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Abstract

A theoretical foundation to the notion of 2D transform and 2D signal processing is given, focusing
on 2D group-based transforms, of which the 2D Haar and 2D Fourier transforms are particular
instances. Conditions for separability of these transforms are established. The theory is applied to
certain groups that are wreath products of cyclic groups to give separable and inseparable 2D wreath
product transforms and their filter bank implementations.
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1. Introduction

Harmonic analysis is at the heart of much of signal and image processing. This is mainly
the harmonic analysis of Abelian groups, and ultimately, after sampling, and quantizing,
finite Abelian groups. Nevertheless, this general group theoretic viewpoint has proved
fruitful, yielding a natural group-based multiresolution framework as well as some new
and potentially useful nonAbelian examples.

The papers (Foote et al., 2000; Mirchandani et al., 2000) lay out a general finite group-
based approach to signal and image processing and pay special attention to the use of
certain wreath product groups for image processing. The theory explicated there is one
dimensional in the sense that the input signalf (respectively its Fourier transform) is rep-
resented as a column vector, and all analysis and synthesis is effected as a matrix–vector
multiply: F · f whereF is the Fourier matrix, (respectively its inverse) for some specified
finite group.
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This paper is intended to complement and extend this earlier work in the direction of
a two-dimensional (2D) finite group-based theory, again with the intent of applying this
work to image processing. Historically, the notion of a 2D transform almost always entails
a representation of the signalf as a 2D array so that the transform is given by a matrix
multiplication of the formAf Bt for suitable matricesA andB. The most familiar example
is that in whichA = B is the Fourier matrix and the associated 2D transform is the usual
2D discrete Fourier transform.

The new contributions of this paper are twofold. On the one hand we give a theoretical
foundation to the notion of 2D transform and 2D signal processing which extends naturally
to higher dimensions. We also provide a theory of 2Dgroup transforms, of which
the 2D Haar transform and 2D Fourier transform are particular instances. These well-
known 2D transforms are also particular instances of a 2Dwreath product transform
(WPT), whose explication is the second major new contribution. This extends the earlier
work (ibid.) which focused exclusively on the 1D WPT. We include here examples and
numerical experiments and indicate its potential use and application for image processing.
The presence of an underlying (non-Abelian) group afforded by this approach provides
additional structure that has heretofore been largely unexplored. In particular, there is a
group-based convolution which gives rise to a wealth of new group-invariant filters for
investigating classical problems such as filtering, pattern recognition, data compression,
and noise reduction.

In this way, this paper is a part of the growing body of work devoted to developing and
applying general group theoretic machinery to a deeper understanding of the foundations
of signal processing (cf.Foote et al.(2000) for an extensive list of references). To
cite but a few examples, this more general framework has already led to important
breakthroughs in the design and implementation of Abelian FFT algorithms (Auslander
et al., 1996) and is also at the heart of new initiatives directed towards the exploration and
application of other important transforms in both classical signal processing problems as
well as more novel nonAbelian transforms (Moura et al., 2001). This work combines in
equal measure, symbolic computation and numerical experimentation. The former makes
possible the latter, as the implementations require algorithms that allow us to work within
the related wreath product groups. So, while the present paper focuses more on the
numerical aspects, symbolic techniques underlie the results. This interplay of theoretical
development, symbolic implementation, and numerical experimentation is a step towards
an expanded view of what encompasses the discipline of signal processing.

The organization is as follows. We begin with a development some basic theory,
define the concepts of a group-based 2D transform, work through realistic examples,
and provide some experiments. Within this group theoretic context we define concepts of
decomposable, separable, and inseparable transforms. These share various properties with
the usual signal processing definitions. In particular, we construct a 2D separable WPT.
This is the natural extension of the earlier work and also generalizes the familiar 2D DFT
and 2D Haar transforms. These 2D transforms have a concomitant multiresolution spectral
transform via a multichannel pyramid-structured filter bank. We describe a 2D quadtree
scanning scheme and compare this separable 2D transform with the 1D WPT developed
in Foote et al.(2000) (which we show to be inseparable). The associated 2D quadtree
spectrum is also illustrated for a standard test image.
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2. Product structures and multidimensional signal processing

We briefly recall some terminology and results fromFoote et al.(2000). Let X be a
finite set and letG be a finite group acting onX (on the left). LetL(X) denote the vector
space of all complex-valued functions onX. There is a natural choice of basis forL(X)

given by the set of delta functions indexed by elementsx ∈ X. Thespatial domainon the
setX is L(X) along with this choice of basis. There is an obvious correspondence between
function expansions in terms of the delta functions and sample values. The action ofG on
X extends by linearity to an action onL(X) according to

(α f )(x) = f (α−1x) for all α ∈ G andx ∈ X.

In the language of representation theory, any vector space (for instanceL(X)) which admits
a groupG acting as linear transformations is called aCG-module, and itsG-invariant
subspaces are calledCG-submodules.

WhenX has cardinalityn and the elements ofX are ordered and indexed sequentially,
then L(X) may be viewed as then-dimensional vector space of all complex-valued 1D
signals of lengthn. In this paper we are interested in the special case whenX = X1 × X2.
It is then natural to viewX (after orderingX1 andX2) as ann×m array whose points may
be thought of as representing the pixel positions in a 2D rectangular array. Each elementf
of the spatial domainL(X) then can be thought of as an image whose color or intensity at
positioni , j is f (xi , yj ).

Within the usual signal processing literature (seePratt, 1991; Gonzalez and Woods,
1993) the decomposition of the index setX as a cartesian productX1 × X2 appears to
characterize the notion of a 2D transform. This type of decomposition is of course possible
whenever the size of the index set (domain) is composite, but is only useful in cases when
the decomposition is natural. Obvious example include images (2D), movies, (3D time-
indexed images) and volumes (3D), or even 4D time-indexed volumes, such as occur
in functional magnetic resonance imaging. The subject oftactical designsfrom which
designed experiments arise give an example of a situation in which the index set is a subset
of a product space, but not an entire product space (seeScheffé, 1999).

The advantages of this decomposition of the signal domain are, by and large, in the
opportunities which are made possible for decomposing the range of the accompanying
signal space,L(X1×X2). The product structure on the domain then implies a natural tensor
product structure for the signals (which again, ispossibleas long as the total dimension of
the space is composite). This tensor product structure can be exploited both for processing
speed (i.e. efficiency of computation) as well as for related psychophysical reasons (e.g.
for enabling vertical and horizontal edge detection).

A product decomposition of the domain also permits the possibility of a group action
by a cartesian product of (possibly distinct) groups. This is the setting which gives rise to
the multidimensional forms of the DFT and FFT. We now give a general formulation of
these ideas.

Definition 1. We say the action ofG on X1 × X2 is decomposableif G is a direct product,
G ∼= G1 × G2, such thatGi acts onXi for i = 1, 2. More generally, for fixedn and
m we say the action ofG on a setX of cardinalitynm is decomposableif there are sets
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X1, X2 of cardinalitiesn, m acted on by groupsG1, G2 respectively, such that(X, G), and
(X1 × X2, G1 × G2) are isomorphic group actions.

The above notion of decomposability is essentially equivalent to specifying thatX be
a set of indeterminatesxi, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and lettingG1 be any subgroup of
the symmetric groupSn andG2 be any subgroup ofSm. ThenG = G1 × G2 acts onX by
permuting rows and columns of the arrayX as usual:

(σ, τ )(xi, j ) = xσ−1(i ),τ−1( j ).

The latter perspective suggests that we think ofX as an array or image whose rows and
columns are permuted byG, and its spectrum will be computed by scanningX along its
rows or columns. However, we shall use the Cartesian product formulation to conjure a less
rectilinear decomposition of arrays that are nonetheless decomposable insomescanning
scheme. We shall exploit this more “coordinate free” viewpoint when we define a 2D
quadtree scanning scheme inSection 4.

Example 1. Let Zn × Zm = 〈 σ 〉 × 〈 τ 〉 be the direct product of cyclic groups, and let
X1 × X2 = {0, . . . , n − 1} × {0, . . . , m − 1} = Z/nZ × Z/mZ. We think of X1 × X2
as corresponding to the usual grid points on then × m lattice. In this way to any function
f ∈ L(X1 × X2), we associate a matrix, given by the corresponding function values. Then
(σ i , τ j )(r, s) = (i + r , j + s) with the bar indicating the appropriate modular arithmetic.
Thus the group action performs independent cyclic shifts of left and right indices, i.e. it
cyclically shifts the rows and columns of the arrays. This group action gives rise to the
familiar (decomposable) 2D DFT.

Assume now thatn andm are relatively prime. ThenZn × Zm is a cyclic group of order
nm with (σ, τ ) as a generator (see Proposition 6 in Section 5.2 ofDummit and Foote,
1999). By the Chinese remainder theorem (Section 7.6 ofDummit and Foote, 1999), for
each(r, s) ∈ X1 × X2 there is a unique integerk in the setY = {0, 1, . . . , nm − 1}
such thatk is congruent tor mod n and tos mod m, i.e. (k, k) = (r, s). Fix this one-to-
one correspondence betweenY and X1 × X2, and let a generatorµ for Znm act onY by
µ(k) = k + 1 mod nm. Then the group actions(Y, Znm) and(X1 × X2, Zn × Zm), where
µ ↔ (σ, τ ), are seen to be isomorphic. In particular, the action of the cyclic groupZnm on
Y by cyclic shifts is decomposable.

Example 2. We shall see inSection 4that the familiar 2D separable Haar transform on
2n × 2n images, as described in Section 5.9 ofJain(1989), arises from the decomposable
group action ofG1 × G2 on rows and columns of the space of square images, whereG1

and G2 are both Sylow 2-subgroups of the symmetric group on 2n points. InSection 4
we describe these groups explicitly as (wreath product) automorphism groups of trees, and
generalize this example to other wreath product groups.

3. Representation theory and spectral transforms

Before focusing on the wreath product groups we refine of the notion of a decomposable
actions to that of a separable group-based transformation.
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Continuing in the above notation, letG = G1×G2 act decomposably onX = X1× X2.
With no essential loss of generality we also impose the condition thatG acts transitively
on X, or equivalently, thatGi acts transitively onXi , for i = 1, 2. In this setting, ifHi is
the stabilizer of some point inXi for i = 1, 2 then by basic permutation group theory we
obtain the following identifications:

L(X) ∼= L(G/H ) ∼= L(G1/H1 × G2/H2) ∼= L(X1 × X2) ∼= L(X1) ⊗ L(X2)

where the tensor product of vector spaces is overC.
By the basic theory of tensors (seeDummit and Foote, 1999), if e1, . . . , en is any basis

of L(X1) and f1, . . . , fm is any basis ofL(X2), then the simple tensorsei ⊗ f j form a
basis of thenm-dimensional spaceL(X1) ⊗ L(X2). In the special case whenei is the
δ-function supported onxi ∈ X1 and f j is theδ-function onyj ∈ X2, thenei ⊗ f j is the
δ-function supported on(xi , yj ) ∈ X. In this regard, when viewing the elements ofL(X)

as 2D images, theei s index the rows and thef j s index the columns. The action ofG1×G2
on L(X1) ⊗ L(X2) is defined on simple tensors by(σ, τ )(ei ⊗ f j ) = (σei ) ⊗ (τ f j ) and
extended by linearity to an action on all tensors. In this way the matrix of the action of each
group element(σ, τ ) on L(X) with respect to the basisei ⊗ f j is the tensor or Kronecker
product of the matrices representingσ on L(X1) andτ on L(X2) with respect to the bases
{ei } and{ f j }.

AssumeL(X1) andL(X2) have a decomposition into irreducible subspaces under the
actions ofG1 andG2 respectively as

L(X1) ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vr and L(X2) ∼= W1 ⊕ W2 ⊕ · · · ⊕ Ws. (3.1)

Since tensor products distribute over direct sums, we have a vector space decomposition
into G-invariant subspaces (i.e. intoCG-submodules)

L(X1 × X2) ∼=
⊕
i, j

Vi ⊗ Wj . (3.2)

Since the irreducible representations of a direct product are the tensor products of
irreducible representations of the direct factors (seeCurtis and Reiner, 1981), the
decomposition in (3.2) exhibits L(X1 × X2) as a direct sum of irreducibleG-invariant
subspaces.

Fix some choice of bases for the irreducible subspacesVi for all i , and letA be the
change of basis (transformation or matrix) from the original (e.g.δ-function) basis on
L(X1) to a new basis onL(X1) consisting of the union of bases for the irreducible
subspacesVi in (3.1). We callA agroup-based Fourier transform, and for eachh ∈ L(X1),
Ah is called thespectrumor group-based Fourier decompositionof h. Likewise let B
be a group-based Fourier transform onL(X2). The decomposition (3.2) into irreducible
subspaces shows thatA ⊗ B is thus a group-based Fourier transform onL(X1 × X2) with
respect toG1 × G2. These representation theoretic observations motivate the following
generalization of the notion of decomposable.

Definition 2. For fixed integersn, m ≥ 2 we say theCG-moduleL is separableif there
are CG-modulesV and W of dimensionsn, m respectively, such thatL is isomorphic
to V ⊗C W (asCG-modules), and there are decompositionsV ∼= V1 ⊕ · · · ⊕ Vr and
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W ∼= W1 ⊕ · · · ⊕ Ws of V andW into irreducibleCG-submodules such thatVi ⊗ Wj is
irreducible for alli and j .

We will occasionally use the term“2D separable” synonymously with “separable”
when it seems desirable to emphasize concepts applied to 2D image processing. The
condition in the definition that the module be a tensor product is essentially specifying
that the module be “group-based 2D”; and we shall see that the condition that the products
of the irreducible components also be irreducible ensures that the group-based spectral
transform is a separable linear transformation (i.e. of the formAX Bt ). A representation
is calledseparableif a CG-module affording it is separable. A module (or representation)
that is not separable is calledinseparable. Note that a moduleL may be separable with
respect to some degreesn, m but not others whose product is dimL. Also note that the
action of G is inherent in the notion of separability, andL need not necessarily be a
permutation module forG. Indeed, ifG acts trivially onL (e.g. if G is the trivial group)
then, as observed earlier,L is separable for any nontrivial factorizationnmof its dimension.

A representation is separable if and only if its character is a product of two charactersα

andβ of degreesn andm such that when these are written as sums of irreducible characters
α = α1 + · · · + αr andβ = β1 + · · · + βs, then the characterαi β j is irreducible for alli
and j .

Our earlier discussion showed the following:

Proposition 3.1. If G = G1 × G2 acts decomposably on X= X1 × X2, then L(X) is a
separableCG-module.

A group action need not be decomposable in order that the associated representation
be separable. For example, separable modules can be constructed by takingG to be any
subgroup of a direct product of Abelian groupsG1 × G2 acting onX1 × X2 (or on any
modulesV , W); the “Abelian” assumption ensures that irreducibleCG-modules are 1D,
hence their tensor products are also irreducible. Another particularly interesting example
comes from the computation of DFTs and FFTs for crystallography. The crystallographic
symmetry groups or space groups are non-decomposable, yet their action on three-space
has an associated invariant decomposition as a triple tensor product which allows for great
savings when computing the Fourier transform (Auslander et al., 1988; An et al., 1990). As
another example, the largest Mathieu groupM24 has irreducible representations of degrees
23 and 45 whose product is irreducible, i.e. in this caser = s = 1 (cf. Conway et al.,
1985).

We may also view the separable spectrum of ann × m imageh ∈ L(X1 × X2) as a
matrix-valued(r × s)-array

Ĥ =


Ĥ11 Ĥ12 . . . Ĥ11

Ĥ21 Ĥ22 . . . Ĥ11

. . . . . . . . . . . .

Ĥr 1 Ĥr 2 . . . Ĥrs

 (3.3)

or as ann × m array in an especially coherent format. The representationĤ is very
important for future directions (seeSection 6) such as for harmonic analysis of group-based
convolution and correlation. Let basis functions for the irreducibleG1-invariant subspace
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Vi (of dimensionki ) be indexed aŝeni , êni +1, . . . , êni +ki −1, and let basis functions for
the G2-invariant subspaceWj (of dimensionl j ) be f̂mj , f̂mj +1, . . . , f̂mj +l j −1. Then the
coefficients for theG1×G2-invariant irreducible subspaceVi ⊗Wj spanned by thêep⊗ f̂q
form aki × l j submatrix of then × n spectrum array whose upper left-hand entry appears
in positionni , mj . Examples of this are given inSection 5.

A significant computational feature of separable representations is that their group-
based Fourier transforms may be computed with generally fewer operations than
inseparable transforms of the same degrees. In the notation ofDefinition 2, let {ei } and
{ f j } denote bases ofV andW respectively, and letA andB denote change of bases to the
direct sums of irreducible subspaces forV andW respectively. Then eachh ∈ L may be
written as

h =
n∑

i=1

m∑
j =1

h(xi , yj )ei ⊗ f j =
n∑

i=1

ei ⊗ wi ,

wherewi = ∑m
j =1 h(xi , yj ) f j . For eachi let

Bwi =
m∑

j =1

bi, j f̂ j

where f̂1, . . . , f̂m is a group-based Fourier basis forW. Since { f̂ j } is a basis ofW,
{ei ⊗ f̂ j } is a basis ofL. Since the linear transformationA ⊗ B is the composition of
the transformationsA ⊗ 1 and 1⊗ B (in any order),

(A ⊗ B)(h) = (A ⊗ 1)

(
n∑

i=1

ei ⊗ Bwi

)
= (A ⊗ 1)

 n∑
i=1

ei ⊗
m∑

j =1

bi, j f̂ j


= (A ⊗ 1)

 n∑
i=1

m∑
j =1

bi, j ei ⊗ f̂ j


= (A ⊗ 1)

 m∑
j =1

v j ⊗ f̂ j

 =
m∑

j =1

Av j ⊗ f̂ j

wherev j = ∑n
i=1 bi, j ei . In other words, writing the coefficients of each elementh of L as

a matrix whosei , j entry is the coefficient ofei ⊗ f j , the group-based Fourier transform
onh may be found by first transformingW into irreducibles by applyingB to each rowwi

of h. This results in the set of vectorsBwi whose coefficients,bi, j , are placed in thei th
row of ann × m matrix. Denote the columns of this matrix byv1, . . . , vm. Then A ⊗ B
is computed by now applyingA to each column of the latter matrix, i.e. by the matrix
multiplication A[bi, j ]. In summary we have the following:

Proposition 3.2. If L ∼= V ⊗ W is a separableCG-module and A, B are matrices
representing separable group-based Fourier transformations on V and W respectively (as
in Definition2), then each h in L may be represented by an n× m matrix H such that the
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separable group-based Fourier transformation on H is AH Bt, where Bt is the transpose
of B.

Example 1. The decomposable action ofZn × Zm onn × m arrays described inExample
1 of the preceding section gives the familiar 2D DFT (see Section 5.5 ofJain, 1989). The
n × m 2D separable DFT on an image[u(i , j )] is defined by

û(k, l ) =
n∑

p=1

m∑
q=1

u(p, q)Wk(p−1)
n Wl(q−1)

m

whereWN = e2π i/N , i = √−1. In matrix notation this transform becomes[̂u(k, l )] =
Dn[u(i , j )]Dt

m, where DN is the matrix of the familiarN-point DFT on signals of
length N. Whenn = m and then-point DFT is normalized by multiplying by 1/n, the
resulting (symmetric) matrixUn is unitary, and the normalized 2D separable DFT forn×n
images becomesUnHUn. SinceU−1

n = U∗
n , where the star denotes complex conjugation,

the (normalized) inverse 2D separable DFT onn × n arrays isU∗
n YU∗

n .

Example 2. The decomposable action of the permutation groups described ofExample
2 in Section 2leads to the 2D separable Haar transform, as described in Section 9.5 of
Strang and Nguyen(1996) or Section 5.9 ofJain(1989). In these books the Haar transform
is exhibited both as a transform and in matrix format (explicitly, for small degrees). This
2D Haar transform is a special case of the 2D WPC transform described inSection 4.

Once again, it is useful and important to relate these concepts to the usual ones of signal
and image processing. A generic 2D transform for dataf (x, y) is written as

T(u, v) =
∑
y∈Y

∑
x∈X

f (x, y)g(x, y, u, v)

whereg is the transformkernel. The kernel is calledseparableif there is a factorization
g(x, y, u, v) = g1(x, u)g2(y, v) and calledsymmetricif g1 = g2. The separable case
permitsT to be written as a matrix–vector product transformT = G1 f Gt

2 (t denotes
transpose) for suitable matricesG1 and G2. In the symmetric caseG2 is replaced by
G1. Notice that without separability, this 2D transform would be computed as a simple
matrix–vector multiplication with indexing that would realize the data as a column vector
and the kernel as a matrix.

Remark. The increased efficiency in computing a tensor product transform encourages
the recognition of such structure when possible. This is part of the motivation behind the
SPIRAL (Signal Processing algorithms Implementation Research for Adaptable Libraries)
project, a multidisciplinary effort targeted at the automatic generation of tensor product
factorizations and code computing signal processing transforms (Moura et al., 2001).

In fact, even if a tensor product decomposition exists, it need not be unique, and
the different factorizations may entail very different implementations whose efficiency
can be architecture dependent. The paper (Auslander et al., 1996) shows how different
tensor product formulations for the Abelian FFT are related and characterized by certain
cohomological invariants. The relationship among computer architecture, tensor product
structure, and execution time is also investigated.
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The computational savings due to tensor product structure suggest that it even can
be useful to recognize if a transform may only be approximated by a tensor product.
In such situations accuracy may be traded off against efficiency. InPitsianis (1997),
Pitsianis studies the problem of finding the tensor product of equal dimension, closest
in Frobenius norm to a given matrix. This problem is both studied in an unconstrained
(arbitrary tensor product) and constrained (tensor product with further specified structure)
manner. A code generation system which specifies efficient implementations of the tensor
product transform is also presented.

4. Two-dimensional wreath product group-based transforms

The wreath product groups discussed in this section arise as automorphism groups of
spherically homogeneous rooted trees (SHRTs). For clarity of notation and with an eye
to specific applications to image processing, such as those inSection 5, we shall restrict
attention to particular families of these trees. For general SHRTs the nomenclature, the
group actions and associated representations, and the application of these to 1D signal
processing are developed fully inFoote et al.(2000). Based on this foundation, the
treatment herein will make it transparent to the interested reader how to extend 1D results
for general SHRTs to the 2D setting.

Let Qn denote the tree which has a root node (at level zero), four nodes descending
from it (these are at level 1), four nodes descending from each node at level 1 (these 16
nodes are at level 2), and so on with each node having four children, terminating in the 4n

nodes at leveln (called the leaves of the tree). We callQn thequadtreeof degreen. Let
Z(n) be the group of automorphisms ofQn that fixes the root node and at each level allows
independent cyclic permutations of the four children of each vertex at that level. ThusZ(n)

has the structure of an iteratedwreath product of cyclic groupsof order 4:

Z(n) ∼= Z4 � Z4 � · · · � Z4 (n factors)

and hence is called aWPC group. The order ofZ(n) is 4(4n−1)/3.

Another important family consists of the binary SHRTs,Bn, with n + 1 levels, where
each node has two children; the corresponding WPC group of automorphisms, also denoted
by Z(n), is the iterated wreath product of cyclic groups of order 2.

In each family the WPC groupZ(n) transitively permutes the setX of leaves of the tree
(i.e. the nodes at leveln). This action affords a group representation on the spatial domain
L(X) which is studied extensively inFoote et al.(2000) andMirchandani et al.(2000).
Explicit WPC group-based (fast) Fourier transforms, filter bank algorithms for computing
(multiresolution) spectra, and many examples are exhibited therein. In particular, when
n = 1, the WPC group is just the cyclic group of order 4 (quadtree) or order 2 (binary
tree), and the WPC group-based transform is the 4- or 2-point DFT respectively. Also,
for arbitraryn, the group-based Fourier transform obtained from the WPC group action
on the binary treeBn is the familiar Haar transform on signals of length 2n, and discrete
Haar wavelets at various scales are WPC group-based Fourier basis functions spanning the
irreducible group invariant subspaces ofL(X).
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The quadtreeQn arises in a natural context in image processing. The leaves of this
tree may be used to index pixel positions in a 2n × 2n array scanned in the quadtree
nested grid fashion as follows: Subdivide the array into its four 2n−1 × 2n−1 quadrants,
and likewise subdivide each of these, and so on. Then for anyk ∈ {0, 1, . . . , n} we obtain
4n−k subarrays in a (quadtree) nested grid at leveln − k, each of which is a 2k × 2k

matrix. Each such submatrix is associated to a node of the tree at leveln − k. The four
arrays descending from each node (i.e. the four quadrants of each subimage) are then
cyclically permuted clockwise (fixing their orientation) by generators of theZ4 factors at
the corresponding level in the WPC group. Note that even though the spatial domain has a
natural 2D structure, this nested grid decomposition effectively scans images into a space of
1D vectors upon which the WPC group acts. Evidently this group action is indecomposable
becauseZ(n) is a 2-group with a cyclic center, hence it cannot be a nontrivial direct
product. We prove the stronger result: this action on 2D arrays is inseparable.

Proposition 4.1. For all n ≥ 2 the 4n-dimensional representation of the WPC group
Z(n) on 2n × 2n images indexed by the quadtreeQn is inseparable for any nontrivial
factorization of4n.

Proof. By definition of Z(n), each nonidentity element induces a nontrivial permutation
of the leaves of the quadtree, so the representation ofZ(n) on L(X) is faithful. Let π be
the character of this representation, so thatπ(g) equals the number of leaves fixed byg for
anyg ∈ Z(n) (see Example 3 on p. 832 ofDummit and Foote, 1999). Also, the degree of
the representation isπ(1) = 4n.

By way of contradiction assume the representation is separable. By the remarks
following Definition 2this meansπ is a productαβ of nonlinear characters. We compare
the possible values ofαβ andπ on elements in the center ofZ(n). An element in the center
of Z(n) commutes with all elements ofZ(n), hence must induce the same permutation on
each block of four leaves descending from a common node at leveln − 1. Thus the center
of Z(n) is generated by an elementw of order 4 that cyclically permutes the four elements
in each such block (with respect to a fixed labeling determined by the first block), i.e.w

is a product of 4n−1 disjoint 4-cycles. Letz = w2 be the unique element of order 2 in the
center, so thatz also fixes no leaves, i.e.π(z) = 0.

If both α andβ have nontrivial kernels, then sinceZ(n) is a 2-group with cyclic center,
Theorem 1(2) in Chapter 6 ofDummit and Foote(1999) shows thatz is in the kernel of both
α andβ, hence is in the kernel ofπ . This in turn forcesπ(z) = π(1) = 4n, a contradiction.
We may therefore choose notation so thatα is faithful.

By Theorem 3.1 ofFoote et al.(2000), Z(n) contains a normal subgroupB, the kernel
of the action ofZ(n) on the nodes at leveln − 1, which is a direct product of 4n−1 cyclic
groups of order 4. Thus every faithful representation ofZ(n) has dimension at least 4n−1,
soα has degree at least 4n−1. Since the product of the degrees ofα andβ is 4n, α must
have degree either 4n−1 or 2 · 4n−1, andβ must have degree 4 or 2 respectively.

If α has degree 4n−1, it must be irreducible—otherwise, as above,z would be in
the kernel of each of its constituents, hence in the kernel ofα. By Schur’s lemmaz
is represented by a scalar matrix, henceα(z) �= 0. Now β has degree 4. By the same
reasoning, eitherz is in the kernel ofβ or β is irreducible (withn = 2); in either situation
β(z) is likewise nonzero. This is a contradiction because 0= π(z) = α(z)β(z).
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It remains to consider whenα has degree 2· 4n−1 and β has degree 2. Arguing as
above, we must haveβ(z) �= 0 andα(z) = 0. By Schur’s lemma,α is reducible, hence
it follows thatα = α1 + α2 whereα1 is a faithful irreducible character of degree 4n−1.
If β were irreducible, then by the remarks following the definition of separable,α1β would
be an irreducible constituent ofπ of degree 2· 4n−1; this would contradict the fact that
every irreducible constituent ofπ has degree at most 4n−1 by Theorem 4.8 ofFoote et al.
(2000). Thusβ must be a sum,β1+β2, of two degree 1 characters. Hence every irreducible
constituentγ of α gives two irreducible constituentsγβ1 andγβ2 of the same degree ofπ .
This contradicts the fact thatπ has exactly three irreducible constituents of degree 4n−1 by
Theorem 4.8 ofFoote et al.(2000) and so completes the proof.�

At first blush, there are obvious 2D separable WPC group-based transforms for images
of certain sizes. For trees with sets of leavesX1 and X2, let G1 andG2 be WPC groups
acting onX1 and X2 respectively. ThenG1 × G2 acts decomposably onL(X1 × X2).
Indeed, we recover the 2D separable Haar transform as a special case of this: when the
trees are both binary and the rows and columns of a space of arrays are indexed byX1 and
X2 respectively, and so are permuted byG1 × G2. Likewise the separable 2D DFT is a
special case of an action by a direct product of WPC groups, when both trees have only
one nonzero level but are not restricted to being binary or quadtrees. In general whenG1
andG2 are WPC groups permuting the rows and columns of arrays indexed by the leaves
of trees in this manner we shall refer to the resulting 2D transform (or spectrum) as the2D
separable rectilinear WPC transform (spectrum, respectively).

We now introduce a variant of this family of 2D group-based transforms—essentially
differing from the rectilinear transforms just described by a different scanning scheme—
and explore their properties. As described above, 2n×2n images may be given a nested grid
structure indexed by the quadtreeQn and acted upon (in a 1D manner) by the WPC group
Z(n). We consider this spatial domain of 2D images imbued with the same quadtree nested
grid structure, but acted on in a decomposable 2D fashion by certainsubgroupsof the full
WPC groupZ(n). The group-based Fourier transforms resulting from the action of these
subgroups thus give a “refinement” of the Fourier transforms for the whole group. Again,
for clarity we focus on decomposing 2n × 2n arrays under the action of the direct product
of two isomorphic WPC subgroups ofZ(n); it is straightforward to generalize to noniso-
morphic WPC subgroups, even with permutation representations of different degrees.

Assumen = 2k and view the WPC groupZ(n) as acting on the space of all 2n × 2n

images in the quadtree fashion. LetG1 be the subgroup ofZ(n) that permutes the 2k × 2k

blocks in the nested grid among themselves but does not alter the relative position or
orientation of the entries within each of these subarrays (e.g. does not rotate the subarrays).
The subgroup ofZ(n) that stabilizes each of these subarrays is a direct product of groups of
typeZ(k). Let G2 be the diagonal subgroup in this direct product stabilizer that maps each
of these subarrays to themselves and acts simultaneously as the same relative permutation
on each subarray. For example, there is an element ofG2 that simultaneously rotates each
subarray clockwise by 90◦; but no element ofG2 rotates one array while fixing the others.
Since elements ofG2 act the same way on each array, they commute with the elements of
G1. It follows that

G = G1 × G2 ∼= Z(k) × Z(k).
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(The subgroup structure and actions of WPC groups on sub- and quotient trees is detailed
in Theorem 3.1 ofFoote et al.(2000).) This subgroup determines a “square”2D separable
quadtree decomposition of22k ×22k images, where the “rows” are the 2k ×2k subarrays in
the nested grid decomposition (each of which is scanned in a quadtree fashion to obtain a
vector of length 2k), and each column consists of one entry chosen from the same relative
position in each of these subarrays. Moreover, becauseG is a subgroup ofZ(n), eachG-
invariant irreducible subspace in the spectral decomposition may be contained in aZ(n)-
invariant irreducible component, so the 2DG-based spectral decomposition refines the 1D
Z(n)-based decomposition.

In light of Proposition 3.2we may summarize these calculations as follows:

Proposition 4.2. Let L be the spatial domain of all22k ×22k images and let G= G1×G2
with G1 ∼= G2 ∼= Z(k) acting on L via a transitive permutation representation. Let A be a
22k × 22k WPC group-based Fourier transform matrix for the WPC action of Z(k) on the
space of 1D vectors of length22k.

(1) If G1 and G2 act by permuting the rows and columns of images respectively via the
usual WPC action of Z(k) on vectors of length22k, then the rectilinear 2D separable
WPC group-based spectrum of an image H is AH At.

(2) If G1 × G2 is a subgroup of the WPC group Z(2k) acting in the quadtree fashion
on images, then the 2D separable quadtree spectrum of an image H is A(θ(H ))At,
whereθ is the permutation of the entries of a22k × 22k matrix that transforms the
2k × 2k blocks in the quadtree nested grid decomposition of H into the rows of a
matrix θ(H ). In this situation, each G-invariant irreducible subspace of L may be
contained in one of the Z(2k)-irreducible components.

Note that because the permutation actions ofG1 andG2 are the same, the transformation
matrix B appearing inProposition 3.2equalsA. These 1D WPC group-based transforms
are described in detail inFoote et al.(2000), with explicit matrices given for smallk;
numerous examples of 1D quadtree spectra are also depicted. The permutationθ : H �→
θ(H ) is the mathematical formulation of utilizing a different scanning scheme (in this case
the quadtree scheme).

In Section V.A ofFoote et al.(2000) we also described how to display the spectrum
of each 2n × 2n image in another 2n × 2n array in such a way that Fourier coefficients
from the group invariant irreducible subspaces formed square submatrices of the spectral
array—we called this depiction thequadtree spectrumof an image. This quadtree spectrum
is obtained from the 1D WPC spectrum of length 42k by simply reversing the quadtree
scanning scheme, i.e. by applyingθ−1. This gives a more precise geometric realization of
the last sentence ofProposition 4.2.

Corollary 4.1. In case(2) of Proposition4.2, Y = θ−1(A(θ(H )At) is the 2D separable
quadtree spectrum of H with entries rearranged so that the G-invariant subspaces
of Y appear as submatrices of Y , and each of these submatrices lies within an irreducible
component of the 1D WPC group-based quadtree spectrumQ(H ) (described inFoote
et al., 2000).
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Fig. 1. Test image.

The matrix Y in Corollary 4.1 is called the 2D separable quadtree spectrumof a 22k × 22k

image. Unlike the 1D WPC quadtree spectrum for the group Z(2k), the Z(k) × Z(k) 2D
spectral components need not be square subarrays in the 2D separable quadtree spectrum.
Figs. 1 and 2 illustrate the 2D rectilinear and quadtree spectra of a standard 28 × 28 test
image. (In these figures the magnitudes of the complex spectral coefficients are plotted.
The evident rectangular subarrays that form a pattern in the spectra each represent a block
of Fourier coefficients coming from a common irreducible component of the spectra.)

Finally, we record another important computational feature of the 2D separable
transform. By Theorem 4.9 (and following) in Foote et al. (2000), the 1D WPC transform
A for the Z(k) group action is a block transform that may be computed by a pyramid-
structured multichannel DFT filter bank. In other words, we may write A as a sequence
of linear transforms: A = Ak Ak−1 · · · A1, where Ai is the i th stage in the pyramid filter
bank (decomposing the projection of images into the irreducible components spanned by
discrete wavelet basis functions at “ scale” 2i ). Correspondingly, the 2D separable quadtree
transform C : H → Y in Corollary 4.1 decomposes as a sequence C = CkCk−1 · · · C1.
The iterative process

H H1 = C1(H ) H2 = C2(H1) · · · Hk = Ck(Hk−1) = Y

where each Ci is a separable linear transformation, gives a fast (2D group-based) Fourier
transform for computing the 2D separable WPC spectrum of H . The number of operations
required for this transform on an N × N image H is O(N2 log N), by the same reasoning
as for the separable Haar transform in Jain (1989, Section 5.2). The pyramid structured
filter bank implementation of this fast algorithm is discussed in the next section.

5. The 2D wreath product transform and multirate filter banks

In this section we describe the effects of the 2D separable WPC group-based transform
Y = C HCt , where H is a 22k ×22k image and C is the analysis matrix associated with the
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Fig. 2. The rectilinear and quadtree 2D amplitude spectra of the test image.

quadtree spectral decomposition obtained from the action of Z(k) on 1D signals of length
22k indexed by the quadtree Qk. The group action is by the direct product of WPC groups
Z(k)× Z(k) permuting rows and columns of images, hence this is the rectilinear 2D WPC
transform.

A filter bank is a set of convolution operators, while a decimated filter bank has the
output of the filter banks downsampled by a factor. These operations may be iterated to
obtain a multi-level decimated filter bank. The direct representation of the WPC transform
leads to a uniform 4-channel decimated multi-level analysis filter bank which is seen
to progressively decompose the lowpass approximation into 16 subbands. After the first
level of decomposition, the C HCt formulation leads not only to the decomposition of the
lowpass approximation at the first level, but also to operations on related subbands, but only
in one dimension. Consequently at level two and beyond, along with the decomposition
of the lowpass approximation, we see additional decompositions that give “ thin” and
“ thick” versions of the original image. That is, the one dimension decompositions generate
rectangular version approximations of the original image. In the 1D WPC transform
(WPT), C was generated by the iterative application of the 4-channel decimated filter bank
to the lowpass approximation (see Foote et al., 2000, p. 116). We determine the 16 2D 4×4
subband filters and their frequency response and show that they filter specific 2D complex
exponentials which corresponds to directional filtering of edges. These 2D 4 × 4 filters are
the same as those for analysis with the 2D 4 × 4 DFT. Finally, we observe the effect of the
2D WPT on an image and interpret the magnitude and phase of the spectrum in terms of
local directional edge detection characteristics of the filters.

5.1. Filter bank decomposition

Following standard terminology and development in the literature (cf. Strang and
Nguyen, 1996; Vetterli and Kovacevic, 1995) we write the transform as Yt = C(C H)t
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Fig. 3. 2D 4-channel analysis filter bank.

so that the spectrum Y is determined by first applying the 1D WPT to each column of H
and then to each row of the result to obtain the rows of Y . The column-row operations
are portrayed in the direct form as a 2D 4-channel decimated analysis filter bank as shown
in Fig. 3. Consider first the 2D WPT at the first level of decomposition and let the input
image H be of dimension N × N where N = 4M . Write the first level of decomposition
as Y 1 = C1 H (C1)t , where C1 represents the one-level 1D WPT. We have then

Y 1 =


L
B1

B2

B3

 [H ][Lt Bt
1 Bt

2 Bt
3] (5.1)
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where matrices L = B0, B1, B2, and B3 are of size (N/4) × N . If each Br is viewed as an
(N/4) × (N/4) block matrix whose blocks consist of 1 × 4 vectors, then Br is the block
diagonal matrix with block [ 1 i−r i−2r i−3r ] down the diagonal. In other words,
multiplication by Br represents convolution by the downsampled-by-four filters:

h1 = [ 1 1 1 1 ] h2 = [ i −1 −i 1 ] h3 = [ −1 1 −1 1 ]

h4 = [ −i −1 i 1 ] (5.2)

where the filter coefficients represent causal sequences [ hi (0) hi (1) hi (2) hi (3) ], for
i = 1, . . . , 4. Multiplying through, we get

Y 1 =


L H Lt L H Bt

1 L H Bt
2 L H Bt

3
B1 H Lt B1 H Bt

1 B1 H Bt
2 B1 H Bt

3
B2 H Lt B2 H Bt

1 B2 H Bt
2 B2 H Bt

3
B3 H Lt B3 H Bt

1 B3 H Bt
2 B3 H Bt

3

 (5.3)

where each submatrix of Y 1 represents 16 size (N/4) × (N/4) scaled and directionally
filtered replicas of the image. Thus, the submatrices are of the form Qa H Qbt

, where Qa ,
Qb are L, B1, B2, or B3.

Observe that each element Y 1(k, l) of Y 1 can be written in bilinear form c1t

k H c1
l

where c1t

k and c1
l are the kth row and lth column of C1 respectively, k, l = 1, 2, . . . , N .

Equivalently, in terms of submatrices Qa , Qb, any entry of Y 1 can be written as the product
of the corresponding row k of Qa and column l of Qb, for all k, l = 1, 2, . . . , (N/4).
Hence, Y 1(k, l) = qat

k Hk,l qb
l , where qa

k and qb
l are 4 × 1 nonzero vectors and Hk,l the

4 × 4 submatrix of H with the top lefthand coordinates (4(k − 1) + 1, 4(l − 1) + 1), for
k, l = 1, 2, . . . , (N/4). If the bilinear forms are rewritten as the sum of the point-by-point
product of Hk,l and the outer product qa

k qbt

l , then each entry Y (k, l) may be thought of
as the result of 2D filtering of 4 × 4 blocks of H with a 4 × 4 filter given by the outer
product ht

k hl of the 1D filters of Eq. (5.2). Hence the 2D WPT gives a 2D block transform
where the 16 4 × 4 filters operate on 4 × 4 blocks of the N × N image to generate 16
(N/4) × (N/4) filtered images.

We now consider the second level of decomposition Y 2 = A2 H (A2)t , where
A2 represents 1D WPT at level two. Equivalently, we can operate on the first level
decomposition Y 1

Y 2 =



L
B1

B2 O
B3

O I





L1 Q1 Q2 Q3

P1

P2 H1

P3





Lt Bt
1 Bt

2 Bt
3 O

O I


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=



L L1 Lt L L1 Bt .. .. .. L Q1 L Q2 L Q3

. B1 Q1 B1 Q2 B1 Q3

. B2 Q1 B2 Q2 B2 Q3

. B3 Q1 B3 Q2 B3 Q3

P1 Lt P1 Bt
1 P1 Bt

2 P1 Bt
3

P2 Lt P2 Bt
1 P2 Bt

2 P2 Bt
3 H1

P3 Lt P3 Bt
1 P3 Bt

2 P3 Bt
3


. (5.4)

The matrix in the center of the first equation is a block matrix description of Y 1 in (5.3). In
particular, L1 and H1 represent respectively the lowpass and all highpass outputs at the first
level, while Pj , Q j for j = 1, 2, 3 represent the bandpass outputs. Thus, the second level
decomposition preserves the highpass output H1, while operating on the lowpass image
L1 as before (i.e. as in the first level decomposition). In addition, subbands Pi and Qi for
i = 1, 2, 3 are operated upon in one dimension, each yielding four subbands in horizontal
and vertical directions respectively. Further levels of decomposition, for a total of M levels,
follow a similar pattern, where each lowpass approximation Li is decomposed into 16
subbands, while subbands lying in its rows and columns are operated on in one dimension.
This type of decomposition is a consequence of the 2D WPC group-based formulation
C H Ct , where C is the 1D WPT matrix. Alternatively, the 2D WPT could be formulated as
a filter bank following a logarithmic structure, iterating only on the lowpass approximation
at each level. This would eliminate the 1D processing of the aforementioned subbands.

5.2. The 2D WPT spectrum

We now interpret the 2D WPT spectrum of an N × N image. (For comparison purposes,
there is an extensive discussion of the 1D quadtree scanned WPT of an N × N image
in Section V of Foote et al. (2000), including its capabilities for edge detection and
comparisons with the 1D Haar transform—that discussion is not repeated herein, although
we do follow its nomenclature and development.) We consider the 2D WPT spectrum in
the context of the associated 2D filters. At the first level of decomposition the 16 subbands
may be obtained by (block) convolution of the image f (m, n) with filters hk,l (m, n). The
4×4 matrix hk,l is defined to be the outer product ht

k hl of the filters in (5.2). Equivalently,
these filters may be defined by 2D spatial exponentials of the form ei(2π/N)umei(2π/N)vn ,
for m, n = 0, 1, 2, 3, where u, v are the spatial frequency parameters in cycles per pixel
(cpp). Here u, v assume values 0, (N/4), (N/2), and (3N/4).

As with the 1D WPT for an image with real entries, the “off-diagonal” spectral
decomposition blocks at each level occur in complex conjugate pairs (located
symmetrically across the main diagonal in the 1D quadtree spectrum); this is a reflection
of the fact that the corresponding convolution filters are complex conjugate pairs. Likewise
for the 2D separable WPT the nonreal convolution filters occur in conjugate pairs, and
consequently for real images at level one of the 2D WPT, convolutions with only nine of
the 16 filters hk,l need be computed.
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Fig. 4. 2D rectilinear WPT magnitude and phase.

With this in mind we consider the effect of the filters on the spectrum, for particular
input signals. Filters h1,2(m, n), h1,3(m, n) and h1,4(m, n) are sensitive to frequencies
ei(2π/N)um ei(2π/N)vn , where u = 0 and v = (N/4), (N/2), (3N/4) respectively; that
is, frequencies with only a horizontal variation. Hence these correspond to edges that
run vertically or have a vertical component. In an analogous fashion, filters h2,1(m, n),
h3,1(m, n) and h4,1(m, n) are sensitive to signals with a vertical variations: v = 0 and
u = (N/4), (N/2), (3N/4), respectively, and therefore to edges that run horizontally
or those that have horizontal components. For such signals which constitute part of the
basis set for the 2D 4 × 4 DFT, and which have a zero average value, the 2D WPT
spectrum consists of a constant value 16 in the corresponding spectral block and zero
elsewhere. (Equivalently, for such signals defined only on a 4×4 grid, the spectrum would
be one point of value 16 in the corresponding spectral block.) In the top row of Fig. 4
it is possible to identify image edges that have components along vertical edges with
frequencies defined by ei(2π/N)0me j (2π/N)vn, where v = (N/4), (N/2), (3N/4). Edges
with components along horizontal edges with frequencies defined by ei(2π/N)umei(2π/N)0n ,
where u = (N/4), (N/2), (3N/4) appear in the lefthand column. Clearly, horizontal and
vertical spatial exponential signals defined above, with a specific phase factor result in
a spectrum of value 16 with the same phase factor. The interpretation in the context of
edges is that a nonzero phase angle reflects a shifted edge, and the sign of the phase
angle reflects whether the edge is increasing or decreasing. For the output of real filters
h1,3(m, n) and h3,1(m, n), the phase spectrum is either 0 or π . For horizontal and vertical
spatial exponentials with frequencies other than (π/2), π , (3π/4), the spectrum consists
of components only with horizontal or vertical frequencies (π/2), π , (3π/4) respectively.
This is due to the orthogonality of the 2D exponential signals.

Filters hk,l (m, n), for k, l = 2, 3, 4 are responsive to exponentials with frequencies in
both horizontal and vertical directions, that is u, v = 0, (N/4), (N/2) and (3N/4), and
hence to diagonal edges. For such signals the spectrum has a value 16 in the corresponding
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signal block. For signals (diagonal edges) with other horizontal and vertical non-zero
frequencies, the spectrum will typically have components in all 16 subbands.

Finally, for an image, the phase of the 2D WPT spectrum has a different interpretation
than that for the 1D WPT. In the latter transform the phase angle of the second harmonic
component—obtained by convolution with filter h2—represents the angle of a gradient
vector calculated with respect to an axis rotated −π/4 with respect to the x-axis. Hence it
measures the angle of the corresponding edge on a 2×2 grid. In the 2D WPT, a zero phase
angle represents an edge orthogonal to the 2D spatial exponentials ei(2π/N)umei(2π/N)vn

where u, v = 0, (N/4), (N/2), (3N/4). A nonzero phase angle still represents an edge
orthogonal to the same exponential, except that the exponential now has the added phase.
That is, for a given edge in a 4 × 4 block, the 15 associated spectral points give the
decomposition of the edge in 15 directions (zero phase). The phase portion of the spectra
defines the shift of the edges from the 15 directions.

6. Future directions

We conclude with some remarks on promising avenues for further investigation and
applications. First of all, the theory developed herein is predicated on the action of an
underlying group G on the spatial domain L(X) of signals. By the basic harmonic analysis
of this group action there is a group-based convolution given by the formula

( f � h)(x) = |X |
|G|

∑
β∈G

f (βa)h(β−1x), for all x ∈ X,

where f, h ∈ L(X) and a is a fixed but arbitrary base point in X (see Section II of
Mirchandani et al., 2000). Convolution in turn gives rise to families of group-invariant
filters f �→ f � h. Filters are elemental to most signal processing applications, such as
pattern recognition, data compression, and noise reduction.

In the particular case of the 1D WPC group action on L(X), group-based convolution is
explored in some detail in (ibid.). In particular, efficient algorithms are given for computing
1D WPC convolution, examples are computed, and applications are explored. Similar
formulas for the 2D WPT may easily be derived from the 1D formulas. Indeed, since
the 1D representations afforded by the action of WPC groups on trees are multiplicity-
free (no repeated irreducible components in the spectral decomposition), it follows easily
that the tensor product of two such representations is also multiplicity-free. Hence the
2D decomposable WPC representations on L(X1 × X2) are multiplicity free. The 2D
WPC convolution of two 2D signals f and h may be efficiently computed as follows:
first compute their 2D group-based Fourier transforms, f̂ and ĝ, “multiply” these spectra
in the spectral domain, and then take the inverse group-based Fourier transform to render
the convolution product in the spatial domain (delta function) basis. Because the 2D WPC
representation is multiplicity-free, this “multiplication” in the spectral domain reduces to a
set of scalar-matrix multiplications, one for each irreducible component.

A promising line of research would therefore be to investigate the properties of 2D
convolution for application to various classical image processing problems, particularly
for edge detection and multiresolution similarity detection. Comparisons could be made
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between the existing 1D WPT results (which use the quadtree scanning method for 2n ×2n

images), and both the rectilinear and quadtree 2D separable WPT.
Since trees are 1D (thick) affine buildings, another promising area for exploring

algebraic approaches to multi-dimensional signal processing may be to seek ways of
extending the WPC group analysis to higher rank buildings. A first step would be to attach
a simplicial complex geometry to selected subsets of the sample nodes X , and use this
to provide a multiresolution filtration of L(X). One might begin by considering truncated
affine buildings or buildings of spherical type acted on by various finite groups. Since the
family of finite groups acting on buildings of spherical type includes all the Chevalley
groups and their twisted versions, these considerations are aimed toward developing a
rich pool of possibilities from which to draw. Computational effectiveness will play an
important role in dictating the geometries and groups that are appropriate for signal
processing.
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