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Abstract

Crowdsourcing has become a popular paradigm for labeling large datasets. How-
ever, it has given rise to the computational task of aggregating the crowdsourced
labels provided by a collection of unreliable annotators. We approach this prob-
lem by transforming it into a standard inference problem in graphical models,
and applying approximate variational methods, including belief propagation (BP)
and mean Þeld (MF). We show that our BP algorithm generalizes both major-
ity voting and a recent algorithm by Karger et al. [1], while our MF method is
closely related to a commonly used EM algorithm. In both cases, we Þnd that the
performance of the algorithms critically depends on the choice of a prior distribu-
tion on the workersÕ reliability; by choosing the prior properly, both BP and MF
(and EM) perform surprisingly well on both simulated and real-world datasets,
competitive with state-of-the-art algorithms based on more complicated modeling
assumptions.

1 Introduction

Crowdsourcing has become an efÞcient and inexpensive way to label large datasets in many ap-
plication domains, including computer vision and natural language processing. Resources such as
Amazon Mechanical Turk provide markets where the requestors can post tasks known as HITs (Hu-
man Intelligence Tasks) and collect large numbers of labels from hundreds of online workers (or
annotators) in a short time and with relatively low cost.

A major problem of crowdsoucing is that the qualities of the labels are often unreliable and diverse,
mainly since it is difÞcult to monitor the performance of a large collection of workers. In the ex-
treme, there may exist ÒspammersÓ, who submit random answers rather than good-faith attempts to
label, or even ÒadversariesÓ, who may deliberately give wrong answers, either due to malice or to a
misinterpretation of the task. A common strategy to improve reliability is to add redundancy, such
as assigning each task to multiple workers, and aggregate the workersÕ labels. The baselinemajority
votingheuristic, which simply assigns the label returned by the majority of the workers, is known to
be error-prone, because it counts all the annotators equally. In general, efÞcient aggregation methods
should take into account the differences in the workersÕ labeling abilities.

A principled way to address this problem is to build generative probabilistic models for the annota-
tion processes, and assign labels using standard inference tools. A line of early work builds simple
models characterizing the annotators using confusion matrices, and infers the labels using the EM
algorithm [e.g.,2, 3, 4]. Recently however, signiÞcant efforts have been made to improve perfor-
mance by incorporating more complicated generative models [e.g.,5, 6, 7, 8, 9]. However, EM is
widely criticized for having local optimality issues [e.g.,1]; this raises a potential tradeoff between
more dedicatedexploitationof the simpler models, either by introducing new inference tools or Þx-
ing local optimality issues in EM, and theexplorationof larger model space, usually with increased
computational cost and possibly the risk of over-Þtting.

On the other hand, variational approaches, including the popularbelief propagation(BP) andmean
Þeld(MF) methods, provide powerful inference tools for probabilistic graphical models [10, 11].
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These algorithms are efÞcient, and often have provably strong local optimality properties or even
globally optimal guarantees [e.g.,12]. To our knowledge, no previous attempts have taken advantage
of variational tools for the crowdsourcing problem. A closely related approach is a message-passing-
style algorithm in Karger et al. [1] (referred to as KOS in the sequel), which the authors asserted
to be motivated by but not equivalent to standard belief propagation. KOS was shown to have
strong theoretical guarantees on (locally tree-like) random assignment graphs, but does not have an
obvious interpretation as a standard inference method on a generative probabilistic model. As one
consequence, the lack of a generative model interpretation makes it difÞcult to either extend KOS to
more complicated models or adapt it to improve its performance on real-world datasets.

Contribution. In this work, we approach the crowdsourcing problems using tools and concepts from
variational inference methods for graphical models. First, we present a belief-propagation-based
method, which we show includes both KOS and majority voting as special cases, in which partic-
ular prior distributions are assumed on the workersÕ abilities. However, unlike KOS our method is
derived using generative principles, and can be easily extended to more complicated models. On
the other side, we propose a mean Þeld method which we show closely connects to, and provides
an important perspective on, EM. For both our BP and MF algorithms (and consequently for EM
as well), we show that performance can be signiÞcantly improved by using more carefully chosen
priors. We test our algorithms on both simulated and real-world datasets, and show that both BP
and MF (or EM), with carefully chosen priors, is able to perform competitively with state-of-the-art
algorithms that are based on far more complicated models.

2 Background

Assume there areM workers andN tasks with binary labels{± 1} . Denote byzi ! {± 1} , i ! [N ]
the true label of taski , where[N ] represents the set of ÞrstN integers;Nj is the set of tasks labeled
by workerj , andM i the workers labeling taski . The task assignment scheme can be represented by
a bipartite graph where an edge(i, j ) denotes that the taski is labeled by the workerj . The labeling
results form a matrixL ! { 0, ± 1} N ! M , whereL ij ! {± 1} denotes the answer if workerj labels
taski , andL ij = 0 if otherwise. The goal is to Þnd an optimal estimatoröz of the true labelsz given
the observationL , minimizing the average bit-wise error rate1N

!
i " [N ] prob[özi "= zi ].

We assume that all the tasks have the same level of difÞculty, but that workers may have different
predictive abilities. Following Karger et al. [1], we initially assume that the ability of workerj is
measured by a single parameterqj , which corresponds to their probability of correctness:qj =
prob[L ij = zi ]. More generally, the workersÕ abilities can be measured by a confusion matrix, to
which our method can be easily extended (see Section3.1.2).

The values ofqj reßect the abilities of the workers:qj # 1 correspond toexpertsthat provide
reliable answers;qj # 1/ 2 denotespammersthat give random labels independent of the questions;
andqj < 1/ 2 denoteadversariesthat tend to provide opposite answers. Conceptually, the spammers
and adversaries should be treated differently: the spammers provide no useful information and only
degrade the results, while the adversaries actually carry useful information, and can be exploited to
improve the results if the algorithm can identify them and ßip their labels. We assume theqj of all
workers are drawn independently from a common priorp(qj |! ), where! are the hyper-parameters.
To avoid the cases when adversaries and/or spammers overwhelm the system, it is reasonable to
require thatE[qj |! ] > 1/ 2. Typical priors include the Beta priorp(qj |! ) $ q! # 1

j (1 % qj )" # 1 and
discrete priors, e.g., thespammer-hammermodel, whereqj # 0.5 or qj # 1 with equal probability.

Majority Voting. The majority voting (MV) method aggregates the workersÕ labels by

özmajority
i = sign[

"

j "M i

L ij ].

The limitation of MV is that it weights all the workers equally, and performs poorly when the
qualities of the workers are diverse, especially when adversarial workers exist.

Expectation Maximization. Weighting the workers properly requires estimating their abilitiesqj ,
usually via a maximuma posterioriestimator,öq = arg max log p(q|L, ! ) = log

!
z p(q, z|L, ! ).

This is commonly solved using an EM algorithm treating thez as hidden variables, [e.g.,2, 3, 4].
Assuming aBeta(", # ) prior onqj , EM is formulated as
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E-step: µi (zi ) $
#

j "M i

öq#ij
j (1 % öqj )1# #ij , M-step: öqj =

!
i "N j

µi (L ij ) + " %1

|N j | + " + # %2
, (1)

where$ij = I [L ij = zi ]; theözi is then estimated viaözi = arg maxzi
µi (zi ). Many approaches have

been proposed to improve this simple EM approach, mainly by building more complicated models.

Message Passing.A rather different algorithm in a message-passing style is proposed by Karger,
Oh and Shah [1] (referred to as KOS in the sequel). Letxi $ j andyj $ i be real-valuedmessages
from tasks to workers and from workers to tasks, respectively. Initializingy0

j $ i randomly from
Normal(1, 1) or deterministically byy0

j $ i = 1 , KOS updates the messages att-th iteration via

xt +1
i $ j =

"

j ! "M i \ j

L ij ! yt
j ! $ i , yt +1

j $ i =
"

i ! "N j \ i

L i ! j xt +1
i ! $ j , (2)

and the labels are estimated viaöst
i = sign[öxt

i ], whereöxt
i =

!
j "M i

L ij yt
j $ i . Note that the0th

iteration of KOS reduces to majority voting when initialized withy0
j $ i = 1 . KOS has surprisingly

nice theoretical properties on locally tree-like assignment graphs: its error rate is shown to scale
in the same manner as an oracle lower bound that assumes the trueqj are known. Unfortunately,
KOS is not derived using a generative model approach under either Bayesian or maximum likeli-
hood principles, and hence is difÞcult to extend to more general cases, such as more sophisticated
worker-error models (Section3.1.2) or other features and side information (see appendix). Given
that the assumptions made in Karger et al. [1] are restrictive in practice, it is unclear whether the
theoretical performance guarantees of KOS hold in real-world datasets. Additionally, an interest-
ing phase transition phenomenon was observed in Karger et al. [1] Ð the performance of KOS was
shown to degenerate, sometimes performing even worse than majority voting when the degrees of
the assignment graph (corresponding to the number of annotators per task) are small.

3 Crowdsourcing as Inference in a Graphical Model

We present our main framework in this section, transforming the labeling aggregation problem into
a standard inference problem on a graphical model, and proposing a set of efÞcient variational
methods, including a belief propagation method that includes KOS and majority voting as special
cases, and a mean Þeld method, which connects closely to the commonly used EM approach.

To start, the joint posterior distribution of workersÕ abilitiesq = { qj : j ! [M ]} and the true labels
z = { zi : i ! [N ]} conditional on the observed labelsL and hyper-parameter! is

p(z, q|L, ! ) $
#

j " [M ]

p(qj |! )
#

i "N j

p(L ij |zi , qj ) =
#

j " [M ]

p(qj |! )qcj
j (1 %qj )$j # cj ,

where%j = |N j | is the number of predictions made by workerj andcj :=
!

i "N j
I [L ij = zi ] is

the number ofj Õs predictions that are correct. By standard Bayesian arguments, one can show that
the optimal estimator ofz to minimize the bit-wise error rate is given by

özi = arg max
zi

p(zi |L, ! ) where p(zi |L, ! ) =
"

z[N ] \ i

$

q
p(z, q|L, ! )dq. (3)

Note that the EM algorithm (1), which maximizesrather thanmarginalizesqj , is not equivalent to
the Bayesian estimator (3), and hence is expected to be suboptimal in terms of error rate. However,
calculating the marginalp(zi |L, ! ) in (3) requires integrating allq and summing over all the otherzi ,
a challenging computational task. In this work we use belief propagation and mean Þeld to address
this problem, and highlight their connections to KOS, majority voting and EM.

3.1 Belief Propagation, KOS and Majority Voting

It is difÞcult to directly apply belief propagation to the joint distributionp(z, q|L, ! ), since it is
a mixed distribution of discrete variablesz and continuous variablesq. We bypass this issue by
directly integrating overqj , yielding a marginal posterior distribution over the discrete variablesz,

p(z|L, ! ) =
$

p(z, q|L, ! )dq =
#

j " [M ]

$ 1

0
p(qj |! )qcj

j (1 %qj )$j # cj dqj
def
=

#

j " [M ]

&j (zN j ), (4)
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where&j (zN j ) is the local factor contributed by workerj due to eliminatingqj , which couples
all the taskszN j labeled byj ; here we suppress the dependency of&j on ! andL for notational
simplicity. A key perspective is that we can treatp(z|L, ! ) as a discrete Markov random Þeld, and
re-interpret the bipartite assignment graph as afactor graph[13], with the tasks mapping to variable
nodes and workers to factor nodes. This interpretation motivates us to use a standard sum-product
belief propagation method, approximatingp(zi |L, ! ) with ÒbeliefsÓbi (zi ) using messagesmi $ j
andmj $ i between the variable nodes (tasks) and factor nodes (workers),

From tasks to workers: mt +1
i $ j (zi ) $

#

j ! "M i/j

mt
j ! $ i (zi ), (5)

From workers to tasks: mt +1
j $ i (zi ) $

"

zN j/i

&j (zN j )
#

i ! "N j/i

mt +1
i ! $ j (zi ! ), (6)

Calculating the beliefs: bt +1
i (zi ) $

#

j "M i

mt +1
j $ i (zi ). (7)

At the end of T iterations, the labels are estimated viaözt
i = arg maxzi

bt
i (zi ). One immediate

difference between BP (5)-(7) and the KOS message passing (2) is that the messages and beliefs in
(5)-(7) are probability tables onzi , i.e., mi $ j = [ mi $ j (+1) , mi $ j (%1)], while the messages in
(2) are real values. For binary labels, we will connect the two by rewriting the updates (5)-(7) in
terms of their (real-valued) log-odds, a standard transformation used in error-correcting codes.

The BP updates above appear computationally challenging, since step (6) requires eliminating a
high-order potential&(zN j ), costingO(2$j ) in general. However, note that&(zN j ) in (4) depends
onzN j only throughcj , so that (with a slight abuse of notation) it can be rewritten as&(cj , %j ). This
structure enables us to rewrite the BP updates in a more efÞcient form (in terms of the log-odds):

Theorem 3.1.

Let öxi = log
bi (+1)
bi (%1)

, xi $ j = log
mi $ j (+1)
mi $ j (%1)

, and yj $ i = L ij log
mj $ i (+1)
mi $ j (%1)

.

Then, sum-product BP(5)-(7) can be expressed as

xt +1
i $ j =

"

j ! "M i \ j

L ij yt
j ! $ i , yt +1

j $ i = log
! $j # 1

k=0 &(k + 1 , %j ) et +1
k! $j # 1

k=0 &(k, %j ) et +1
k

, (8)

and öxt +1
i =

!
j "M i

L ij yt +1
i $ j , where the termsek for k = 0 , . . . , Nj % 1, are the

elementary symmetric polynomials in variables{ exp(L i ! j xi ! $ j )} i ! "N j \ i , that is, ek =!
s : |s|= k

%
i ! " s exp(L i ! j xi ! $ j ). In the end, the true labels are decoded asözt

i = sign[öxt
i ].

The termsek can be efÞciently calculated by divide & conquer and the fast Fourier transform in
O(%j (log %j )2) time (see appendix), making (8) much more efÞcient than (6) initially appears.

Similar to sum-product, one can also derive a max-product BP to Þnd the joint maximuma posteriori
conÞguration,öz = arg maxz p(z|L, ! ), which minimizes the block-wise error rateprob[&i : zi "=
özi ] instead of the bit-wise error rate. Max-product BP can be organized similarly to (8), with the
slightly lower computational cost ofO(%j log%j ); see appendix for details and Tarlow et al. [14]
for a general discussion on efÞcient max-product BP with structured high-order potentials. In this
work, we focus on sum-product since the bit-wise error rate is more commonly used in practice.

3.1.1 The Choice of Algorithmic Priors and connection to KOS and Majority Voting

Before further discussion, we should be careful to distinguish between the prior onqj used in our
algorithm (thealgorithmic prior) and, assuming the model is correct, the true distribution of theqj
in the data generating process (thedata prior); the algorithmic and data priors often do not match.
In this section, we discuss the form of&(cj , %j ) for different choices of algorithmic priors, and in
particular show that KOS and majority voting can be treated as special cases of our belief propaga-
tion (8) with the most ÒuninformativeÓ and most ÒinformativeÓ algorithmic priors, respectively. For
more general priors that may not yield a closed form for&(cj , %j ), one can calculate&(cj , %j ) by
numerical integration and store them in a(%+ 1) ' %table for later use, where%= max j " [M ] %j .
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Beta Priors. If p(qj |! ) $ q! # 1
j (1 %qj )" # 1, we have&(cj , %j ) $ B (" + cj , # + %j %cj ), where

B (á, á) is the Beta function. Note that&(cj , %j ) in this case equals (up to a constant) the likelihood
of a Beta-binomial distribution.

Discrete Priors. If p(qj |! ) has non-zero probability mass on only Þnite points, that is,prob(qj =
÷qk ) = pk , k ! [K ], where0 ( ÷qk ( 1, 0 ( pk ( 1 and

!
k pk = 1 , then we have&(cj , %j ) =!

k pk ÷qcj

k (1 % ÷qk )$j # cj . One can show thatlog&(cj , %j ) in this case is a log-sum-exp function.

Haldane Prior. The Haldane prior [15] is a special discrete prior that equals either0 or 1 with equal
probability, that is,prob[qj = 0] = prob[ qj = 1] = 1 / 2. One can show that in this case we have
&(0, %j ) = &(%j , %j ) = 1 and&(cj , %j ) = 0 otherwise.

Claim 3.2. The BP update in(8) with Haldane prior is equivalent to KOS update in(2).

Proof. Just substitute the&(cj , %j ) of Haldane prior shown above into the BP update (8).

The Haldane prior can also be treated as aBeta(', ' ) prior with ' ) 0+ , or equivalently an improper
prior p(qj ) $ q# 1

j (1 % qj )# 1, whose normalization constant is inÞnite. One can show that the
Haldane prior is equivalent to putting a ßat prior on the log-oddslog[qj / (1 % qj )]; also, it has
the largest variance (and hence is Òmost uninformativeÓ) among all the possible distributions ofqj .
Therefore, although appearing to be extremely dichotomous, it is well known in Bayesian statistics
as anuninformative priorof binomial distributions. Other choices of objective priors include the
uniform prior Beta(1, 1) and JefferyÕs priorBeta(1/ 2, 1/ 2) [16], but these do not yield the same
simple linear message passing form as the Haldane prior.

Unfortunately, the use of Haldane prior in our problem suffers an important symmetry breaking is-
sue: if the prior is symmetric, i.e.,p(qj |! ) = p(1 %qj |! ), the true marginal posterior distribution of
zj is also symmetric, i.e.,p(zj |L, ! ) = [1 / 2; 1/ 2], because jointly ßipping the sign of any conÞgu-
ration does not change its likelihood. This makes it impossible to break the ties when decodingzj .
Indeed, it is not hard to observe thatxi $ j = yj $ i = 0 (corresponding to symmetric probabilities)
is a Þxed point of the KOS update (2). The mechanism of KOS for breaking the symmetry seems to
rely solely on initializing to points that bias towards majority voting, and the hope that the symmetric
distribution is an unstable Þxed point. In experiments, we Þnd that the use of symmetric priors usu-
ally leads to degraded performance when the degree of the assignment graph is low, corresponding
to the phase transition phenomenon discussed in Karger et al. [1]. This suggests that it is beneÞcial
to use asymmetric priors withE[qj |! ] > 1/ 2, to incorporate the prior knowledge that the majority of
workers are non-adversarial. Interestingly, it turns out that majority voting uses such an asymmetric
prior, but unfortunately corresponding to another unrealistic extreme.

Deterministic Priors. A deterministic prior is a special discrete distribution that equals a single
point deterministically, i.e.,prob[qj = ÷q|! ] = 1 , where0 ( ÷q ( 1. One can show thatlog& in this
case is a linear function, that is,log&(cj , %j ) = cj logit(÷q) + const.

Claim 3.3. The BP update(8) with deterministic priors satisfying÷q > 1/ 2 terminates at the Þrst
iteration and Þnds the same solution as majority voting.

Proof. Just note thatlog&(cj , %j ) = cj logit(÷q) + const, andlogit(÷q) > 0 in this case.

The deterministic priors above have the opposite properties to the Haldane prior: they can be also
treated asBeta(", # ) priors, but with" ) + * and" > # ; these priors have thesmallestvariance
(equal to zero) among all the possibleqj priors.

In this work, we propose to use priors that balance between KOS and majority voting. One reason-
able choice isBeta(", 1) prior with " > 1 [17]. In experiments, we Þnd that a typical choice of
Beta(2, 1) performs surprisingly well even when it is far from the true prior.

3.1.2 The Two-Coin Models and Further Extensions

We previously assumed that workersÕ abilities are parametrized by a single parameterqj . This is
likely to be restrictive in practice, since the error rate may depend on the true label value: false
positive and false negative rates are often not equal. Here we consider the more general case, where
the ability of workerj is speciÞed by two parameters, thesensitivitiysj andspeciÞcityt j [2, 4],

sj = prob[ L ij = +1 |zi = +1] , t j = prob[ L ij = %1|zi = %1].
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A typical prior onsj andtj are two independent Beta distributions. One can show that&(zN j ) in
this case equals a product of two Beta functions, and depends onzN j only through two integers, the
true positive and true negative counts. An efÞcient BP algorithm similar to (8) can be derived for
the general case, by exploiting the special structure of&(zN j ). See the Appendix for details.

One may also try to derive a two-coin version of KOS, by assigning two independent Haldane priors
onsj andtj ; it turns out that the extended version is exactly the same as the standard KOS in (2). In
this sense, the Haldane prior is too restrictive for the more general case. Several further extensions
of the BP algorithm that are not obvious for KOS, for example the case when known features of the
tasks or other side information are available, are discussed in the appendix due to space limitations.

3.2 Mean Field Method and Connection of EM

We next present a mean Þeld method for computing the marginalp(zi |L, ! ) in (3), and show its
close connection to EM. In contrast to the derivation of BP, here we directly work on the mixed joint
posteriorp(z, q|L, ! ). Let us approximatep(z, q|L, ! ) with a fully factorized distributionb(z, q) =%

i " [N ] µi (zi )
%

j " [M ] ( j (qj ). The bestb(z, q) should minimize the KL divergence,

KL[ b(z, q) || p(z, q|L, ! )] = %Eb[logp(z, q|L, ! )] %
"

i " [N ]

H (µi ) %
"

j " [M ]

H (( j ).

whereEb[á] denotes the expectation w.r.t.b(z, q), andH (á) the entropy functional. Assuming the
algorithmic prior ofBeta(", # ), one crucial property of the KL objective in this case is that the
optimal { ( %

j (qj )} is guaranteed to be a Beta distribution as well. Using a block coordinate descent
method that alternatively optimizes{ µi (zi )} and{ ( j (qj )} , the mean Þeld (MF) update is

Updatingµi : µi (zi ) $
#

j "M i

a#ij
j b1# #ij

j , (9)

Updating( j : ( j (qj ) + Beta(
"

i "N j

µi (L ij ) + ",
"

i "N j

µi (%L ij ) + #), (10)

whereaj = exp( E%j [ln qj ]) andbj = exp( E%j [ln(1 %qj )]) . Theaj andbj can be exactly calculated
by noting thatE[ln x] = Digamma( " ) %Digamma(" + #) if x + Beta(", # ). One can also instead
calculate the Þrst-order approximation ofaj andbj : by Taylor expansion, one haveln(1 + x) # x;
taking x = ( qj % øqj )/ øqj , where øqj = E%j [qj ], and substituting it into the deÞnition ofaj andbj ,
one getaj # øqj andbj # 1 % øqj ; it gives an approximate MF (AMF) update,

Updatingµi : µi (zi ) $
#

j "M i

øq#ij
j (1 % øqj )1# #ij , Updating( j : øqj =

!
i "N j

µi (L ij ) + "

|N j | + " + #
. (11)

The update (11) differs from EM (1) only in replacing" %1 and#%1 with " and#, corresponding to
replacing the posterior mode of the Beta distribution with its posterior mean. This simple (perhaps
trivial) difference plays a role ofLaplacian smoothing, and provides insights for improving the
performance of EM. For example, note that theöqj in the M-step of EM could be updated to 0 or 1 if
" = 1 or # = 1 , and once this happens, theöqj is locked at its current value, causing EM to trapped
at a local maximum. Update (11) can preventøqj from becoming 0 or 1, avoiding the degenerate
case. One can of course interpret (11) as EM with prior parameters" & = " + 1 , and#& = # + 1 ;
under this interpretation, it is advisable to choose priors" &> 1 and#&> 1 (corresponding to a less
common or intuitive ÒinformativeÓ prior).

We should point out that it is widely known that EM can be interpreted as a coordinate descent on
variational objectives [18, 11]; our derivation differs in that we marginalize, instead of maximize,
overqj . Our Þrst-order approximation scheme is also similar to the method by Asuncion [19]. One
can also extend this derivation to two-coin models with independent Beta priors, yielding the EM
update in Dawid and Skene [2]. On the other hand, discrete priors do not seem to lead to interesting
algorithms in this case.

4 Experiments

In this section, we present numerical experiments on both simulated and real-world Amazon Me-
chanical Turk datasets. We implement majority voting (MV), KOS in (2), BP in (8), EM in (1) and
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Figure 1: The performance of the algorithms as the degrees of the assignment graph vary; the left
degree) denotes the number of workers per task, and the right degree%denotes the number of tasks
per worker. The true data prior isprob[qj = 0 .5] = prob[qj = 0 .9] = 1/ 2.
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Figure 2: The performance on data generated with differentqj priors on (9,9)-regular random graphs.
(a) Beta prior with Þxed !

! + " = 0 .6. (b) Beta prior with Þxed" + # = 1 . (c) Spammer-hammer
prior,prob[qj = 0 .5] = 1 %prob[qj = 0 .9] = p0, with varyingp0. (d) Adversary-spammer-hammer
prior, prob[qj = 0 .1] = p0, prob[qj = 0 .5] = prob[qj = 0 .9] = (1 %p0)/ 2 with varyingp0.

its variant AMF in (11). The exact MF (9)-(10) was implemented, but is not reported because its
performance is mostly similar to AMF (11) in terms of error rates. We initialize BP (including KOS)
with yj $ i = 1 and EM withµi (zi ) =

!
j "M i

I [L ij = zi ]/ |M i |, both of which reduce to major-
ity voting at the0-th iteration; for KOS, we also implemented another version that exactly follows
the setting of Karger et al. [1], which initializesyj $ i by Normal(1, 1) and terminates at the10-th
iteration; the best performance of the two versions was reported. For EM with algorithmic prior
Beta(", # ), we add a small constant (0.001) on" and# to avoid possible numerical NaN values.
We also implemented a max-product version of BP, but found it performed similarly to sum-product
BP in terms of error rates. We terminate all the iterative algorithms at a maximum of 100 iterations
or with 10# 6 message convergence tolerance. All results are averaged on 100 random trials.

Simulated Data. We generate simulated data by drawing the abilitiesqj from Beta priors or the
adversary-spammer-hammerpriors, that equals0.1, 0.5, or 0.9 with certain probabilities; the as-
signment graphs are randomly drawn from the set of(), %)-regular bipartite graphs with 1000 task
nodes using the conÞguration method [20]. For the simulated datasets, we also calculated the oracle
lower bound in Karger et al. [1] that assumes the trueqj areknown, as well as a BP equipped with
an algorithmic prior equal to the true prior used to generate the data, which sets a tighter (perhaps
approximate) ÒBayesian oracleÓ lower bound for all the algorithms thatdo not knowqj . We Þnd that
BP and AMF with a typical asymmetric priorBeta(2, 1) perform mostly as well as the ÒBayesian
oracleÓ bound, eliminating the necessity to search for more accurate algorithmic priors.

In Fig. 1, we show that the error rates of the algorithms generally decay exponentially w.r.t. the
degree) andlog(%) of the assignment graph on a spammer-hammer model. Perhaps surprisingly,
we Þnd that the BP, EM and AMF with the asymmetric algorithmic priorbeta(2, 1) scale similarly to
KOS, which has been theoretically shown to be order-optimal compared to the oracle lower bound.
On the other hand, BP with symmetric algorithmic priors, such as the Haldane priorBeta(0+ , 0+ ) of
KOS and the uniform priorBeta(1, 1), often result in degraded performance when the degrees of the
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Figure 3: The results on Amazon Mechanical Turk datasets. Averaged on 100 random subsamples.

assignment graphs are low, supporting our discussion in Section3.1.1. Indeed, BP with symmetric
algorithmic priors often fails to converge in the low-degree setting.

Fig. 2 shows the performance of the algorithms when varying the true priors of the data. We Þnd in
Fig. 2(b) and (d) that the performance of EM withBeta(2, 1) tends to degrade when the fraction of
adversaries increases, probably because theöqj is more likely to be incorrectly updated to and stuck
on0 or 1 in these cases; see the discussion in Section3.2. In all cases, we Þnd that BP and AMF (and
MF) perform mostly equally well, perhaps indicating both Bethe and mean-Þeld approximations are
reasonably good on the joint distributionp(z, q|L, ! ) in terms of error rates. Our implementation
of EM (on both simulated data and the real data below) seems to perform better than previously
reported results, probably due to our careful choice on the prior and initialization.

Real Data. We tested our methods on three publicly available Amazon Mechanical Turk datasets.
The symmetric assumption ofqj = sj = t j is likely to be violated in practice, especially on vision
datasets where a humanÕs perception decides on whether some object is present. Therefore we also
implemented the two-coin version of BP and AMF(EM) with the algorithmic priors ofsj andtj

taken as two independentBeta(2, 1) (referred to asBP-Beta2(2,1) and similar).

We Þrst tested on the bluebird dataset of Welinder et al. [6], including 108 tasks and 39 workers
on a fully connected bipartite assignment graph, where the workers are asked whether the presented
images contain Indigo Bunting or Blue GrosBeak. Fig.3(a) shows the performance when Þxed
numbers of annotators are subsampled for each task. On this dataset, all methods, including KOS,
BP and AMF(EM), work poorly under the symmetric assumption, while the two-coin versions of
BP and AMF(EM) are signiÞcantly better, achieving equivalent performance to the algorithm by
Welinder et al. [6] based on an advanced high dimensional model. This suggests that the symmetric
assumption is badly violated on this dataset, probably caused by the non-expert workers with high
sensitivities but low speciÞcities, having trouble identifying Indigo Bunting from Blue GrosBeak.

We then tested on two natural language processing datasets in [21], the rte dataset with 800 tasks and
164 workers, and the temp dataset with 462 tasks and 76 workers. As seen in Fig.3(b)-(c), both the
symmetric and the two-coin versions of BP and AMF(EM) performed equally well, all achieving
almost the same performance as the SpEM algorithm reported in [4]. The KOS algorithm does
surprisingly poorly, probably due to the assignment graphs not having locally tree-like structures.

5 Conclusion

We have presented a spectrum of inference algorithms, in particular a novel and efÞcient BP algo-
rithm, for crowdsourcing problems and clariÞed their connections to existing methods. Our explo-
ration provides new insights into the existing KOS, MV and EM algorithms, and more importantly,
for separating themodelingfactors andalgorithmicfactors in crowdsourcing problems, which pro-
vides guidance for both implementations of the current algorithms, and for designing even more
efÞcient algorithms in the future. Numerical experiments show that BP, EM and AMF, and exact
MF, when implemented carefully, all perform impressively in term of their error rate scaling. Further
directions include applying our methodology to more advanced models, e.g., incorporating variation
in task difÞculties, and theoretical analysis of the error rates of BP, EM and MF that matches the
empirical behavior in Fig.1.

Acknowledgements. Work supported in part by NSF IIS-1065618 and two Microsoft Research
Fellowships. We thank P. Welinder and S. Belongie for providing the data and code.
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This document contains derivations and other supplemental information for the NIPS 2012 submis-
sion, “Variational Inference for Crowdsourcing”.

A Derivation of the Belief Propagation Algorithm

A.1 Sum-product Belief Propagation

We derive the belief propagation algorithm (15) in Theorem 3.1.

Theorem 3.1.

Let x̂
i

= log

b
i

(+1)

b
i

(�1)

, x
i!j

= log

m
i!j

(+1)

m
i!j

(�1)

, and y
j!i

= L
ij

log

m
j!i

(+1)

m
i!j

(�1)

.

Then, sum-product BP (5)-(7) can be expressed as
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X

j
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). In the end, the true labels are decoded as ẑt
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= sign[x̂t

i

].

Proof. First, by update (5), we have
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Similar derivation applies to update (7). We just need to consider the update (6) in the following.

For a given z, we define N+
j\i[z] = {i0 2 N

j\i : zi0 = L
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0
j

}. Let A
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update (6) we have,
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Therefore, we have

yt+1
j !i = log

mt+1
j !i (+Lij )

mt+1
j !i (�Lij )

= log

P! j�1
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The proof is completed.

It remains a problem to calculate the elementary symmetric polynomials ek . Here we present a
divide and conquer algorithm with a running time of O(�j (log �j )

2
). Note that ek is the k-th coef-

ficient of polynomial
Q! j�1

i=0 (x + ex i
), where ex i

= exp(xi!j ). We divide the polynomial into a
product of two polynomials,

! j�1Y

i=0
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) =

� d �j
2 eY

i=0

(x+ ex i
)

 
·
� ! j�1Y

i=d �j
2 e

(x+ ex i
)

 
.

Since the merging step requires a polynomial multiplication, which is solved by fast Fourier trans-
formation with O(�j log �j ), by the master theorem, we get a total cost of O(�j (log �j )

2
).

A more straightforward algorithm can be derived via dynamic programming, but with a higher cost
of O(�2j ). Let e(k, n) be the k-th symmetric polynomial of the first n numbers of {xe

i }i 02Nj\i ; one
can calculate ek through the recursive formula e(k, n) = e(k, n� 1)exn

+ e(k, n).

A.2 Max-product Belief Propagation

Similarly to the sum-product BP that we focus on in the main text, one can derive an effi-
cient max-product belief propagation to find the joint maximum a posterior configuration, ẑ =

argmaxz p(z|L, ✓), which minimizes the block-wise error rate prob[9i : zi 6= ẑi ] instead of the bit-
wise error rate 1

N

P
i2[N ] prob[zi 6= ẑi ]. The max-product belief propagation update, in its general

form, is

From tasks to workers: mt+1
i!j (zi ) /

Y

j 02Mi/j

mt
j 0!i (zi ), (9)

From workers to taskers: mt+1
j !i (zi ) / max
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i 02Nj

mt+1
i 0!j (zi 0)

 
, (10)

Calculating the beliefs: bt+1
i (zi ) /

Y

j 2Mi

mt+1
j !i (zi ). (11)

Similarly to Theorem 3.1, max-product BP can be performed efficiently by exploiting the special
structure of the high order potential  (zNj ).
Theorem A.1.

Let x̂i = log

bi (+1)

bi (�1)

, xi!j = log

mi!j (+1)

mi!j (�1)

, and yj !i = Lij log

mj !i (+1)

mi!j (�1)

.

Then max-product BP (9)-(11) can be rewritten as

xt+1
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X

j 02Mi\j

Lij y
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and x̂t+1
i =

P
j 2Mi

Lij y
t+1
i!j , where vk = exp(

Pk
n=0 x[n ]) and x[n ] is the n-th largest number in

{Li 0 j xi 0!j }i 02Nj\i . In the end, the true labels are decoded as ẑt
i = sign[x̂t

i ].

The main cost of (12) is for sorting {Li 0 j xi 0!j }i 02Nj\i , requiring a running time of O(�j log �j );
this is slightly faster than sum-product BP, which requires O(�j (log �j )

2
). See Tarlow et al. [2010]

for a similar derivation and more general treatment of structured high-order potentials.
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B Extensions of Belief Propagation

Compared to KOS, our BP algorithm is derived using a principled Bayesian paradigm, and hence
can be easily extended to more general models and cases beyond the assumptions made in the paper.
In this section, we show in detail how to extend the BP algorithm to work on the two-coin worker-
error model, to estimate the hyperparameters of the algorithmic priors, and to incorporate additional
task features and other side information.

B.1 Extending to the Two-Coin Model

In the paper, we initially assumed that the sensitivities equals the specificities, i.e., q
j

= s
j

= t
j

.
Here we extend the BP algorithm to the more general case when s

j

and t
j

are defined separately.
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on zNj only through c11 and c22, the true positive and true negative counts. Similar to Theorem 3.1,
one can show that belief propagation (6) can be reduced to
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). The update for x
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and the decoding step remain the same as in
Theroem 3.1.

B.2 Learning the hyper-parameters via EM

The optimal choice of the algorithmic prior p(q
j

|✓) in BP (15) should match the true data prior.
One can adopt an empirical Bayesian approach to estimate the hyper-parameters ✓ from the data.
Here we present an EM algorithm for estimating the hyper-parameters ✓, that alternates between
performing the belief propagation (15) (E-step) and adjusting the parameters via maximizing the
expected marginal likelihood (M-step).

The EM algorithm, in its general form, is

E-step: Q(✓|✓old) = E
z

[log p(z|L, ✓)|✓old], M-step: ✓new = argmax

✓

Q(✓|✓old).

The E-step in our case is performed by running the belief propagation algorithm. First, we approx-
imate the posterior distribution p(zNj |L, ✓old) with belief bold

j

(zNj ) on the factor nodes, defined
by
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where mold

i!j

are the messages of belief propagation when ✓ = ✓old. The E-step becomes
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Similar to Theorem 3.1, one can calculate (13) in terms of the elementary symmetric polynomials
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; one can show that
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(k, �
j

|L, ✓), (14)

where ỹold
k

=  
j

(k, �
j

|L, ✓old)eold
k

, where eold
k

are the elementary symmetric polynomials of
{exp(L

ij

xold

i!j

) : i 2 N
j

}.

The M-step in our case can be efficiently solved using standard numerical methods. For example,
when the algorithmic priors of q

j

is Beta(↵,�) where ✓ = [↵,�], one can show that Q(✓|✓old)
equals (up to a constant) the log-likelihood of Beta-binomial distribution, and can be efficiently
maximized using standard numerical methods.

The E-step above takes a soft combination of the posterior evidence. An alternative is to use hard-
EM, which replaces the E-step with

E-step (hard-EM): Q(✓|✓old) = log p(ẑold|L, ✓),
where ẑold are the estimated labels via belief propagation on ✓ = ✓old. The hard-EM form is very
intuitive; it iteratively estimates the labels with belief propagation, and fits the hyper-parameters
imputed with the labels found by the last estimation.

Note that this form of EM (in the outer loop) for estimating the hyper-parameters is different from
EM (in the inner loop) of Dawid and Skene [1979], Smyth et al. [1995], Raykar et al. [2010], which
maximizes q

j

with fixed hyper-parameter ✓; it is closer to the SpEM of Raykar and Yu [2012],
which also estimates a hyper-parameter with q

j

marginalized, but uses a different EM and Laplacian
approximation in the inner loop.

B.3 Incorporating Task Features

In some cases the tasks are associated with known features that provide additional information about
the true labels, and the problem is formulated as a supervised learning task with crowdsourced
(redundant but noisy) labels [Raykar et al., 2010]. Our method can be easily extended to these cases
by representing the task features as singleton potentials on the variables nodes in the factor graph,
that is, the posterior distribution (4) is modified to

p(z|F,L, ✓,!) =
Y

i

p(z
i

|f
i

;!)
Y

j

 (zNj ),

where F = {f
j

: j 2 [N ]} are the features of the tasks, and ! are the regression coefficients. Our
belief propagation works here with only minor modification. The regression coefficient !, together
with the hyper-parameter ✓, can be estimated using the EM algorithm we discussed above.

B.4 Incorporating Partially Known Ground Truth

In case the ground truth labels of some tasks are known, these labels can help the prediction of the
other tasks via a “wave effect”, propagating information about the reliabilities of their associated
workers. Our algorithm can also be easily extended to this case.

Specifically, assume the ground truth labels of a subset of tasks G 2 [N ] are known, e.g., z
G

= z0
G

.
Let ↵̂

j

be the number of tasks in G that worker j labels correctly. To predict the remaining labels,
one can simply modify the BP algorithm (15) into

xt+1
i!j

=

X

j

02Mi\j

L
ij

yt
i!j

0 , y
j!i

= log

P
�j�1
k=0  

j

(k + ↵̂
j

+ 1, �
j

)e
kP

�j�1
k=0  

j

(k + ↵̂
j

, �
j

)e
k

, (15)

where the messages are passed only between the workers and the tasks with unknown labels. In-
tuitively, the known ground truth provides scores (in term of ↵̂

j

) of the workers who have labeled
them, which are used as “prior” information for predicting the remaining labels.
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