due to the high computational complexity of the
extraction of Action Bank features, however, we were unable to test this descriptor
on the large-scale datasets of Hollywood-2 and UCF101. For Discriminative Patches,
we can only report accuracy on UCF50 since this is the only large-scale dataset on
which they were tested in [14]] and no software to compute these features is available.

The accuracies achieved by the different descriptors are summarized in Table [I]

From these results we see that our EXMOVE descriptor built from Dense Trajectories
yields consistently the best results across all four datasets. Furthermore, EXMOVES
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‘ Action ‘ Discriminative

EXMOVES ‘

Action Class Bank Patches

Basketball 53.84 50.00 56.93
Clean and Jerk 85.00 95.65 91.07
Diving 78.79 61.29 96.08
Golf Swing 90.32 75.86 90.14
High Jump 38.46 55.56 81.30
Javeline Throw 45.83 50.00 73.50
Mixing 42.85 55.56 97.16
PoleVault 60.60 84.37 94.38
Pull Up 91.67 75.00 96.00
Push Ups 85.00 86.36 91.18
Tennis Swing 44.12 48.48 85.03
Throw Discus 75.00 87.10 93.13
Volleyball Spiking 43.48 90.90 89.66

[ Mean Classification | 6423 | 70.47 [ 8735 |

Table 2 Recognition accuracies of our EXMOVES (applied to Dense Trajectories) compared with those
of Action Bank and Discriminative Patches using the same subset of 13 action classes from UCF50 con-
sidered in [14].

gives always higher accuracy than BOW built from the same low-level features, for
both HOG-HOF-STIPs and Dense Trajectories. The gap is particularly large on chal-
lenging datasets such as Hollywood-2 and HMDB51. This underscores the advan-
tageous effect of the movement exemplars to which we compare the input video in
order to produce the EXMOVE features.

Table[2)lists the individual action recognition accuracies for the same subset of 13
UCF50 classes analyzed in [14]. We see that EXMOVES give the highest accuracy
on 10 out of these 13 action categories.

In Table[3|we present the recognition accuracy for the individual classes of HMDB51
using a linear SVM trained on our EXMOVES with Dense Trajectories. The best
recognition performance is achieved for “golfing” (accuracy is 96.7%), while the
worst prediction is for the class “waving” (accuracy is 5.6%).

Computational cost of mid-level feature extraction. We want to emphasize that
although our EXMOVES are based on a subset of the exemplars used to build Action
Bank, they always generate equal or higher accuracy. Furthermore, our approach does
so with a speedup of almost two-orders of magnitude in feature extraction: Table [
reports the statistics of the runtime needed to extract EXMOVES and Action Bank.
We used the software provided by the authors of [35] to extract Action Bank features
from input videos. Due to large cost of Action Bank extraction, we collected our
runtime statistics on the smaller-scale UT-I [34] dataset, involving only 120 videos.
Runtimes were measured on a single-core Linux machine with a CPU @ 2.66GHz.
The table reports the complete time from the input of the video to the output of the
descriptor, inclusive of the time needed to compute low-level features. The extraction
of EXMOVES is on average over 70 times faster than for Action Bank when using
HOG-HOF-STIPs and 11 times faster when using Dense Trajectories. We can process



14 Du Tran, Lorenzo Torresani

the entire UT-Interaction dataset with HOG-HOF-STIPs using a single CPU in 14
hours; extracting the Action Bank features on the same dataset would take 41 days.

We were unable to collect runtime statistics for Discriminative Patches due to the
unavailability of the software. However, we want to point out that this descriptor uses
many more patches than EXMOVES (1040 instead of 188) and it cannot use the
Integral Video speed-up.

golf 96.7 laugh 48.9 smoke 31.1
pullup 87.8 ride bike 47.8 stand 31.1
pushup 76.7 turn 47.8 kick 27.8
brush hair 75.6 shootbow  46.7 kick ball 26.7
situp 71.1 sit 46.7 walk 26.7
kiss 68.9 drink 45.6 sword 25.6
catch 65.6 hit 44.4 cartwheel 20.0
shake hands  65.6 push 433 run 20.0
hug 62.2 fall floor 42.2 | sword exercise  18.9
dribble 61.1 somersault  41.1 dive 17.8
pour 61.1 shoot ball 38.9 eat 17.8
climb 58.9 talk 37.8 shoot gun 16.7
ride horse 56.7 jump 36.7 pick 14.4
flic flac 53.3 | climbstairs  35.6 punch 11.1
chew 48.9 | draw sword  35.6 throw 7.8
clap 48.9 smile 33.3 | swing baseball 5.6
fencing 48.9 | handstand  32.2 wave 5.6

Table 3 Recognition accuracy on the individual classes of HMDBS51 using linear SVMs trained on EX-
MOVES based on Dense Trajectories. Note that random chance would yield a recognition rate of 1.96%

Computational cost of action recognition. Finally, we would like to point out that
as shown in Table [T} the accuracies achieved by an efficient linear SVM trained
on EXMOVES are very close to the best published results of [43], which instead
were obtained with a much more computationally expensive model, not suitable for
scalable action recognition: they report a top-performance of 46.6% and 58.2% on
HMDB51 and Hollywood-2, respectively, using an expensive non-linear SVM with
an RBF-y? kernel applied to BOW of Dense Trajectories. In our experiments we
found that training a linear SVM on EXMOVES for one of the HMDBS5]1 classes
takes only 6.2 seconds but learning a kernel-SVM on BOW of Dense Trajectories re-
quires 25 minutes (thus overhead is 250X); the testing of our linear SVM on a video
takes only 7 milliseconds, while the nonlinear SVM is on average more than two or-
ders of magnitude slower. Its cost depends on the on the number of support vectors,
which varies from a few hundreds to several thousands. Nonlinear SVMs also need
more memory to store the support vectors.

Varying the number of exemplars. In this experiment we study how the accuracy
of our method changes as a function of the number of EXMOVES used in the de-
scriptor. Starting from our complete feature vector defined by N, = 188 exemplars
and having dimensionality N, x Ny x N,, = 41,172, we recursively apply a feature
selection procedure that eliminates at each iteration one of the EXMOVE exemplars
and removes its associated Ny x N, features from the descriptor. We apply a variant
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Extraction time # frames
Descriptor per video (minutes) per second

mean [ max [ min mean

Action Bank 495 1199 | 132 0.012
EXMOVES

w/ HOG-HOF-STIPs 7 16 3 0.82
EXMOVES

w/ Dense Trajectory 43 70 29 0.13

Table 4 Statistics of time needed to extract the mid-level descriptors Action Bank and EXMOVES. The
time needed to extract EXMOVES features for the entire UT-I dataset using a single CPU is only 14 hours;
instead, it would take more than 41 days to compute Action Bank descriptors for this dataset.

45 : \ \

R Y T
. YR B

5- == EXMOVES w/ HOG-HOF-STIPs

== EXMOVES w/ Dense Trajectories
00 50 100 150 200
# EXMOVES

Fig. 2 Accuracy on HMDBS51 as a function of the number of EXMOVES. We use Recursive Feature
Elimination to reduce the number of EXMOVES. The accuracy remains near the state-of-the-art even
when using only 100 exemplars.

of multi-class Recursive Feature Elimination [2] to determine the EXMOVE to elim-
inate at each iteration. This procedure operates as follows: given a labeled training
set of video examples for K classes, at each iteration we retrain the one-vs-the-rest
linear SVMs for all K classes using the current version of our feature vector and then
we remove from the descriptor the EXMOVE that is overall “least used” by the K
linear classifiers by looking at the average magnitude of the SVM parameter vector
w for the different EXMOVE sub-blocks.

We perform this analysis on the HDMBS51 dataset using both HOG-HOF-STIPs
and Dense Trajectories as low-level features for EXMOVES. Figure 2] reports the 3-
fold cross-validation error as a function of the number of EXMOVES used in our de-
scriptor. Interestingly, we see that the accuracy remains close to the top-performance
even when we reduce the number of exemplars to only 100. This suggests a certain
redundancy in the set of movement exemplars. The accuracy begins to drop much
more rapidly when fewer than 50 exemplars are used.
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Datsset [ # of scales “ 1 2 [ 3 ]
1 pyr. level 68.3 (188) 68.4 (376) 68.4 (564)
UCF50 2 pyr. levels 74.8 (1,692) 77.1 (3,384) 78.0 (5,076)
3 pyr. levels 77.3 (13,724) | 80.1(27,448) | 82.8 (41,172)
1 pyr. level 51.9 (188) 54.3 (376) 53.7 (564)
UCF101-part2 | 2 pyr. levels 62.0 (1,692) 64.7 (3,384) 66.2 (5,076)
3 pyr. levels 65.4 (13,724) | 69.1 (27,448) | 71.6 (41,172)

Table 5 Effects of multiple scales and spatio-temporal pyramid levels on EXMOVES. EXMOVES
action recognition accuracy on UCF50 and UCF101-part2 using different number of scales and levels of
spatio-temporal pyramid. Feature dimensions are showed in brackets.

The effects of multiple scales and spatio-temporal pyramid levels. We study
the effects of different number of scales, number of spatio-temporal pyramid lev-
els on EXMOVES. Similar to the previous experimental section, at the full setting,
EXMOVES uses three different scales: 1,0.75, 5 and three different spatio-temporal
pyramid levels: 1 x 1 x 1,2 x 2 x 2, and 3 X 3 x 3. We vary the number of scales
using from only 1 scale, 2 scales (1, 0.75), or all 3 scales. We also vary the number of
pyramid levels: only 1 level (level 1), 2 levels (1 and 2), or all 3 levels. At the lowest
dimension, we only use 1 scale and 1 level of pyramid forming a 188 dimensional fea-
ture vector. At the highest dimension, with 3 scales and 3 pyramid levels EXMOVES
are 41,172 dimensional feature vectors. Table [5] presents the human recognition ac-
curacy of EXMOVES varying the number of scales and pyramid levels on UCF50
and UCF101-part 2. The empirical results show that EXMOVES does not benefit
much from multiple scales, but is significantly boosted by spatio-temporal pyramid.
Reducing from 3 scales to 2 scales drops accuracy only 1-2%, and from 2 scales to 1
scale drops 2.5-3.5% on both dataset. In contrary, moving from 3 to 2 pyramid levels
drops 4-5%, and from 2 to 1 pyramid level will degrade accuracy by 10-12%. In-
terestingly, 1-scale, 1-pyramid-level EXMOVES with only 188 dimensions achieves
68.3% accuracy on UCF50 which is considerably better than 57.9% and 61.2% of
Action Bank [35] and Discriminative Patches [[14]].

The effects of bounding box annotations. We study the effects of bounding annota-
tions on our EXMOVES. In this experiment, we train our EXMOVES without using
any bounding box annotations, we call these features are WEXMOVES (weakly su-
pervised EXMOVES). We note that we are still using one positive example and many
negative examples in the same setting as we used to train EXMOVES except for not
using bounding box annotations. To train each WEXMOVE, we randomly generate
k* = 10 subvolumes from positive video and k= = 3 subvolumes from negative
videos. These subvolumes are used as positive and negative training examples to
train a linear SVM. Each linear SVM is then calibrated by the same algorithm [33]].
Table [6|compares the accuracies of WEXMOVES with EXMOVES on four different
datasets. On Hollywood-2, the difference is small which is only 0.6% due to the small
dataset and simpler problem (12-categories classification problem). On UCF50 and
UCF101-part 2, the difference is about 2.3%-4.8%, while on the more challenging
HMDB51 dataset the gap is 6.7%. As the accuracy drop for not having bounding
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[ Datsset [ HMDB51 [ Hollywood-2 [ UCF50 [ UCF101-part2 |
WEXMOVES 352 56.0 78.0 69.3
EXMOVES 419 56.6 82.8 71.6

Table 6 The effects of bounding box annotations on EXMOVES. WEXMOVES action recognition
accuracy on HMDBS51, Hollywood-2, UCF50, and UCF101- compared with EXMOVES. WEXMOVES
drops 1-6% on these datasets.

box annotations is small, one can even effort to increase the number of exemplars to
improve the features with very little cost of annotations.

6.2 Qualitatively Action Retrieval

We also qualitatively evaluate our EXMOVES on action retrieval. In this experiment,
we do simple Top-K retrieval using nearest neighbors. Figure [3] presents the results
of top-15 nearest neighbors action retrieval using EXMOVES on UCF50. We inten-
tionally pick two best-performed, one middle-performed, and one worst-performed
actions to visualized. “Pommel Horse” and “Punch” are two actions with highest
retrieval precision, as showed in Figure[3] all retrieved examples from top-15 are cor-
rect. “Clean and Jerk” is a middle-accurate class and in the visualized query, there is
one wrong retrieved example which is confused with “Bench Press”. “Basketball” is
the worst-performed category where it is mostly confused with “Volleyball Spiking”
and ‘“Pizza Tossing”.

We also qualitatively evaluate our EXMOVES on cross-dataset action retrieval.
Figure ] shows the top-5 cross-dataset action retrieval where the querying videos are
from HMDBS51 and the retrieval database are UCF50. We select two top-, middle-,
and bottom-performed action classes to visualize. On the two top-accurate classes
“ride horse” and “pull up”, there is one wrong retrieved example of “Swing” which
has similar appearance and motions with “pull up”. In middle-accurate classes, we
observe the wrong retrieved example of “riding horse” with “riding bike”. The worst-
performed classes, where we are confused “bench press” with “push up” which are
similar in term of pose and motions.

6.3 Action Similarity Labeling

We now show that our EXMOVES can be applied to tasks beyond action recog-
nition by presenting results on the problem of action similarity labeling [[18].

Dataset. We use the ASLAN challenge dataset [[18] for action similarity labeling.
The dataset consists of 3697 video clips of 432 action categories. Given a pair of
video clips as input, the objective is to determine whether they contain the “same”
action or “different” actions. Thus, this can be viewed as a binary classification prob-
lem. In [18]], the authors define 10 splits of the dataset. Each split contains 300 pairs
of videos with same actions and 300 video pairs with different actions. The dataset
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Clean and Jerk

Basketball

Fig. 3 Action retrieval on UCF50. The left column shows the query videos. The right 5 columns are
results of top-15 retrieval using EXMOVES. The wrong retrieved examples are marked with red X. The
first two query are from the top performing classes, the third query is from the middle-performing class.
The last query is from the worst performing class. Best view in color.
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Fig. 4 Cross-dataset action retrieval. The first column presents the querying videos from HMDBS1.
The second to sixth columns are the retrieved results of top-5 nearest neighbors from UCF50. The wrong
retrieved examples are marked with red X. Best view in color.

is difficult because the number of action categories is large and the action classes are
fine-grained. For example, there are 29 variants of jumping, and 10 distinct categories
of “sitting-up”.

Binary classification model for action similarity labeling. In [18] the authors
report the performance of several features (HOG, HOF, HNF [22], and their combi-
nation) with 12 different distance metrics used as kernels for binary classification of
video pairs. In order to maintain our approach scalable and efficient, we train a binary
linear SVM on the absolute difference of the two EXMOVE descriptors extracted
from the input pair. In other words, the SVM is trained on the absolute difference
vector to predict whether the two videos contain the same action or not. Note that
the other distances used in [18]], such as the 2 or other non-linear kernels, are much
more costly to compute. We report the labeling accuracy as well as the area under
ROC curve using 10-fold cross validation as used in [18].

Comparison of features for action similarity labeling. Table[7]presents the accu-
racy of our EXMOVES on the similarity labeling challenge. We include comparative
results obtained with current state-of-the-art features using the same binary classifi-
cation model, i.e., a binary SVM trained on the absolute difference vector. Our EX-
MOVES outperform all single feature descriptors (HOG, HOF, HNF) by 2-3% on
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accuracy and 3-4% on AUC. Our EXMOVES are even better than the combination
of these three feature vectors, providing an improvment of 0.5% and 1% on accuracy
and AUC, respectively.

Figure [5] shows qualitative results of action similarity labeling using EXMOVES
for 4 test pairs of videos. Each row shows an input test pair of video clips (we present
three frame of each video clip). The ground-truth action labels are marked in blue in
the right bottom corner of each image sequence. The first two test pairs are true posi-
tives, i.e., the linear SVM using EXMOVES correctly labels these pairs as “same”. It
is worth noting that the second test example is quite difficult as the same actions ap-
pearing in different scales, view, and lighting condition. The third pair causes a false
negative prediction: the SVM using EXMOVES fails to label this pair as “same,”
probably due to the largely different viewpoints of the two video clips. The last row
shows a false positive case. Our system fails to label the two videos as “different”
because of the similar patterns of motions and poses.

Feature HOG HOF HNF HOG-HOF-HNF | EXMOVES

Acc (AUC) | 52.23 (54.41) | 53.53(55.59) | 53.75(55.90) 54.80 (57.01) 55.32 (58.06)

Table 7 Action similarity labeling results. Comparisons between EXMOVES and current state-of-the art
features [18] using a binary linear SVM trained on the absolute difference vector, i.e., |[x1 — z2| where
1,2 here denote the feature vectors extracted from the two input videos. The numbers are accuracies
and area under ROC curve (in parenthesis). EXMOVES outperform other single feature vectors by 3-4%,
and combined descriptors by 1%.

7 Conclusions

We have presented an approach for efficient large-scale analysis of human actions.
It centers around the learning of a mid-level video representation that enables state-
of-the-art accuracy with efficient linear classification models. The benefits of our
features are threefold. First, building our representation requires very little human
intervention, as only one positive manual annotation is required for each feature entry.
Second, our approach is easy to scale to large datasets thanks to low computational
cost of EXMOVE extraction and the good accuracy obtainable with /inear classifiers,
which are fast to train and test. Last but not least, our approach is quite general,
as it provides good accuracy with different types of low-level features and different
problems of human action analysis. Experiments on large-scale benchmarks of action
recognition and action similarity labeling show the accuracy and efficiency of our
approach. To our best knowledge, this work is the first one experimented on all known
large-scale benchmarks for human action analysis.

Our mid-level features are produced by evaluating a set of movement classifiers
over the input video. An important question we plan to address in future work is: how
many mid-level classifiers do we need to train before accuracy levels off? Also, what
kind of movement classes are particularly useful as mid-level features? Currently, we
are restricted in the ability to answer these questions by the scarceness of labeled
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Fig. 5 Action similarity labeling. Visualizations of action similarity pairs. Each row represent a test
input pair. The binary classifier using EXMOVES correctly classifies the pairs in the first two rows (true
positives). The third row is a false negative, and the last row is a false positive. Note that although the two
video clips in the second row have largely different scales and viewpoints, our method is able to correctly
label them as containing the same action. Our method fails to label the third pair as “different” because
of the different viewpoints, and the fourth pair as “same” because the two videos exhibit similar motions.
Best view in color.

data available, in terms of both number of video examples but also number of action
classes. An exciting avenue to resolve these issues is the design of methods that can
learn robust mid-level classifiers from weakly-labelled data, such as YouTube videos.

Additional material including software to extract EXMOVES from videos is avail-
able athttp://vlg.cs.dartmouth.edu/exmovesh
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