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1. Introduction  
 
Board games, which could be as simple as Tic-Tac-Toe, are where human wisdom has shined 
since a long time ago and are what human intelligence is trying to implement for machine 
intelligence for decades. Many of machine learning techniques have been explored, exploited, 
developed and argued extensively as researchers work on these canonical problems.  
 
Perhaps, “minimax search” is seemingly the most successful one among many for it and its 
effective variations balance the searching efficiency and computational complexity, not to mention 
the glory of “Deep Blue” playing against Chess Master Kasparov. However, in common sense, 
minimax search is nothing but an enforced version of brute force search while it has a weak ability 
of automatically evaluating the board situation (or we call “state”). This makes it trivial by hand 
coding initially and also, sometimes, impossible to be applied. 
 
Researchers had been intensively interested in finding a method of evaluation the board state in 
the last century and maybe still today. In early 1990’s, Sutton and Barto [1] systematically 
developed an unsupervised learning method-reinforcement learning; Watkins [2] proposed an 
important online implementation called Q-learning and proved its convergence, making the online 
technique work powerfully. If applied to games, reinforcement learning only needs the values of 
final states, which are easy to determine. For example, Tesauro utilized this method and succeeded 
in the solution of Gammon game [3]. 
 
Tic-tac-toe is traditionally a popular board game among kids: in its 3 by 3 board two persons 
alternately place one piece at a time; one wins when he or she has three pieces of his or her own in 
a row, whether horizontally, vertically, or diagonally. This work will employ reinforcement 
learning methods in its version of “afterstate” evaluation to implement simple board games such 
as Tic-Tac-Toe. 
 
2. Methods: Reinforcement Learning 
 
(1) Representation of the board state 

 
Figure 1 Winning situation for player "X" in Tic-tac-toe [4] 

 



Multi-dimensional vectors are used to describe the state space of each situation. For example, as 
shown in Figure 1, we give it the following representing vector 
 

s = [1, 2, 0, 2, 1, 0, 2, 1, 0]T                                    (1) 
 
where 1 indicates player "X" places a piece in this location, 2 indicates player "O" places a piece 
in this location, and 0 indicates this is an empty location. 
 
(2) Reinforcement learning for evaluation of afterstates 
Reinforcement learning (RL) is an unsupervised machine learning technique, which "learns" from 
the interactive environment's rewards to approximate values of state-action pairs and maximize 
the long-term sum of rewards. It has four essential components: state set S, action set A, rewards 
from the environment R, and values for state-action pairs V. 
 
A little different from the standard RL and specifically for board game applications, we combine 
state set S and action set A into a new "afterstate" set S. The reasons are: (1) in board games, a 
state after a move is deterministic; (2) Different "prestate" and action may come to the same 
"afterstate", thus possibly holding redundancy in many state-action pairs.  
 
We will use temporal-difference method, one of reinforcement learning techniques, to 
approximate state values by updating values of visited states after each training game. 
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where s is the current state, s' is the next state, V(s) is a state value for state s, and α is the learning 
rate, varying within (0, 1]. 
 
The state value would converge if following conditions are met [2]. 
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During learning phase, the policy selection is usually made based on the Boltzman’s distribution 
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where ns is the number of afterstates, and τ is the “temperature”. High τ makes the probability 
distribution virtually uniform, while low τ makes the policy nearly a greedy selection. This 
property will result in robots making role decisions elegantly from “soft” to “hard” (from random 
to Q-value dependently selective). 



And the final game policy π* could be obtained by 
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(3) Training dataset 
For simple games such as Tic-tac-toe, two compute agents will play against each other and learn 
game strategies from simulated games. This training method is called self-play, which has several 
advantages such as that an agent has general strategies rather than those associated with a fixed 
opponent [5]. Most of this project would stick to the generation of self-play training and the result 
shows its good performance though it might have a slow convergence problem in the early 
training stage. 
 
3. Implementations 
 
(1) Programming 
The project is implemented in C++ by modifying a program posted online [6]. The original just 
implemented a basic function of two human playing alternatively but no AI algorithm at all in the 
program. We modified the code to make the game played by the computer for one step and by 
human for another and also embedded the reinforcement learning algorithm for AI core before the 
game starts. 
 
(2) Two phases in the game framework 
The algorithm's framework consists of learning phase and game-play phase. Below is the brief 
description of the algorithm's structure: 
 
a. In each episode of the learning phase 
1) Observe a current board state s; 
2) Make a next move based on the distribution of all available V(s') of next moves; 
3) Record s' in a sequence; 
4) If the game finishes, it updates the values of the visited states in the sequence and starts over 
again; otherwise, go to 1). 
 
b. The game-play phase makes a "greedy" decision based on the learned state values. Every time 
the computer is making next move, 
1) Observe a current board state s; 
2) Make a next move based on the distribution of all available V(s') of next moves; 
3) Until the game is over and it starts over again; otherwise, go to 1). 
 
It should be noted that these online afterward learning may not be included in Step 3) of the 
game-play phase as long as the game strategies are considered to be solid. 
 
(3) Implementations of Tic-tac-toe and Four-in-a-row 
We have implemented the games of Tic-Tac-Toe and Four-in-a-row using the proposed methods. 



Basically, we need a matrix (3x3 or 4x4) to store information of the board state and use function 
display()to show it on the screen. We use function move() to make a next move. It is noted 
that the number of possible states for Tic-Tac-Toe is 19683 while the number for Four-in-a-row is 
43046721. The latter is more complicated than the former considering its possible situations. 
Therefore, it needs more self-play games in the learning phase, as many as 100 millions, which 
takes several hours to train. However, the computer’s performance in Four-in-a-row still can not 
reach that in Tic-Tac-Toe partially because the game is apt to get a draw unless either side makes a 
big mistake and the other side seizes it. So, we stored the trained state values in file named 
“qvalue.bin”.  
 
*Please note the program files for Tic-Tac-Toe are included in the folder “Tic-Tac-Toe”, and 
those for Four-in-a-row are included in the folder “4inarow”. They should be run OK in Visual 
Studio 2008 environment. Since we used the absolute file address in the code for “4inarow”, the 
program file of Four-in-a-row should be put directly under C drive before it can run. So, please 
run C++ projects directly under C drive. 
 
4. Results and Discussions 
 
(1) Game play of Tic-Tac-Toe and Four-in-a-row 
Typical game plays of Tic-Tac-Toe and Four-in-a-row are shown in Figure 2 and Figure 3. We can 
find that human can not beat the computer if the computer goes first.  
 
(2) Numerical results and some discussions 
We use the numerical results of Tic-Tac-Toe to provide an extensive analysis of the convergence 
for the adopted methods. We used 100,000 self-play games to train the computer to play 
Tic-Tac-Toe (approximately one minute) and use one billion self-play games to train the computer 
to play 4-in-a-row (several hours).  
 
Player X represents the computer and Player O represents human. Player X goes first. We will 
show the convergence of "afterstate" value using the following example. 
 
Which position is chosen to be the opening position is very crucial for Tic-Tac-Toe game. It is 
easily verified that the choice of central position results in "no-loss" guarantee. Therefore, the 
computer should be able to find the great value of opening in the center.  
 
Figure 4 shows the convergence of the values of nine opening positions including the center.  
 



 
Figure 2 Game play of Tic-Tac-Toe 

 



 
Figure 3 Game play of Four-in-a-row 

 
 
 



 
Figure 4 Convergence of nine opening positions: the central position is the best choice 

 
Assume that the computer chooses the center for opening and the game has reached state S1, as 
shown in Figure 5. Now it is again player X's turn. Obviously, chance of winning the game is 
greater if player "X" takes the position of 1, 3, 7 or 9 (Figure 5). 
 

 

Figure 5 Board state S1 
 
We assume that the computer has been trained enough to choose an action/position leading to a 
higher state value as, now, Player X chooses position 1 shown in Figure 6. 
 

 

Figure 6 Board state S2 after Player "X" takes position 1 
The plot below shows the afterstate value of state S1 over learning time (Figure 7). The value 
converges to approximately one. It explains that, after enough time of learning, Player "X" knows 
winning from state S2 is almost guaranteed. 
 



 
Figure 7 Afterstate values of state S1 vs. learning time 

 
Then Player O chooses position 9 to avoid losing the game (Figure 8). In the next step, a 
well-learned player X (computer) would choose position 3 (Figure 9). 
 

 

Figure 8 Board state S3 after Player "O" takes position 9 
 

 

Figure 9 Board state S4 
 

Up to this point, if it learns in sufficient time, Player X, the computer, will win the game no matter 
what position Player O takes. It is explained in more details that: if Player O chooses position 2, 
Player X will takes position 7 to win the game; if Player O chooses position 7, Player X will takes 



position 2 to win the game; if Player O chooses position 4 or position 8, Player "X" will win the 
game by either taking position 2 or position 7. Anyway, the computer finally wins. 
 
Figure 10 shows how afterstate values of S3 converge over time. We notice that the true value of 
the crucial state does not quickly converge to the real value (i.e. one) due to the insufficient 
learning time. However, it will not prevent the algorithm make a right decision in game-play 
because the value of the crucial state stands out compared to those of others'. 
 

 
Figure 10 Afterstate values of state S3 vs. learning time 

 
In conclusion, the computer has learned the correct game policies through the training methods in 
order to win, or, at least, not to lose. 
 
5. Conclusions 
The experiments of two games implemented in C++ demonstrate success of the applications of 
reinforcement learning to in the board games.  
 
As we know, reinforcement leaning requires little prior knowledge except the evaluation of final 
states to generate rewards, which this method can forward as the evaluation information to earlier 
game stages. Since, with sufficient learning time, the algorithm would guarantee the convergence 
of state values the computer can use these values to determine its moves in the game.  
 
Self-play training strategy makes the machine learning method look magic. It means that the 
computer can learn “knowledge” from the games between the computer and a rival as identical as 
itself. The more it trains itself, the more knowledge it gets; the more it trains itself, the more 
sophisticated its game policies are. 
 
However, the significant issue of RL is the “curse of dimensionality”: as the board enlarges and 



the number of the states also increases, it needs a lot of self-play training. One possible solution 
would be to use real data of game between human, with which the game policies are trained more 
on purpose rather than based on many random moves.  
 
Anyway, a well-trained computer via the proposed method of reinforcement learning in this case 
can play the games competently. 
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