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Abstract

Crowdsourcing has become a popular paradigm for labeling large datasets. How-
ever, it has given rise to the computational task of aggregating the crowdsourced
labels provided by a collection of unreliable annotators. We approach this prob-
lem by transforming it into a standard inference problem in graphical models,
and applying approximate variational methods, including belief propagation (BP)
and mean peld (MF). We show that our BP algorithm generalizes both major-
ity voting and a recent algorithm by Karger et dl],[while our MF method is
closely related to a commonly used EM algorithm. In both cases, we bnd that the
performance of the algorithms critically depends on the choice of a prior distribu-
tion on the workersO reliability; by choosing the prior properly, both BP and MF
(and EM) perform surprisingly well on both simulated and real-world datasets,
competitive with state-of-the-art algorithms based on more complicated modeling
assumptions.

1 Introduction

Crowdsourcing has become an efbcient and inexpensive way to label large datasets in many ap-
plication domains, including computer vision and natural language processing. Resources such as
Amazon Mechanical Turk provide markets where the requestors can post tasks known as HITs (Hu-
man Intelligence Tasks) and collect large numbers of labels from hundreds of online workers (or
annotators) in a short time and with relatively low cost.

A major problem of crowdsoucing is that the qualities of the labels are often unreliable and diverse,
mainly since it is difbcult to monitor the performance of a large collection of workers. In the ex-
treme, there may exist OspammersO, who submit random answers rather than good-faith attempts to
label, or even OadversariesO, who may deliberately give wrong answers, either due to malice or to a
misinterpretation of the task. A common strategy to improve reliability is to add redundancy, such

as assigning each task to multiple workers, and aggregate the workersO labels. Thenhaiseiipe
votingheuristic, which simply assigns the label returned by the majority of the workers, is known to

be error-prone, because it counts all the annotators equally. In general, efbcient aggregation methods
should take into account the differences in the workersO labeling abilities.

A principled way to address this problem is to build generative probabilistic models for the annota-
tion processes, and assign labels using standard inference tools. A line of early work builds simple
models characterizing the annotators using confusion matrices, and infers the labels using the EM
algorithm [e.g.,2, 3, 4]. Recently however, signibcant efforts have been made to improve perfor-
mance by incorporating more complicated generative models [£.6.,7, 8, 9]. However, EM is

widely criticized for having local optimality issues [e.d]; this raises a potential tradeoff between
more dedicateéxploitationof the simpler models, either by introducing new inference tools or bx-
ing local optimality issues in EM, and tlexplorationof larger model space, usually with increased
computational cost and possibly the risk of over-ptting.

On the other hand, variational approaches, including the popelaf propagationBP) andmean
peld (MF) methods, provide powerful inference tools for probabilistic graphical modélsifl].



These algorithms are efbcient, and often have provably strong local optimality properties or even
globally optimal guarantees [e.d.2]. To our knowledge, no previous attempts have taken advantage

of variational tools for the crowdsourcing problem. A closely related approach is a message-passing-
style algorithm in Karger et all] (referred to as KOS in the sequel), which the authors asserted

to be motivated by but not equivalent to standard belief propagation. KOS was shown to have
strong theoretical guarantees on (locally tree-like) random assignment graphs, but does not have an
obvious interpretation as a standard inference method on a generative probabilistic model. As one
consequence, the lack of a generative model interpretation makes it difbcult to either extend KOS to
more complicated models or adapt it to improve its performance on real-world datasets.

Contribution. In this work, we approach the crowdsourcing problems using tools and concepts from
variational inference methods for graphical models. First, we present a belief-propagation-based
method, which we show includes both KOS and majority voting as special cases, in which partic-
ular prior distributions are assumed on the workersO abilities. However, unlike KOS our method is
derived using generative principles, and can be easily extended to more complicated models. On
the other side, we propose a mean beld method which we show closely connects to, and provides
an important perspective on, EM. For both our BP and MF algorithms (and consequently for EM
as well), we show that performance can be signibcantly improved by using more carefully chosen
priors. We test our algorithms on both simulated and real-world datasets, and show that both BP
and MF (or EM), with carefully chosen priors, is able to perform competitively with state-of-the-art
algorithms that are based on far more complicated models.

2 Background

Assume there arl®l workers andN tasks with binary label& 1}. Denote byz; ! {+ 1},i! [N]

the true label of task, where[N | represents the set of PistintegersN; is the set of tasks labeled

by workerj, andM ; the workers labeling task The task assignment scheme can be represented by
a bipartite graph where an edfjgj ) denotes that the tasks labeled by the workgr. The labeling
results form a matrik. ! { 0,+ }N' M 'whereLj ! {+ 1} denotes the answer if workgrdabels
taski, andL; = O if otherwise. The goal is to Pnd an optimgl estimataf the true labelg given

the observatioh. , minimizing the average bit-wise error rq@e' i (v Prob[d = z].

We assume that all the tasks have the same level of difpculty, but that workers may have different
predictive abilities. Following Karger et all], we initially assume that the ability of workéris
measured by a single parametpr which corresponds to their probability of correctnegs:=

prob[lL;j = z]. More generally, the workersO abilities can be measured by a confusion matrix, to
which our method can be easily extended (see Seétibid).

The values ofgy reRRect the abilities of the workersy # 1 correspond taexpertsthat provide

reliable answersgy # 1/ 2 denotespammershat give random labels independent of the questions;
andg < 1/ 2denoteadversarieshat tend to provide opposite answers. Conceptually, the spammers
and adversaries should be treated differently: the spammers provide no useful information and only
degrade the results, while the adversaries actually carry useful information, and can be exploited to
improve the results if the algorithm can identify them and Bip their labels. We assurgedhall

workers are drawn independently from a common poi@y |! ), where! are the hyper-parameters.

To avoid the cases when adversaries and/or spammers overwhelm the system, it is reasonable to
require thatE[q |!] > 1/ 2. Typical priors include the Beta prig(q |!') $ ¢ **(1%q)" ** and

discrete priors, e.g., tr@pammer-hammaeanodel, where # 0.50r g # 1 with equal probability.

Majority Voting. The majority voting (MV) method aggregates the workersO labels by

amajority - sign[ Lij ]
i'™M

The limitation of MV is that it weights all the workers equally, and performs poorly when the
gualities of the workers are diverse, especially when adversarial workers exist.

Expectation Maximization. Weighting the workers properly requires estimating their abilitjes
usually via a maximuna postenonesnmator,q = argmaxlog p(qlL,!) =log ,p(qg,7L,!).
This is commonly solved using an EM algorithm treating thas hidden variables, [e.@, 3, 4].
Assuming aBeta(", # ) prior ong , EM is formulated as
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where$; = I[Lj = z]; thed is then estimated viii = arg max,, Wi(z). Many approaches have

been proposed to improve this simple EM approach, mainly by building more complicated models.

Message Passing.A rather different algorithm in a message-passing style is proposed by Karger,
Oh and Shah1] (referred to as KOS in the sequel). bek ; andy;s ; bereal-valuedmessages
from tasks to workers and from workers to tasks, respectively. Initialiyﬂgg randomly from
Normal(1, 1) or determiqistically ijo$ i =1, KOS updates the Ifnessage$—a11 iteration via

Lij Yjis i yishi = Lirj Xiig )
JTM iy | iN

and the labels are estimated #a = sign[#f], whered{ = = .,  Ljy/s;. Note that thedth

iteration of KOS reduces to majority voting when initialized Wyﬁ i = 1. KOS has surprisingly

nice theoretical properties on locally tree-like assignment graphs: its error rate is shown to scale
in the same manner as an oracle lower bound that assumes thg seknown. Unfortunately,

KOS is not derived using a generative model approach under either Bayesian or maximum likeli-
hood principles, and hence is difbcult to extend to more general cases, such as more sophisticated
worker-error models (Sectio®.1.2 or other features and side information (see appendix). Given
that the assumptions made in Karger et &].dre restrictive in practice, it is unclear whether the
theoretical performance guarantees of KOS hold in real-world datasets. Additionally, an interest-
ing phase transition phenomenon was observed in Karger df &.the performance of KOS was
shown to degenerate, sometimes performing even worse than majority voting when the degrees of
the assignment graph (corresponding to the number of annotators per task) are small.

t+1
Xis'j =

3 Crowdsourcing as Inference in a Graphical Model

We present our main framework in this section, transforming the labeling aggregation problem into
a standard inference problem on a graphical model, and proposing a set of efbcient variational
methods, including a belief propagation method that includes KOS and majority voting as special
cases, and a mean Peld method, which connects closely to the commonly used EM approach.

To start, the joint posterior distribution of workersO abilities {g : j ! [M]} and the true labels

z={z:i! [N]} condi'[;#onal on the #)bserved Iabdstand#hyper-parametéris
p(z.qL,!)$ pgl)  p(Lilzi.g)= PG 1)g" (1%q )% %,
j"M] i"N "M |
where% = |N;| is the number of predictions made by workeandc = = . j IlLj = z]is

the number of Os predictions that are correct. By standard Bayesian arguments, one can show that
the optimal estimator af to minimize the bit-wise error rate is given gy

B =argmax p(z]L,!) where p(zL,!) = p(z,qL,!)dq. 3)

z
! znpi 9

Note that the EM algorithm1{, which maximizesather tharmarginalizesy , is not equivalent to

the Bayesian estimatoB), and hence is expected to be suboptimal in terms of error rate. However,
calculating the margingl(z L, ! ) in (3) requires integrating a and summing over all the other,

a challenging computational task. In this work we use belief propagation and mean Peld to address
this problem, and highlight their connections to KOS, majority voting and EM.

3.1 Belief Propagation, KOS and Majority Voting

It is difpcult to directly apply belief propagation to the joint distributip¢e, q|L,! ), since it is
a mixed distribution of discrete variablesand continuous variableg We bypass this issue by
directly integraéing ovegq , yielding a marginal posterior distribution over the discrete variables
1
pzIL,!')=  p(z,dL,!)dg= p(g 11" (1 %)™ *© dg
i"m] 0 i"M]

T og@y), @



where&; (zy; ) is the local factor contributed by workgrdue to eliminatingg , which couples

all the taskszy; labeled byj; here we suppress the dependencgpfon! andL for notational
simplicity. A key perspective is that we can trggr|L,! ) as a discrete Markov random Peld, and
re-interpret the bipartite assignment graph éactor graph[13], with the tasks mapping to variable
nodes and workers to factor nodes. This interpretation motivates us to use a standard sum-product
belief propagation method, approximatip(z |L,! ) with Obeliefs®@ (z;) using messagess |

andm; s ; between the variable nodes (tasks) and factor nodes (workers),

#
From tasks to workers: mis’i (z) $ mis i (z), (5)
ifl"M i 4
From workers to tasks: misi(z) $ & (zn;) mis;(z),  (6)
o, PN
# J
Calculating the beliefs: 47 (z) $ mis (z)- 7)
™

At the end of T iterations, the labels are estimated #ia= arg max,, b (z). One immediate
difference between B5)-(7) and the KOS message passi2yié that the messages and beliefs in
(5)-(7) are probability tables og;, i.e., mjg ; = [mis j (+1), m;g ; (%1)], while the messages in
(2) are real values. For binary labels, we will connect the two by rewriting the updat€g) (in
terms of their (real-valued) log-odds, a standard transformation used in error-correcting codes.

The BP updates above appear computationally challenging, since&tegm(ires eliminating a
high-order potentia&(zy; ), costingO(2% ) in general. However, note th&i(zy, ) in (4) depends
onzy; only throughc; , so that (with a slight abuse of notation) it can be rewritte&@s, %). This
structure enables us to rewrite the BP updates in a more efpcient form (in terms of the log-odds):

Theorem 3.1.

b(+1) e Mig (1)
g b (%1)’ Xis j =log mis j (%1)°

Then, sum-product B&)-(7) can be expressed as

mjs i (+1)

Let % =lo —_—
' mis j (%1)

and Yisi = Lij |Og

' $j#l&(k+1(y t+1
t+l t t+1 k=0 %) &
Xig | = Lij Yjrs i Yisi =109 — g7 . 8)
PTM k=0 &(k’%)eI:
|

and ¥ = .  Ljyigy, where the termsac for k = 0,...,N; % 1, are the
ﬁlementar% symmetric polynomials in variablgexp(Li; Xi's j)}it'N ivio that is, ¢ =
" sipsiek it s ®XP(Liv Xi's ). Inthe end, the true labels are decodedzhs sign[#].

The termse, can be efpciently calculated by divide & conquer and the fast Fourier transform in
O(%(log 0/p)z) time (see appendix), making)(much more efbcient tha®)initially appears.

Similar to sum-product, one can also derive a max-product BP to bnd the joint maximpaosteriori
conbgurationp = arg max, p(z|L,! ), which minimizes the block-wise error rapeob[& : z; =

B ] instead of the bit-wise error rate. Max-product BP can be organized similarB),tavith the
slightly lower computational cost dd(% log%); see appendix for details and Tarlow et dl4][

for a general discussion on efbcient max-product BP with structured high-order potentials. In this
work, we focus on sum-product since the bit-wise error rate is more commonly used in practice.

3.1.1 The Choice of Algorithmic Priors and connection to KOS and Majority Voting

Before further discussion, we should be careful to distinguish between the priprused in our
algorithm (thealgorithmic prior) and, assuming the model is correct, the true distribution otjthe

in the data generating process (theta prior); the algorithmic and data priors often do not match.

In this section, we discuss the form &{c; , %) for different choices of algorithmic priors, and in
particular show that KOS and majority voting can be treated as special cases of our belief propaga-
tion (8) with the most OuninformativeO and most OinformativeO algorithmic priors, respectively. For
more general priors that may not yield a closed form&gc; , %), one can calculat&(c , %) by
numerical integration and store them %+ 1) ' %table for later use, whef= max; - v %.

4



Beta Priors. If p(q|!) $ ¢ **(1%¢q)"#*, we have&(,%) $ B(" + ¢, #+ % %¢ ), where
B (49 is the Beta function. Note th&t(c; , %) in this case equals (up to a constant) the likelihood
of a Beta-binomial distribution.

Discrete Priors. If p(g |!) has non-zero probability mass on only Pnite points, thatrisb(qg
f) = Pk, k! [K],whereO ( & ( 1,0( pc ( 1and |, px =1, then we havek(c, %)
P q‘? (1 %6 )% * S . One can show thabg &(¢, %) in this case is a log-sum-exp function.

Haldane Prior. The Haldane prior]5] is a special discrete prior that equals eitBer 1 with equal
probability, that isprob[g = 0] = prob[ g = 1] = 1/2. One can show that in this case we have
&(0,%) = &(%, %) =1 and&(c, %) = 0 otherwise.

Claim 3.2. The BP update ii§8) with Haldane prior is equivalent to KOS update(R).

Proof. Just substitute th&(c; , %) of Haldane prior shown above into the BP upda&e ( O

The Haldane prior can also be treated &ega(',' ) priorwith' ) 0", or equivalently an improper

prior p(g) $ q# a % ¢ )**, whose normalization constant is inbnite. One can show that the
Haldane prior is equivalent to putting a Rat prior on the log-olddsc; / (1 % ¢ )]; also, it has

the largest variance (and hence is Omost uninformativeO) among all the possible distribgtions of
Therefore, although appearing to be extremely dichotomous, it is well known in Bayesian statistics
as anuninformative priorof binomial distributions. Other choices of objective priors include the
uniform prior Beta(1, 1) and JefferyOs pri@eta(1/ 2, 1/ 2) [16], but these do not yield the same
simple linear message passing form as the Haldane prior.

Unfortunately, the use of Haldane prior in our problem suffers an important symmetry breaking is-
sue: if the prior is symmetric, i.ep(q |!) = p(1 %gq |!), the true marginal posterior distribution of

zj is also symmetric, i.ep(z; |L,! ) = [1/2; 1/ 2], because jointly Ripping the sign of any conbPgu-
ration does not change its likelihood. This makes it impossible to break the ties when degoding
Indeed, it is not hard to observe thag j = y;js i = 0 (corresponding to symmetric probabilities)

is a bxed point of the KOS updat®)( The mechanism of KOS for breaking the symmetry seems to
rely solely on initializing to points that bias towards majority voting, and the hope that the symmetric
distribution is an unstable bxed point. In experiments, we bnd that the use of symmetric priors usu-
ally leads to degraded performance when the degree of the assignment graph is low, corresponding
to the phase transition phenomenon discussed in Karger é}.al.His suggests that it is benepcial

to use asymmetric priors with[g |! ] > 1/ 2, to incorporate the prior knowledge that the majority of
workers are non-adversarial. Interestingly, it turns out that majority voting uses such an asymmetric
prior, but unfortunately corresponding to another unrealistic extreme.

Deterministic Priors. A deterministic prior is a special discrete distribution that equals a single
point deterministically, i.eprob[gg = ¢|!'] =1, where0 ( & ( 1. One can show thdbg & in this
case is a linear function, that ieg &(c, %) = ¢ logit(€) + const.

Claim 3.3. The BP updat€8) with deterministic priors satisfying > 1/ 2 terminates at the brst
iteration and Pnds the same solution as majority voting.

Proof. Just note thabg &(c; , %) = ¢ logit(€) + const, andlogit(€) > 0in this case. O

The deterministic priors above have the opposite properties to the Haldane prior: they can be also
treated aBeta(",# ) priors, but with* ) +* and" ># ;these priors have themallestvariance
(equal to zero) among all the possilgjepriors.

In this work, we propose to use priors that balance between KOS and majority voting. One reason-
able choice iBeta(", 1) prior with" > 1 [17]. In experiments, we bnd that a typical choice of
Beta(2, 1) performs surprisingly well even when it is far from the true prior.

3.1.2 The Two-Coin Models and Further Extensions

We previously assumed that workersO abilities are parametrized by a single pagamekes is

likely to be restrictive in practice, since the error rate may depend on the true label value: false
positive and false negative rates are often not equal. Here we consider the more general case, where
the ability of workerj is speciPed by two parameters, Sensitivitiys; andspecibcity; [2, 4],

sj = prob[Lj =+1|z =+1], tj = prob[Lj = %l|z = %1].



A typical prior ons; andt; are two independent Beta distributions. One can show&fay; ) in
this case equals a product of two Beta functions, and depenzig aonly through two integers, the
true positive and true negative counts. An efpcient BP algorithm simile8)tocafh be derived for
the general case, by exploiting the special structu(af,; ). See the Appendix for details.

One may also try to derive a two-coin version of KOS, by assigning two independent Haldane priors
ons; andt;; it turns out that the extended version is exactly the same as the standard KZSrn (

this sense, the Haldane prior is too restrictive for the more general case. Several further extensions
of the BP algorithm that are not obvious for KOS, for example the case when known features of the
tasks or other side information are available, are discussed in the appendix due to space limitations.

3.2 Mean Field Method and Connection of EM

We next present a mean beld method for computing the margfedL,! ) in (3), and show its
close connection to EM. In contrast to the derivation of BP, here we directly work on the mixed joint
ppsteriop(z, g4, ! ). Let us approximate(z, glL, ! ) with a fully factorized distributior(z, ) =

iy Hi(Z) 0w (G (). The best(z, g) should minimize the KL divergence,

KL[b(z,q) [| p(z,0lL, ! )] = %Ep[logp(z,qlL,!)] %  H(W) % H(()-
i"[N] i"M]
whereEp[d denotes the expectation w.rii{z, ), andH (§ the entropy functional. Assuming the
algorithmic prior ofBeta(",# ), one crucial property of the KL objective in this case is that the
optimal{(j%(q )} is guaranteed to be a Beta distribution as well. Using a block coordinate descent
method that alternatively optimizési; (ﬁi)} and{(; (g)}, the mean pPeld (MF) update is

Updatingp;: Hi(zi) $ af” ql# A 9)
i™

Updating(;: (j(g) + Beta(. Mi(Li)+ " Hi (%L ) + #), (10)

i"N i"N

wherea; = exp(Ey [In g ]) andly = exp(Ey [In(1%q )]). Thea; andly can be exactly calculated
by noting thatE[In x] = Digamma(" ) %Digamma(" + #) if x + Beta(",# ). One can also instead
calculate the prst-order approximationspfandly : by Taylor expansion, one ha¥®(1 + x) # X;
takingx = (g %q)/ g, wheregg = Ey [q ], and substituting it into the dePnition af andb,
onegelyy # g andh # 1%gq; it gives an approximate MF (AMF) ypdate,

. # ! . i, Mi(Li )+
Updatingpi: Mi(z) $ . q#" (1%q)**% , Updating(;: q = |le| o e

The updatel1) differs from EM (1) only in replacind' %1 and# %1 with " and#, corresponding to
replacing the posterior mode of the Beta distribution with its posterior mean. This simple (perhaps
trivial) difference plays a role oLaplacian smoothingand provides insights for improving the
performance of EM. For example, note that ¢hén the M-step of EM could be updated to O or 1 if
" =1 or# =1, and once this happens, tjeis locked at its current value, causing EM to trapped
at a local maximum. Updatel{) can preveng from becoming O or 1, avoiding the degenerate
case. One can of course interpreél)as EM with prior parametersé= " + 1, and#%= # +1;
under this interpretation, it is advisable to choose pricts 1 and#%> 1 (corresponding to a less
common or intuitive OinformativeO prior).

. (11)

We should point out that it is widely known that EM can be interpreted as a coordinate descent on
variational objectives18, 11]; our derivation differs in that we marginalize, instead of maximize,
overg . Our brst-order approximation scheme is also similar to the method by Asuri€iorOne

can also extend this derivation to two-coin models with independent Beta priors, yielding the EM
update in Dawid and Skeng][ On the other hand, discrete priors do not seem to lead to interesting
algorithms in this case.

4 Experiments

In this section, we present numerical experiments on both simulated and real-world Amazon Me-
chanical Turk datasets. We implement majority voting (MV), KOS2n BP in @), EM in (1) and



S
,0/0&
-# (O
- i
- 1,+40(12345
.|-e- - 1,40(14345
——6% i,+0(12345
——7%8 i,+0(1234

e
e
e
o
e
e

Lote T $#$ " : "
! (Pxed! =5) ! !(bxed!=15#;$ ' !(!=#!)

Figure 1. The performance of the algorithms as the degrees of the assignment graph vary; the left
degree denotes the number of workers per task, and the right dégdeaotes the number of tasks
per worker. The true data prior sob[g = 0.5] = prob[g =0.9] =1/2.
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Figure 2: The performance on data generated with diffegeptiors on (9,9)-regular random graphs.
(a) Beta prior with Dxec% 0.6. (b) Beta prior with bxed + # = 1. (c) Spammer-hammer

prior, prob[g = 0.5] = 1%prob[g = 0.9] = po, with varyingpg. (d) Adversary-spammer-hammer
prior, prob[gf = 0.1] = po, prob[g = 0.5] = prob[g = 0.9] = (1 %po)/ 2 with varyingpo.

its variant AMF in (L1). The exact MF 9)-(10) was implemented, but is not reported because its
performance is mostly similar to AMA.Q) in terms of error rates. We initialize BP (including KOS)
with yjs i = 1 and EM withp;(z) = M I[Lj = z]/[M ], both of which reduce to major-

ity voting at theO-th iteration; for KOS, we also implemented another version that exactly follows
the setting of Karger et all], which initializesy;s i by Normal(1, 1) and terminates at thi0-th
iteration; the best performance of the two versions was reported. For EM with algorithmic prior
Beta(",# ), we add a small constant (0.001) brand# to avoid possible numerical NaN values.
We also implemented a max-product version of BP, but found it performed similarly to sum-product
BP in terms of error rates. We terminate all the iterative algorithms at a maximum of 100 iterations
or with 10% ® message convergence tolerance. All results are averaged on 100 random trials.

Simulated Data. We generate simulated data by drawing the abilitiesrom Beta priors or the
adversary-spammer-hammeriors, that equal®.1, 0.5, or 0.9 with certain probabilities; the as-
signment graphs are randomly drawn from the sef) 8¥9-regular bipartite graphs with 1000 task
nodes using the conbguration methad|[ For the simulated datasets, we also calculated the oracle
lower bound in Karger et all] that assumes the trup areknown as well as a BP equipped with

an algorithmic prior equal to the true prior used to generate the data, which sets a tighter (perhaps
approximate) OBayesian oracleO lower bound for all the algorithnusthat knowg . We Pnd that

BP and AMF with a typical asymmetric pri@eta(2, 1) perform mostly as well as the OBayesian
oracleO bound, eliminating the necessity to search for more accurate algorithmic priors.

In Fig. 1, we show that the error rates of the algorithms generally decay exponentially w.r.t. the

degree) andlog(%) of the assignment graph on a spammer-hammer model. Perhaps surprisingly,
we Pnd that the BP, EM and AMF with the asymmetric algorithmic dveta(2, 1) scale similarly to

KOS, which has been theoretically shown to be order-optimal compared to the oracle lower bound.
On the other hand, BP with symmetric algorithmic priors, such as the Haldan®pt&(0* , 0" ) of

KOS and the uniform prioBeta(1, 1), often result in degraded performance when the degrees of the
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Figure 3: The results on Amazon Mechanical Turk datasets. Averaged on 100 random subsamples.

assignment graphs are low, supporting our discussion in Setioh Indeed, BP with symmetric
algorithmic priors often fails to converge in the low-degree setting.

Fig. 2 shows the performance of the algorithms when varying the true priors of the data. We bnd in
Fig. 2(b) and (d) that the performance of EM wieta(2, 1) tends to degrade when the fraction of
adversaries increases, probably becaus€ti®more likely to be incorrectly updated to and stuck
on0orlinthese cases; see the discussion in Se&iann all cases, we bnd that BP and AMF (and

MF) perform mostly equally well, perhaps indicating both Bethe and mean-beld approximations are
reasonably good on the joint distributim(z, g|L,! ) in terms of error rates. Our implementation

of EM (on both simulated data and the real data below) seems to perform better than previously
reported results, probably due to our careful choice on the prior and initialization.

Real Data. We tested our methods on three publicly available Amazon Mechanical Turk datasets.
The symmetric assumption gf = s; = t; is likely to be violated in practice, especially on vision
datasets where a humanOs perception decides on whether some object is present. Therefore we also
implemented the two-coin version of BP and AMF(EM) with the algorithmic priors;oandt;

taken as two independeBeta(2, 1) (referred to a®P-Beta? (2, 1) and similar).

We brst tested on the bluebird dataset of Welinder etGjl.ificluding 108 tasks and 39 workers

on a fully connected bipartite assignment graph, where the workers are asked whether the presented
images contain Indigo Bunting or Blue GrosBeak. F3p) shows the performance when bxed
numbers of annotators are subsampled for each task. On this dataset, all methods, including KOS,
BP and AMF(EM), work poorly under the symmetric assumption, while the two-coin versions of
BP and AMF(EM) are signibcantly better, achieving equivalent performance to the algorithm by
Welinder et al. §] based on an advanced high dimensional model. This suggests that the symmetric
assumption is badly violated on this dataset, probably caused by the non-expert workers with high
sensitivities but low specibcities, having trouble identifying Indigo Bunting from Blue GrosBeak.

We then tested on two natural language processing datas@t,ithle rte dataset with 800 tasks and
164 workers, and the temp dataset with 462 tasks and 76 workers. As seen3(bl-i@.,), both the
symmetric and the two-coin versions of BP and AMF(EM) performed equally well, all achieving
almost the same performance as the SpEM algorithm reported].inThe KOS algorithm does
surprisingly poorly, probably due to the assignment graphs not having locally tree-like structures.

5 Conclusion

We have presented a spectrum of inference algorithms, in particular a novel and efpcient BP algo-
rithm, for crowdsourcing problems and claribed their connections to existing methods. Our explo-
ration provides new insights into the existing KOS, MV and EM algorithms, and more importantly,
for separating thenodelingfactors andalgorithmicfactors in crowdsourcing problems, which pro-
vides guidance for both implementations of the current algorithms, and for designing even more
efbcient algorithms in the future. Numerical experiments show that BP, EM and AMF, and exact
MF, when implemented carefully, all perform impressively in term of their error rate scaling. Further
directions include applying our methodology to more advanced models, e.g., incorporating variation
in task difbculties, and theoretical analysis of the error rates of BP, EM and MF that matches the
empirical behavior in Figl.
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This document contains derivations and other supplemental information for the NIPS 2012 submis-
sion, “Variational Inference for Crowdsourcing”.

A Derivation of the Belief Propagation Algorithm

A.1 Sum-product Belief Propagation

We derive the belief propagation algorithm (15) in Theorem 3.1.
Theorem 3.1.

bi(+1) m;;(+1) m;—i(+1)
Let &; =log — . X =log /12 and ;= L;:log —=——2
Sh-n T, () AR THNESY
Then, sum-product BP (5)-(7) can be expressed as
w(k +1,75)e
el = " Ly, yity =log 0 ]m : (1)
JEM\; o w(k '7])
and &7 = Y. 0, Liyity, where the terms ey, for k= 0,...,N; — 1, are the

elementary symmetric polynomials in variables {exp(Li/jxi/_)j)}i/eNj\i, that is, e =
s 1sl=k LLvcs exP(Lirjxir—sj). In the end, the true labels are decoded as 2} = signl[z;].

Proof. First, by update (5), we have

mt .. +1 H‘/ ) .mt
oL = log J—>'L( ) — 1o J' =My J*ﬂ Z Luyl_)]

Y m;—m(_l) Hj’—)/\/[i\j m]—)z( 1) JEMiy

Similar derivation applies to update (7). We just need to consider the update (6) in the following.

For a given z, Wedeﬁne./\/;{i[ 2] ={i' € Nj\i: 2o = Lirj}. Let Ay, := {2, ¢ | J\l[ z]| = k}. By
update (6) we have,
mi i (FLi) = Y wilan) T mit; ) @
Z 3 GNJ\Z
7 —1
= > itk 3o T mit ) )
k=0 z€AR V' ENG\;
vi—1 mttl (Z/)

=C Z (o k-‘rl,’)/] Z H t+l1_EJ Z]) 4)

zEAL i EN; J\i 1 —J

vi—1 mt+1 (L'/j)
i — ?
oS YOI SR
2E€A i1 €N+ [ ] V=7 i'j
vi—1

=C Z vik+1) Yy [ ew@it) (©)

2€AR i E./\/’Jr ;2]

vi—1
=C Y Wik +1y)er, @)
k=0
where C'is a constant, C = (Hz‘/eN-\. mfﬂj (—Ly;)). Similarily, one can show that
71
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Therefore, we have

[
yt+1 log m]t—ill (+Lij ) — log Zk]:o1 1/11' (k + 1,7 )ek
1 = = :
H' m5i(=Li) il Wi (k7 Jex
The proof is completed. O

It remains a problem to calculate the elementary symmetric polynomials ex. Here we present a
divide and conquer algorithm with a running time of O(7; (log~; )?). Note that e is the k-th coef-
ficient of polynomial H:;al(z + €*¢), where e** = exp(zi_j). We divide the polynomial into a
product of two polynomials,

2
<.
—

1—1 [

[[ G+ ={

i=0

1 .,1

(z + € }{H T+ e

i=[41

S

||z

Since the merging step requires a polynomial multiplication, which is solved by fast Fourier trans-
formation with O(4; log7; ), by the master theorem, we get a total cost of O(7; (logyj )?).

A more straightforward algorithm can be derived via dynamic programming, but with a higher cost
of O(~7). Let e(k, n) be the k-th symmetric polynomial of the first n numbers of {xf}i/cn,,,; one
can calculate ey through the recursive formula e(k,n) = e(k,n — 1)e*» + e(k, n).

A.2 Max-product Belief Propagation

Similarly to the sum-product BP that we focus on in the main text, one can derive an effi-
cient max-product belief propagation to find the joint maximum a posterior configuration, z =
arg max, p(z|L, 8), which minimizes the block-wise error rate prob[3i : zj # %] instead of the bit-
wise error rate Ni i €N prob[z # %]. The max-product belief propagation update, in its general
form, is

From tasks to workers: f:} H mJ i(z) ©)]
j GM,L/]
From workers to taskers: mjt:ll (1) x max {1/11 ZN;) H mI —>l )}, (10)
Nisi i’EN;
Calculating the beliefs: bH'1 ) H mjtill (11)
jEM;

Similarly to Theorem 3.1, max-product BP can be performed efficiently by exploiting the special
structure of the high order potential 1 (zx, ).

Theorem A.1.
. bi(+1) mi (+1) mj (+1)
Let ; =lo ,  Tiy =log————=, and i i = Lj log ————=.
i g bi(—1) i —j g i, (—1) Yj —i ij 108 i (—1)
Then max-product BP (9)-(11) can be rewritten as
o (K +1 Vi ) t+1}
S = Li L maxo<k<t ,~1{¥j ( ) 7] 12
Yoo Yi og ; (12)
o K E;L\J e ! maxo<k<t ;1 {¢j (k% o}

and #11 = > i em; Li yltijl where v = eXp(ZE:O T[)) and x) is the n-th largest number in
{Lirj zir 5 Yiren,., In the end, the true labels are decoded as z = sign|i}].

The main cost of (12) is for sorting { Li/j i/ }i'eNj\is requiring a running time of O(~; log~; );
this is slightly faster than sum-product BP, which requires O(; (log 7j )?). See Tarlow et al. [2010]
for a similar derivation and more general treatment of structured high-order potentials.



B Extensions of Belief Propagation

Compared to KOS, our BP algorithm is derived using a principled Bayesian paradigm, and hence
can be easily extended to more general models and cases beyond the assumptions made in the paper.
In this section, we show in detail how to extend the BP algorithm to work on the two-coin worker-
error model, to estimate the hyperparameters of the algorithmic priors, and to incorporate additional
task features and other side information.

B.1 Extending to the Two-Coin Model

In the paper, we initially assumed that the sensitivities equals the specificities, i.e., ¢; = s; = ;.
Here we extend the BP algorithm to the more general case when s; and ¢; are defined separately.
Assume s; and t; independently follow two beta priors, i.e., p(s;|0) o 5 *(1 — ;)% ! and
p(t;10) oc t5+" H(1 — ;)P . The ¢b;(2n;,) defined in (4) becomes

Yi(an,) = /p(sj\e)P(fjW) H p(Lij|sj,t5)dsjdt; = B(ci1+au, co1+Bs)B(caa+ou, c12+ 1),
i"N .7

where C11 = Zi"N ; H[Lij = 1,2:,* = 1}, Co21 = ZzN ; H[Lij = —1,2’1' = 1], Coo = Zi"N ; H[Lij =

1,z = —1], c12 = > N ; I[L;; = 1,2 = —1]. In addition, let 'y; = N ; I[L;; = 1] and

'y;- = >~ , I[Lij = —1]. Note that ¢z, = 7;- —c11, 12 =, — C22, we have

$i(en,) = Blew + s, v; — caa + Bs)Blezz + i,y —can + B0) < j(ern, cz0),

where we rewrite 1 (2N ) as 1(c11, c22) (with a slight abuse of notation), because ;(zn; ) depends
on zn; only through c11 and cpp, the true positive and true negative counts. Similar to Theorem 3.1,
one can show that belief propagation (6) can be reduced to

_ +
J\l J\l ’Yj/i ’Yj/i
log] Z Z (ks +1,k2) ek ek |- IOg[Z Z ¢(k17k2)621€!k2]7 if Ljj = +1
k1=0 k2=0 k1=0 ko=0
Yj# i = " B . )
J\L J\l ’Yj/z ’yj/i
1 .
log[ Y D> Wk k2 + Dey ey, —log[ Y Y vk, ka)ey ey, ], if Lij = —1
k1=0 k2=0 k1=0 k2=0
where 7;/1' =N i I[Lyj = 1] and ’Yj/i = Zl/ N I[Li1; = —1]; and {e; } and {e}, } are the
symmetric polynomials of the {exp(Ly ;x4 ;): i* € Nj\;, Lir; = 1} and {exp(Lijzis ;): i° €
M\u Ly = —1}, respectively. Each step of the above update requires a running time of O(*y; 'y;.' +

(logy* )2 + ’YJ!' (logy' )?). The update for z;# ; and the decoding step remain the same as in
"[gheroem 3.1.

B.2 Learning the hyper-parameters via EM

The optimal choice of the algorithmic prior p(g;|¢) in BP (15) should match the true data prior.
One can adopt an empirical Bayesian approach to estimate the hyper-parameters 6 from the data.
Here we present an EM algorithm for estimating the hyper-parameters 6, that alternates between
performing the belief propagation (15) (E-step) and adjusting the parameters via maximizing the
expected marginal likelihood (M-step).

The EM algorithm, in its general form, is

E-step: Q(0]0°'Y) = E.[log p(z|L, 0)|6°'%], M-step: A" = arg max Q(0]0°'%).
0

The E-step in our case is performed by running the belief propagation algorithm. First, we approx-
imate the posterior distribution p(zn; |L, 0°¢) with belief b5'?(zx;,) on the factor nodes, defined
by
0 en,) o wien) [T il (20
"N



where m¢'?; are the messages of belief propagation when 6 = §°/¢. The E-step becomes
Q(016") = E-[log p(=|L, 0)[6°] = > | > 07 (2;,) log 5 (2n | L, 6). (13)
J aN;

Similar to Theorem 3.1, one can calculate (13) in terms of the elementary symmetric polynomials
ey ; one can show that

Q(016") ZZyz“ log v; (k,v;|L, 0), (14)
j k=0
where 2! = ;(k,v;|L,0°¢)ed!?, where e¢!d are the elementary symmetric polynomials of

{eXp(Llsz—)j) i€ AG}

The M-step in our case can be efficiently solved using standard numerical methods. For example,
when the algorithmic priors of g; is Beta(a, 3) where § = [a, 8], one can show that Q(6]¢°!9)
equals (up to a constant) the log-likelihood of Beta-binomial distribution, and can be efficiently
maximized using standard numerical methods.

The E-step above takes a soft combination of the posterior evidence. An alternative is to use hard-
EM, which replaces the E-step with

E-step (hard-EM): Q(6]6°'%) = log p(2°'|L, 0),
where 2°!¢ are the estimated labels via belief propagation on § = 0°/Y. The hard-EM form is very

intuitive; it iteratively estimates the labels with belief propagation, and fits the hyper-parameters
imputed with the labels found by the last estimation.

ld

Note that this form of EM (in the outer loop) for estimating the hyper-parameters is different from
EM (in the inner loop) of Dawid and Skene [1979], Smyth et al. [1995], Raykar et al. [2010], which
maximizes g; with fixed hyper-parameter 0; it is closer to the SpEM of Raykar and Yu [2012],
which also estimates a hyper-parameter with ¢; marginalized, but uses a different EM and Laplacian
approximation in the inner loop.

B.3 Incorporating Task Features

In some cases the tasks are associated with known features that provide additional information about
the true labels, and the problem is formulated as a supervised learning task with crowdsourced
(redundant but noisy) labels [Raykar et al., 2010]. Our method can be easily extended to these cases
by representing the task features as singleton potentials on the variables nodes in the factor graph,
that is, the posterior distribution (4) is modified to

p(z|F,L79,w) = Hp(zllflvw) H'I/J(Z_/\/J),

where F' = {f;: j € [N]} are the features of the tasks, and w are the regression coefficients. Our
belief propagation works here with only minor modification. The regression coefficient w, together
with the hyper-parameter 6, can be estimated using the EM algorithm we discussed above.

B.4 Incorporating Partially Known Ground Truth

In case the ground truth labels of some tasks are known, these labels can help the prediction of the
other tasks via a “wave effect”, propagating information about the reliabilities of their associated
workers. Our algorithm can also be easily extended to this case.

Specifically, assume the ground truth labels of a subset of tasks G € [N] are known, e.g., zg = 2.
Let &; be the number of tasks in G' that worker j labels correctly. To predict the remaining labels,
one can simply modify the BP algorithm (15) into

2ok + Gy + 1,

= Vi )€k

‘Z”_f}]: E Lijyij, Yyj i = log kwojﬂj( T i) 7 (15)
JEM o Vi(k +dy,v5)er

where the messages are passed only between the workers and the tasks with unknown labels. In-
tuitively, the known ground truth provides scores (in term of ¢&;) of the workers who have labeled
them, which are used as “prior” information for predicting the remaining labels.
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