Authorization Policy in a PKI Environment

Mary Thompson
Srilekha Mudumbai
Abdelilah Essiari
Willie Chin

Lawrence Berkeley National Laboratory
Distributed Environments

- Widely distributed computing environments, collaborative research environments
- Resources, stakeholders and users are all distributed
- Spanning organizational as well as geographical boundaries, e.g., DOE Collaboratories, Grids, Portals
- Requires a flexible and secure way for stakeholders to remotely specify access control for their resources
- Requires a flexible but secure way to identify users and their attributes
Public Key Infrastructure

- Provides a uniform way for different organizations to identify people or other entities through X.509 identity certificates containing public keys.

- These certificates and keys can be used though secured connections (SSL) to positively establish the identity of the entities on the connection.

- The keys can be used to provide digital signatures on documents. The authors and contents of signed documents can be verified at the time of use.

- Mature Certificate Authority software packages are available and widely deployed. Entrust, Verisign, iPlanet RSA Keon and OpenSSL.
Goals for an Authorization system

- Use Public Key Infrastructure standards to identify users and create digitally signed certificates
- Use existing SSL protocol to authenticate users
- Access based on policy statements made by stakeholders
- Handle multiple independent stakeholders for a single resource
- Emphasize usability
Authorization Models

- **Access Control**
 - User is authenticated by some means
 - The resource gatekeeper checks the user against a policy to determine access
 - Application needs to pass only an identity token to resource

- **Capability**
 - User goes to a policy manager and gets an unforgeable token (capability) that grants the holder rights to some resource
 - The resource gatekeeper verifies the capability and allows the actions specified in the capability
 - Application must get the capability token (short-lived)
 - Application must pass identity token and capability token to the resource
 - Facilitates delegation of rights
Akenti Authorization

- Minimal local Policy certificates (self-signed)
 - Who to trust, where to look for certificates.
- Based on the following digitally signed certificates:
 - X.509 certificates for user identity and authentication
 - UseCondition certificates containing stakeholder policy
 - Attribute certificates in which a trusted party attests that a user possesses some attribute, e.g. training, group membership
- Can be called from any application that has an authenticated user’s identity certificate and a unique resource name, to return that user’s privileges with respect to the resource.
Emphasis on usability

- Usability is critical:
 - Policy and attributes must be easy for stakeholders to generate and read
 - Minimal change to applications seeking use of resources
 - Simple API for resource gateway to check access
- Akenti certificate generators provide a user friendly interface for stakeholders to specify the use constraints for their resources.
- User or stakeholder can see a static view of the policy that controls the use of a resource.
- Akenti Monitor applet provides a Web interface for a user to check his access to a resource to see why it succeeded or failed.
Certificate Management

- Users need to generate signed certificates and store them in Web accessible places or be able to upload them securely to the resource gateway.
- Akenti needs to know where to search for certificates
- Once a certificate is found, Akenti will cache it for a time not to exceed that specified by the stakeholder.
- When an access decision is made, a capability certificate containing the rights is cached and returned to the requester.
Akenti Server Architecture

Client → DN → Resource Server → Akenti → Log Server → Internet

- Identity (X509) certificate on behalf of the user.
- Use condition or attribute certificates
- Identity certificates

Certificate Servers:
- LDAP
- Database Server
- Web Server
- File Servers

Cache Manager

Fetch Certificate
Akenti Certificate Management

Stakeholders

Certificate Generator

Certificate Servers

Search based on resource name, user DN, and attribute
Required Infrastructure

- Certificate Authority to issue identity certificates (required)
 - OpenSSL provides simple CA for testing
 - iPlanet CA - moderate cost and effort
 - Enterprise solutions - Entrust, Verisign, ...

- Method to check for revocation of identity certificates (required)
 - LDAP server - free from Univ. of Mich.. Or comes with iPlanet CA
 - Certificate Revocation lists - supported by most CA’s
 - OCSP - not yet widely implemented

- Network accessible ways for stakeholders to store their certificates (optional)
 - Web servers
 - LDAP servers
Using Akenti for Authorization

- C++ library that resource gatekeeper can link with
- Insecure server using TCP and returning rights as strings
 - Use with thin client interface on the same machine
- Secure server using SSL and returning signed capability certificates containing the rights
- As an authorization module with the SSL-enabled Apache Web server
Mod-Akenti

- The SSL-enabled Apache Web server can be configured to require Client-side X.509 certificates.
- Replaces mod-authorization
- Calls out to Akenti with the user's identity
- Uses Akenti policy certificates to make the access decision – allows policy to be set remotely
- Allows the same access policy to be used for Web accessed resources as other resources
Vulnerabilities

- Primarily denial of service.
- Distributed certificates might not be available when needed.
- Independent stakeholders may create a policy that is inconsistent with what they intend. Easy to deny all access.
Attribute Certificates

- **IETF PKIX Attribute Certificates**
 - ASN.1 certificate – holder, attributes, issuer
 - Attribute – type-value pair
 - Some standard types: group, access identity, role, clearance, audit identity, charging identity
 - X.509 identities identified by CA and serial number
 - Optional targeting information

- **SAML (Security Assertion Markup Language) OASIS**
 - XML signed certificate asserting that a principal has certain attributes
 - One of a set of XML certificates containing assertions, authentication, authorization decision
 - `<Audience Restriction Condition>`
KeyNote Trust Management

- Common language for policies and credentials (ASCII Keyword-value)
- Uses opaque strings or cryptographic identities – separates secure naming from authorization.
- Policy assertions are defined for a resource. Can be signed and thus set remotely
- Requestor provides an identity and credential(s)
- Compliance checker checks the access
- M Blaze, J. Feigenbaum, J. Ioannidis, A. Keromytis
Shibboleth

- Internet2 Project
- Users have a credential that is a handle back to their home institutions
- Resource providers ask the home institution for the user’s attributes. E.g. student, facility
- Need inter-domain trust and common vocabulary
- Users can get access to resources while remaining anonymous to the resource provider.
CAS Community Authorization Server

- Globus Project
- Resources grant bulk access rights to communities of users
- A CAS controls fine-grained access for community members
- CAS issues a short-lived delegated credential containing the users rights (X.509 certificate)
- Users connect to the resource with the CAS delegated credential via GSI/SSL.
- More scalable than current Globus grid-map-file
Experience

- Akenti enabled Apache Web Server has been used at LBNL and Sandia for the Diesel Combustion Collaboratory.
 - Controlling Akenti code distribution, secure data/image repository, ORNL electronic notebooks, PRE accessed remote job executions
- Used with CORBA applications
- Used by the National Fusion Collaboratory
 - Access to remote code execution started by the Globus job-manager
- Easy to for applications to use if connections are made over SSL
- Runs on Solaris and RedHat Linux
Trust Models

- Resource domain establishes one on one trust with all its users
 - Difficult for users, doesn’t scale
- Different domains establish mutual trust to allow users of one domain to access resources in another
 - Cross-realm Kerberos trust
 - Shibboleth
- Delegated trust – Resource trusts a few entities but allows them to delegate their rights to others
 - CAS model
- Resource domain would like to limit degree of trust
 - Limit actions
 - Audit actions
 - Revoke trust in a timely fashion
Future Directions

- Further development of Use Conditions that use dynamic variables such as time-of-day, originating IP address, state variables.

- Recognize restricted delegation credentials
 - Possibly use delegation credentials restricted by the delegator to a specified role

- Use the XML signature implementation to sign Akenti certificates – XMLSec Library, Aleksey Sanin

- Implement Akenti as a Web service acting as a trusted third party.
 - Use signed SOAP messages or SOAP over SSL?

- Consider using new SAML, WS-security standards
Conclusions

- Leverages off the increasing use of X.509 identity certificates.
- Akenti/SSL overhead acceptable for medium grained access checking. E.g., starting an operation, making a authenticated connection.
- Ease of use for stakeholders must be emphasized.
- Transparency for users and applications is important