
WalkSafe: A Pedestrian Safety App for Mobile Phone Users
Who Walk and Talk While Crossing Roads

Tianyu Wang1, Giuseppe Cardone2, Antonio Corradi2,

Lorenzo Torresani1, and Andrew T. Campbell1

Computer Science Dartmouth College 1
6211 Sudikoff Lab, 03755 Hanover, NH, U.S.A.

{tianyuw, lorenzo, campbell}@cs.dartmouth.edu
University of Bologna 2

V.le Risorgimento, 2, 40136 Bologna, Italy

{giuseppe.cardone, antonio.corradi }@unibo.it

ABSTRACT

Research in social science has shown that mobile phone con-
versations distract users, presenting a significant impact to
pedestrian safety; for example, a mobile phone user deep
in conversation while crossing a street is generally more at
risk than other pedestrians not engaged in such behavior.
We propose WalkSafe, an Android smartphone application
that aids people that walk and talk, improving the safety
of pedestrian mobile phone users. WalkSafe uses the back
camera of the mobile phone to detect vehicles approaching
the user, alerting the user of a potentially unsafe situation;
more specifically WalkSafe i) uses machine learning algo-
rithms implemented on the phone to detect the front views
and back views of moving vehicles and ii) exploits phone
APIs to save energy by running the vehicle detection algo-
rithm only during active calls. We present our initial design,
implementation and evaluation of the WalkSafe App that is
capable of real-time detection of the front and back views of
cars, indicating cars are approaching or moving away from
the user, respectively. WalkSafe is implemented on Android
phones and alerts the user of unsafe conditions using sound
and vibration from the phone. WalkSafe is available on An-
droid Market.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
Real-time embedded systems

General Terms

Algorithms, Design, Experimentation, Measurement, Per-
formance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’12 February 28–29, 2012, San Diego, CA, USA.
Copyright 2012 ACM 978-1-4503-1207-3 ...$10.00.

Keywords

Mobile Sensing System, Machine Learning, Mobile Phones,
Pedestrian, Distraction

1. INTRODUCTION

Traffic accidents are a major public issue worldwide. In
United States alone pedestrian fatalities account for 12% of
all roadway deaths - 4092 in 2009 [7]. According to traf-
fic safety statistics, car accidents that include pedestrians
occur most frequently in urban areas where pedestrian ac-
tivity and traffic volumes are much greater in comparison to
rural areas. In terms of the location of accidents on roads,
65% of all crashes that involve pedestrians occur at non-
intersections. Speeding, alcohol impairment and distraction
are the main contributing factors in car crashes that involve
pedestrian [11]. In most cases, drivers and pedestrians are
equally responsible for accidents that occur.

The intuition that talking while walking across a road is
dangerous is backed up by a large set of recent studies. A
research trend is focusing on the influence of mobile phones
on pedestrian safety because of the wide usage of phones as
people move around during daily life. One early study on
pedestrians crossing streets shows that mobile phone users
exhibited more unsafe behavior than other pedestrians: that
is, distracted walkers adopt less cautionary behavior (e.g.,
looking left and right, waiting for a walk signal) before cross-
ing streets in comparison to non-distracted pedestrians [8,
10]. Experiments in a controlled virtual reality environment
also reveal that when conversing on the phone pedestrians
are less likely to recognize safe opportunities to cross the
road [12].

A number of recent research projects demonstrate that
wireless sensor network can enhance pedestrian safety, mostly
focusing on intelligent transportation systems that help drivers
to be aware of potentially unsafe conditions [2, 5, 6]; for
example, communicating the location between pedestrians
and vehicles using Dedicated Short Range Communications
signals, helping vehicle drivers spot nearby pedestrians. In
addition, lane, vehicle, and pedestrian detection technolo-
gies are used in auto-driven vehicles (e.g., Google cars) to
enhance the safety of vehicles. However, to the best of our
knowledge, our work is the first car detection classification

and warning system implemented directly on off-the-shelf
resource-limited mobile phone.

Existing works on intelligent transportation systems typ-
ically use sensors fixed on the vehicles to sense the surround-
ing environment and communicate information between pedes-
trians and vehicles; unfortunately such devices are still not
ubiquitously available in the real world – and it is likely to
be sometime before they are available because of cost and
demands of scale. We take a different approach from these
fixed infrastructure approaches and proposeWalkSafe, a sys-
tem that make pedestrians more aware of their surroundings
while walking and talking by exploiting mobile sensors that
are widely available, namely, smartphone cameras and ac-
celerometers. Smartphones equipped with sensors [9] (e.g.,
accelerometer, gyroscope, GPS and camera) are becoming
cheaper and more widespread, thus, we argue that smart-
phones are the perfect “sensor” carried by people that can
be exploited to avoid road accidents by notifying users of
any incoming cars during phone calls. However, sensing us-
ing smartphones presents several challenges; for example, a
person lifting the phone produces noise in the accelerometer
readings that must be filtered out before being able to use
the accelerometer for pedestrians activity recognition. Simi-
larly, if phone’s camera is used for pedestrian safety, variance
in light conditions, orientation of the phone with respect to
cars and blurred video frames due to mobility make the use
of the camera as a sensor to detect cars very challenging.

These challenges are barriers to implementing a robust car
detection algorithms on the phone that can work under real-
world conditions. A number of design decisions underpin
the design of WalkSafe to seamlessly enhances pedestrians
safety: i) WalkSafe should be immediately usable with min-
imum user dependency as possible; ii) WalkSafe should rely
on the mobile phone as much as possible without the need
for external resources; iii) WalkSafe should capable of fast
real-time detection of cars at distance (e.g., 50 meters) in
order to inform the user in a timely manner (e.g., a user has
about 4 seconds to react to a car at 50 meters traveling at 30
mph) – the faster the detection system works the better for
the user; and finally, iv) WalkSafe should preserve the phone
user experience (e.g., it should not impact the performance
of the phone or other applications).

In this paper, we present the design, implementation and
evaluation of WalkSafe, the first system vehicle detection
and pedestrian alert system for mobile phones. Typically,
when a mobile user is speaking on the phone, the phone
blocks the user’s side view (either on the right or left side
depending on which ear the user is using) while crossing the
road. WalkSafe protects pedestrians distracted by phone
conversations while crossing streets by using the phone’s
back camera to detect incoming vehicles, alerting the user
via sound notifications and vibrations. TheWalkSafe system
uses the AdaBoost machine learning technique to train (of-
fline) a car front view and rear view detection model, which
is uploaded to the phone when the application is installed
for real-time online classification (i.e., the detection of ap-
proaching cars). To improve the detection rate performance,
WalkSafe preprocesses captured images to remove artifacts
due to light conditions and phone orientation – WalkSafe
solves these challenging environmental, user mobility and
phone orientation issues in a robust manner. Finally, Walk-
Safe uses the Android APIs to trigger vehicle detection only

Figure 1: WalkSafe architecture. The vehicle recog-
nition model is trained offline and then deployed on
smartphones.

when there are ongoing phone calls, thus saving battery life-
time, memory and computational resources.

The paper is organized as follows. Section 2 details de-
sign of WalkSafe. Section 3 discusses the evaluation of the
WalkSafe prototype application. We discuss related work in
Section 4 and present some concluding remarks on future
work in Section 5.

2. WALKSAFE DESIGN

The core WalkSafe car detection technology is based on
image recognition algorithms. Image recognition is a com-
putational intensive process that, if not carefully designed,
can easily drain the computational resources and batteries
of smartphones. To address this, WalkSafe bases its vehicle
recognition process on a model that is first trained offline
and then uploaded and used for the online vehicle recogni-
tion, as shown in Fig. 1. To build a effective vehicle recogni-
tion model, we prepare a dataset containing positive images
(i.e., images that show the rear or frontal view of cars) and
negative images (i.e., images that show side views of cars
or random urban environments). Both sets of images are
(i) preprocessed to normalize their features, for example, to
normalize the brightness level and image size; then (ii) input
to an algorithm that extracts characterizing features called
“Haar-like features” [19] and then (iii) used to build a deci-
sion tree able to determine if a picture contains a front or
rear view of a car. The resulting decision tree is then used by
the WalkSafe application running on smartphones, running
the online vehicle recognition in real-time.

The online vehicle recognition runs automatically when-
ever there is an ongoing phone call. WalkSafe activates the
smartphone’s camera and captures a picture of the surround-
ings. The picture is preprocessed to compensate for the
phone tilt and illumination variations, and is then analyzed
by the decision tree model built during the offline training
phase, as discussed above. If the decision tree detects a car
in the picture, it triggers an alert to warn the user of possible
danger. In the following, we present a detailed discussion of
the various steps of both the offline training and the online
vehicle recognition on the phone.

2.1 Offline training

The offline training process is given a dataset of posi-
tive and negative image matches and builds a mathematical
model that can be used to recognize positive matches on-
line on the phone. Our offline training comprises four steps:
(i) dataset building; (ii) training image preprocess – pre-
processing the dataset to remove macroscopic heterogeneity
between samples (such as, image size) and to artificially gen-
erate more samples; (iii) feature extraction from the images;
and finally (iv) build the classification tree based on the fea-
tures extracted. In what follows, we discuss each step in
more detail.

The dataset building step is a fundamental step to build-
ing a good classifier; the number and quality of the training
samples in the dataset has a great impact on the accuracy
of the resulting classifier. In order to collect as many good
quality positive training samples, we use the MIT CBCL
car dataset, which contains 516 car front and rear view of
cars, and the Caltech Cars dataset, which includes 526 im-
ages of rear view cars, for a total of 1032 positive samples
[15, 3]. The images in the two datasets are shot by different
cameras and their quality is different from the image quality
shot when using the Google Nexus One camera. To address
this issue, we preprocess the training images collected from
the two dataset to resize them to the same resolution as the
Google Nexus One phone camera. The negative training
samples are fetched from Google Street View from around
Hanover area. We use 3023 background images, which are
selected to form the negative training set, containing no cars
or only side view of cars.

The training image preprocess normalizes macroscopic
characteristics of images (such as, image size and car posi-
tion) and artificially generates additional image samples to
improve the final classifier. We crop car regions from car
image samples to leave as little background as possible in
the positive samples and resize all images to 80x80 pixels.
The cropped images are then transformed into gray scale im-
ages to reduce the impact of the colors of different cars. We
normalized the gray scale intensity of each training images
by the average intensity of the whole image dataset in or-
der to equalize the light invariance of each training samples.
The accuracy of the classifier is also affected by the align-
ment of the training dataset, thus, to minimize its impact,
we aligned the cars in the training images to the bottom of
cars. The width of the tires in each image are normalized to
65 pixels. Fig. 2 shows examples of positive training sam-
ples after preprocessing. To increase the robustness of the
classifier, we expand the positive samples dataset by apply-
ing several image transformations. To make the classifier
more robust in terms of light conditions and slightly dif-
ferent angles of the view of the cars, we apply 50 different
gray scale intensity modifications (to reflect different light
conditions experienced) and 0.1 degree distortion in x and y
directions on each car image, thus, increasing the number of
positive training images to 7000 samples with different light
condition and slightly different view angle. The negative
images are cropped from large size background images and
transformed to gray scale. Some negative training images
are shown in Fig. 3.

Finally, we use the Haar feature-based cascade clas-
sifier driven by the AdaBoost algorithm to build the
car detection model. We use the OpenCV computer vision
library to implement WalkSafe. The classifier building al-

Figure 2: Positive training samples after preprocess-
ing.

Figure 3: Negative training samples after prepro-
cessing.

gorithm uses the positive and negative samples. We build a
classifier that consists of several simpler classifiers (stages)
based on Haar-like features. Haar-like features are a well-
known technique that make feature extraction from images
computationally easy. Haar-like features consider adjacent
rectangular regions in a detection window, sum up the pixel
intensities in these regions and calculates the difference be-
tween them – the resulting value is an Haar-like feature. The
classifiers at every stage of the cascade pipeline are com-
plex themselves being built out of basic classifiers, which
“vote” on the classification of the same sample. The votes
are weighted according to the Gentle AdaBoost algorithm,
which is known to work well for this kind of applications [1,
19]. We train the cascade classifier on 20 stages. In each
stage, a weak classifier is trained, in which a 0.999 hit rate
and 0.5 false alarm rate are preserved. More specifically, we
use a single layer of decision trees as the weak classifier in
each stage. We use two kinds of decision trees as the weak
classifier: one is the stump decision tree, which is a tree that
has only one split node, and the other is Classification And
Regression Tree (CART) with two split nodes. The accuracy
of the two cascade classifiers are evaluated in the evaluation
section, discussed later in the paper.

2.2 Online detection

The online car detection, which runs on the Andoid smart-
phone, comprises four steps: (i) image capture, (ii) image
preprocess, (iii) car detection and (iv) alert dispatching.
During the image capture step, WalkSafe captures a sin-
gle image using the back facing camera on the smartphone.

Image capture is a CPU and I/O intensive activity, poten-
tially impacting the phone’s performance and battery life-
time. A possible solution is to delegate image processing to
the cloud. However, this approach introduces high latency
mainly because of limited cellular bandwidth. Such an ap-
proach to offload classification to the cloud will become more
feasible as higher throughput becomes available. In our cur-
rent version, WalkSafe triggers image capture on the phone
only during active phone calls; that is, when it is actually
needed, running the image processing algorithm locally on
the phone. The car detection model built during the offline
training phase can only recognize if a image represents a car
and has little tolerance to background. To resolve this lim-
itation, the captured image is subdivided using a scrolling
window that moves by 3 pixels each time. Moreover, Walk-
Safe uses scrolling windows of different sizes, which allow
the application to detect cars regardless of their apparent
size. Each region of interest defined by scrolling windows is
then preprocessed and checked by the learned classifier.

The image preprocessing step improves the classifier
performance. WalkSafe uses the accelerometer sensor data
to estimate the orientation of the mobile phone, and aligns
the test image according to the direction of gravity. Hence,
the bottom of the cars are parallel to the bottom of test im-
ages. This allows WalkSafe to correctly detect cars even if
the mobile phone is arbitrarily rotated, which is the typical
case when users speak on the phone – people hold the phone
at different orientations and the WalkSafe system is to be
adaptive to this real-world behavior. In addition, WalkSafe
also performs gray scale intensity normalization of each test
image to eliminate the illumination difference between the
test image and the images of the training dataset. The ad-
vantage of using a classifier based on Haar-like features, is
that it can be easily scaled to detect objects of interest in
subregions of the test images without resizing the image it-
self – which, is more efficient than resizing the image itself.
Thus, WalkSafe repeatedly scans the captured image ana-
lyzing windows of different sizes in different places.

After preprocessing, the test images are input to the car
detection step, which uses the classification model built
during the offline training. The classifier is designed to run
in real time, as it can refuse the negative images very quick
if the test image can not pass a stage. Only if a region of
interest passes all stages does WalkSafe define that region
as a car and then proceeds to dispatch a notification to the
user. In the current implementation the user alert is a
vibration, which notifies the user about the incoming car.

3. WALKSAFE EVALUATION

In this section, we discuss initial results from the evalua-
tion of the car detection model and the WalkSafe prototype.
A near full version of the WalkSafe App can be downloaded
from the Market. We implemented WalkSafe application
for Android 2.3.4 operating system and tested it on Google
Nexus One, which is equipped with 1 GHz Qualcomm Snap-
dragon QSD8250 CPU, has 512 MiB RAM memory, an ac-
celerometer (which WalkSafe uses to rotate images) and a
back facing camera capable of video capture at 20 frames per
second with 720x480 pixel resolution. The WalkSafe pro-
totype is implemented in Java and leverages the OpenCV
(Open Source Computer Vision) library for computer vi-
sion algorithms [1]. In what follows, we describe the per-
formance of two Haar cascade car detection models with

Figure 4: Examples of Haar-like features extracted
from the car dataset.

different training parameters. We also report the accuracy
of the WalkSafe prototype used in a real world evaluation,
as well as system performance bench marks for computation
time, CPU and memory usage and battery consumption.

To evaluate the performance of our car detection models,
we select 48 cropped car front view and rear view images and
300 different Google Street View images from the training
dataset, and generated 216 testing images with car location
annotated in the images. Two Haar cascade car detection
models are trained by Gentle AdaBoost algorithm as dis-
cussed earlier. One car detection model is trained using a
simple tree stump in each weak classifier, while the other
model is trained using the CART decision tree with two
splits in each weak classifier. We train the Haar cascade car
detection model using 20x20 positive pattern size. 0.999 hit
rate and 0.5 false positive rate are set in each weak classifier
training phase. We apply the two car detection models to
the same test dataset. The ROC curves for each of two mod-
els are shown in Fig. 5. The ROC curves shows the Haar
cascade car detection model which consists of tree stumps
as weak classifier performs better than the one that consists
of two-split CART decision trees. Therefore, we choose the
car detection model with simple tree stumps as each weak
classifier in the WalkSafe prototype. The first four features
selected by the Gentle AdaBoost algorithms are shown in
Fig. 4. As we can see from the figure the car front view
and rear view training images, the bumper part of the car
is selected as the most discriminative feature. The right tire
and the left tire are selected as the second and third discrim-
inative features, follow by the headlights and backlights.

To evaluate the practical viability of WalkSafe, we car-
ried out a number of real world experiments: 30-minute car
detection experiments were performed from 13:00 to 17:00
hours at five different locations in Hanover, NH. The mo-
bile phone was held by a pedestrian standing at the side of
the street. We recorded the video captured by a Nexus One
phone, and counted the number of cars that appeared in the
video as ground truth. We compared the ground truth to
the number of cars detected by the WalkSafe prototype. The
average results are shown in Table 1. From the experiments,
we also measure the approximately maximum detection dis-
tance. WalkSafe was able to detect cars 50 meters away from
the pedestrians. Fig. 6 and 7 show some true positive and
false positive detections. A small portion of false positive
results are the side view of the vehicles. However, the false
positive rate is very low in the real world experiments (as it
is shown in Table 1) so that the normal user experience can

Figure 5: Car detection ROC Curve. The red line
is the ROC curve of tree stumps and the blue line
is the ROC curve of two-split CART decision trees.

Figure 6: True positive detections in real world sce-
nario using WalkSafe on the phone with different
user phone orientation.

be preserved when pedestrian phone users are walking along
the street on the sidewalk. The high rate of correctly detect
cars makes us confident that WalkSafe is very promising so-
lution, indicating that WalkSafe is a workable, practical and
robust approach to detecting on coming cars under real-
world conditions (e.g., with different cars, users, user phone
orientation, user mobility and light conditions).

We also evaluated the system performance of WalkSafe.
The Nexus One’s rear camera is capable of capturing up to
20 frames per second (FPS). WalkSafe uses approximately
140 milliseconds to infer the car position in one frame, which
means that WalkSafe system is capable of processing about
8 FPS. In our real world experiments, WalkSafe detects most
of the cars coming towards the pedestrians. However, un-
der certain scenarios WalkSafe only detected cars when they
were very close to the pedestrians, limiting the time for the
pedestrians to react safely. Improvements about this aspect

Figure 7: False positive detections in real world sce-
nario using WalkSafe on the phone with different
user phone orientation.

Table 1: 30-minute WalkSafe car detection experi-
ments in real world

Coming car direction Front view Rear view
Number of cars detected 84 57
Number of cars missed 25 18

True positive rate 77% 76%
Number of false positive 3

Maximum detection distance 50 meters

can be expected by leveraging faster phone processors and
additional quicker inference pipelines, that we are studying
as part of our future work.

WalkSafe is quite lightweight in terms of RAM usage on
Nexus One requiring only 3.95 MB. However, the WalkSafe
prototype demands high computational resources taking up
to 12% of CPU usage. After running WalkSafe for 5 hours
on the Nexus One, the battery level dropped to 15% after a
full charge. However, it should be noted that in a real world
usage, WalkSafe is only activated during phone calls, thus,
alleviating the energy drain issue.

4. RELATED WORK

There is a growing interest in using smartphones, short-
range communication systems and computer vision tech-
niques for pedestrian safety. In what follows, we discuss the
related work. There are several commercial products, (e.g.,
“Text and Walk” and “Walk ’n Email”) that leverage the
smartphone’s back facing camera to let users write SMS and
e-mails while walking safely by displaying the road ahead as
application background. However, [14] shows that these ap-
plications can help, but people are overloaded and therefore
somewhat limited in concurrent multitasks processing, thus,
users may not be aware of dangers even if they are displayed
as application background. In [4], the authors discuss the re-
sponse time for smartphone applications that warn users of
collision risks, analyzing approaches based on a centralized
server and on ad-hoc communication connections between
cars and pedestrians. The Oki Electric company has devel-
oped a Dedicated Short Range Communication (DSRC) in-
terface for mobile phones that allows drivers to notify nearby
vehicles and pedestrians of their location from the embedded
GPS [13]. It should be noted that these approach depend on
cooperation of vehicles, network availability and specialized
hardware, thus, making a large scale deployment difficult,
costly, and perhaps, unlikely. In [5], the authors present a
survey of recent research car and pedestrian detection tech-
niques used by a number of systems – however, none applied
to the smartphone scenario addressed by WalkSafe. Car and
pedestrian detection systems can rely on a wide range of
sensors (e.g., visible light imaging, infrared imaging, time of
flight sensors, RADARs, LASER scanners), video cues (e.g.,
shape, motion, depth) and classifiers (e.g., AdaBoost, neural
networks, cascade of classifiers). In [18], the authors describe
a car detection system based on Haar features that exploits
the on-board cameras available in some cars. [16] describes
a complete framework based on Haar features, enhanced by
a tracking algorithm, to continuously track vehicles. This
system performs very well, but it is implemented using on
board car cameras and relies on external hardware support,
which is ill-fitting to resource-constrained smartphones. [17]
is a project that aims at improving the safety of bikers by de-

tecting approaching cars using computer vision algorithms
on a dedicated hardware platform.

5. CONCLUSION

In this paper, we have presented the design and initial
prototyping and evaluation of the WalkSafe App for people
that walk and talk and cross roads. WalkSafe operates at
the intersection of vision, learning and mobile computing –
solving a number of real-world problems presented by the
mobility of the user, phone orientation, different lightening
conditions and implementation on a resource limited phone.
To the best of our knowledge WalkSafe is the first smart-
phone app that uses the camera and accelerometer sensors
and classification pipeline to alert users of unsafe cars ap-
proaching them. WalkSafe is available on Android Market1.

Our future work includes three main directions. First, we
plan to extend the training dataset, improving the vehicle
detection model and reduce energy consumption. We aim
to increase the type of vehicles that WalkSafe can detect in-
cluding buses, trucks, push bikes and motor bikes. We also
aim to study car detection at night, which represents the
most dangerous period of the day for pedestrians (i.e., 47%
of the fatalities [11] occur between the hours of 18:00 and
midnight in the U.S.A). Our efforts to enhance the vehicle
detection model is twofold: speeding up the recognition algo-
rithm and adding support for continuous tracking. To speed
up the recognition algorithm, we will limit the vehicle search
for a specific frame in areas surrounding vehicles detected in
the previous frame. Reducing the time to process a frame
will make it easier to implement continuous tracking, allow-
ing us to distinguish between moving vehicles and parked
ones. As the processing capability of phones increases the
real-time performance of WalkSafe will also benefit. Finally,
we plan integrate activity classification that exploits the ac-
celerometer on the phone to automatically disable WalkSafe
when the user is not walking.

6. REFERENCES

[1] G. Bradski and A. Kaehler. Learning OpenCV.
O’Reilly Media, 2008.

[2] F. Bu and C.-Y. Chan. Pedestrian detection in transit
bus application: sensing technologies and safety
solutions. In Proc. of the IEEE Intelligent Vehicles
Symposium, pages 100 – 105, June 2005.

[3] Computational Vision Group at Caltech. Cars 2001
(rear), 2001. http://www.vision.caltech.edu/html-
files/archive.html.

[4] K. David and A. Flach. Car-2-x and pedestrian safety.
Vehicular Technology Magazine, IEEE, 5(1):70 –76,
March 2010.

1The current version of WalkSafe available on the An-
droid Market does not run as background service because
Android has currently little support for non GUI appli-
cations, such as WalkSafe that access the phone’s cam-
era; thus, the fully functional app can only correctly
run on a customized Android version. We are address-
ing this issue and plan to publish WalkSafe as a back-
ground service in the near future. The version of Walk-
Safe on the Market is almost fully functional in terms
demonstrating the core technology of real-time car detec-
tion using sensor data from the camera and accelerome-
ter, as discussed in this paper. It can be downloaded from
https://market.android.com/details?id=edu.dartmouth.cs.
walksafe

[5] T. Gandhi and M. Trivedi. Pedestrian protection
systems: Issues, survey, and challenges. IEEE
Transactions on Intelligent Transportation Systems,
8(3):413 –430, September 2007.

[6] D. Gavrila. Sensor-based pedestrian protection. IEEE
Intelligent Systems, 16(6):77 – 81, 2001.

[7] Governors Highway Safety Association. Pedestrian
traffic fatalities by state: 2010 preliminary data,
http://www.ghsa.org, 2010.

[8] J. Hatfield and S. Murphy. The effects of mobile phone
use on pedestrian crossing behaviour at signalised and
unsignalised intersections. Accident Analysis &
Prevention, 39(1):197 – 205, 2007.

[9] N. Lane, E. Miluzzo, H. Lu, D. Peebles,
T. Choudhury, and A. Campbell. A survey of mobile
phone sensing. Communications Magazine, IEEE,
48(9):140–150, 2010.

[10] J. Nasar, P. Hecht, and R. Wener. Mobile telephones,
distracted attention, and pedestrian safety. Accident
Analysis & Prevention, 40(1):69 – 75, 2008.

[11] National Highway Traffic Safety Administration.
Traffic safety facts 2009. Washington, DC, 2010.

[12] M. B. Neider, J. S. McCarley, J. A. Crowell,
H. Kaczmarski, and A. F. Kramer. Pedestrians,
vehicles, and cell phones. Accident Analysis &
Prevention, 42(2):589 – 594, 2010.

[13] Oki Electric Industry. Oki succeeds in trial production
of world’s first “safety mobile phone” to improve
pedestrian safety, May 2007.
http://www.oki.com/en/press/2007/z07023e.html.

[14] E. Ophir, C. Nass, and A. D. Wagner. Cognitive
control in media multitaskers. Proc. of the National
Academy of Sciences, 106(37):15584–15587, 2009.

[15] C. Papageorgiou and T. Poggio. A trainable object
detection system: Car detection in static images.
Technical Report 1673, October 1999. (CBCL Memo
180).

[16] S. Sivaraman and M. Trivedi. A general active-learning
framework for on-road vehicle recognition and
tracking. IEEE Transactions on Intelligent
Transportation Systems, 11(2):267 –276, June 2010.

[17] S. Smaldone, C. Tonde, V. K. Ananthanarayanan,
A. Elgammal, and L. Iftode. The cyber-physical bike:
A step towards safer green transportation. In
HotMobile ’11: Proc. of the 12th Workshop on Mobile
Computing Systems and Applications, March 2011.

[18] Z. Sun, G. Bebis, and R. Miller. Monocular precrash
vehicle detection: features and classifiers. IEEE
Transactions on Image Processing, 15(7):2019 –2034,
July 2006.

[19] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 1:511, 2001.

