A Distributed Credential Management System for SPKI-based Delegation Scenarios

Óscar Cánovas
<ocanovas@um.es>

University of Murcia (Spain)

1st Annual PKI Research Workshop
Overview

- Introduction
- Motivation
- Naming Management System
- Authorization Management System
- Some implementation details
- Conclusions and future work
Introduction

✓ Questions about identity have been (partially) solved by the X.509 standard, but we have to determine what the identities should be allowed to do

✓ Digital certificates can also contain information about authorization (in fact, about anything)
 ✓ Examples: SPKI/SDSI, X.509 Attribute Certificates, KeyNote

✓ There are several proposals making use of SPKI certificates to provide authorization services to different environments: CORBA, WWW, physical access control...
Most of those SPKI scenarios are based on delegation
- Resource controllers have small ACLs delegating access to some particular public keys (authorities)

Application-dependent approaches try to answer:
- How do I encode a certification request?
- How do I submit the certification request?
- How do the authorities specify and enforce the authorization policies? (i.e. who is able to obtain a particular authorization?)

In complex environments, simple command-line (and off-line) applications do not seem to be the right approach
Motivation (II)

- It is necessary to address the problems related to scalability and interoperability.

- **DCMS (Distributed Credential Management System)**
 - DCMS defines: requests, policies, and entities
 - DCMS is divided into:
 - NMS: SPKI ID Certificates
 - AMS: SPKI Attribute and Authorization Certificates
 - Entities exchange authorization information using the AMBAR Protocol (similar protocols are valid too)
 - Main goal of DCMS: to be application-independent
A particular scenario

- Physical access control based on RBAC and SPKI
- We use special devices named TICA
 - Located at the entrances of buildings
 - They can establish their access control options
 - Users make use of their smart cards
- TICAs delegate authorization management to particular authorization authorities by means of:
 - ACLs entries (propagation activated)
 - Authorization certificates (propagation activated)
A particular scenario (II)

- Delegation structure
 - TICAs create authorization certificates
 - AAs create attribute certificates (relationship Role-Permission)
 - NAs create role membership certificates (relationship User-Role)

- Authorization loop
A particular scenario (III)

Use of DCMS:
- Principals can request SPKI certificates to gain access
- Trusted service access points (SAP)
- DCMS provides an encoding for certification requests and authorization policies
- Requests and certificates are exchanged using AMBAR
Naming Management System (NMS)

- NMS is responsible for certification operations related to SPKI ID certificates

- This type of certificates can be used to:
 - link a name to a particular public key (principal)
 - define group membership

- NMS can be especially useful when authorization is based on groups of principals
 - NMS can be used by the principals in order to obtain an ID certificate for group G

- ID certificates are issued by naming authorities (NA)
NMS Entities

- Requestors:
 - They create certification requests
 - Additional certificates can be also attached to the requests

- Two types of requestors:
 - Demanding an ID certificate for a public key
 - Demanding an ID certificate for a name (subgroups)
NMS Entities

✓ Service Access Points (SAP):
 ✓ Requestors use SAPs to submit the certification requests
 ✓ Several advantages:
 ➢ Naming authorities can be protected
 ➢ They “know” the appropriate naming authorities
 ➢ Public terminals placed at buildings or departments
NMS Entities

✓ Naming Authorities (NA):
 ✓ NAs are controlled by authorization policies
 ✓ In DCMS, those policies are implemented using SPKI ACLs
 ✓ Use of certificate chain discovery methods
 - Input: request, additional certificates, ACL
 - Output: data used to generate the new certificate
NMS requests and ACL entries

NMS s-expressions:

- There is no need for a new syntax (we use the certificate struct.)
- Main differences:
 - N can be a (* prefix) form or a (* set) form
 - P can make reference to several principals (* set Q S T)
 - valid is making reference to the intended validity period
 - The request is signed by the requestor, not by the issuer
NMS requests and ACL entries

ACL entries (authorization policy):
- The tag specifies which entities can obtain ID certificates
- R makes reference to the valid certificate requestors
 - Requestors can be relying parties different from certificate subjects
- certificates can be requested during the period specified by valid

\[acl \\
 \begin{array}{l}
 \text{(entry)} \\
 \quad \text{(subject } R) \\
 \quad \text{(propagate)} \\
 \quad \text{(tag ...)} \\
 \quad \text{(valid ...)} \\
 \end{array} \]
A Distributed Credential Management System for SPKI-based Delegation Scenarios

Oscar Canovas
PKI RW 2002

NMS example

(sequence
 (tag
 (cert-request
 (issuer
 (name morpheus-pk Nebuchadnezzar))
 (subject neo-pk)
)
)
 (signature ...)
)

Request and additional certificate

(cert
 (issuer
 (name morpheus-pk Nebuchadnezzar))
 (subject trinity-pk)
)

ACL

(acl
 (entry
 (subject
 (name morpheus-pk Nebuchadnezzar))
 (tag
 (cert-request
 (issuer
 (name morpheus-pk Nebuchadnezzar))
 (subject
 (* set neo-pk trinity-pk switch-pk))
)
)
)
)

ACL
Authorization Management System

✓ AMS is responsible for the certification operations related to SPKI Attribute and Authorization certificates

✓ NMS and AMS are based on similar entities:
 ✓ Requestors and SAPs are also part of AMS
 ✓ NAs are replaced by AAs (Authorization Authorities)

✓ S-expressions for requests and ACLs are similar to those defined for NMS (including propagation and tags)

✓ There are also two types of requestors:
 ✓ Requestors of authorization certificates
 ✓ Requestors of attribute certificates
AMS. Attribute Certificates

✓ Attribute Certificates: Authorization → Name
 ✓ The name might make reference to a group name

✓ “Who must the requestor of an attribute certificate be?”
 ✓ It depends on the authorization policies (no inherent policies)

✓ Valid requestors range from group members to specific role managers

✓ Group management can be greatly simplified using specific administrators (role managers)
AMS. Role Managers

- We need to encode statements like:
 - Psion-AA authorizes the Role Manager RM to request attribute certificates granting the set of permissions \texttt{tag-A} for group \texttt{Nebuchadnezzar} defined by Morpheus

```
(acl
  (entry
    (subject RM-pk)
    (tag
      (cert-request
        (issuer psion-pk)
        (subject (name morpheus-pk Nebuchadnezzar))
        (tag tag-A)
      )
    )
  )
)
```
A Distributed Credential Management System for SPKI-based Delegation Scenarios

AMS. Role Managers

Request

ACL
DCMS. Implementation

- AMBAR was implemented using Intel CDSA 3.14

- DCMS is being implemented also using CDSA
 - Graphical User Interface (QT libraries)
 - Red Hat Linux 7.1

- Several applications:
 - DCMS tag constructors
 - ACL Management
 - Authorities
 - Service Access Points
A Distributed Credential Management System for SPKI-based Delegation Scenarios

DCMS. Implementation
Conclusions and Future Work

- DCMS provides:
 - Certification requests (s-expressions)
 - Authorization policies (SPKI ACLs)
 - Architectural elements

- Mechanisms for scalability:
 - We keep inherent policies to minimum
 - It is possible to specify sets of certificates (issued on demand)
 - We make a clear distinction between requestors and subjects

- Future work:
 - Certificate Storage and Certificate Revocation