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�  Abstract Recent advances in molecular biology and computation have enabled evolutionary biologists 

to develop models that explicitly capture molecular structure. By including complex and realistic maps 

from genotypes to phenotypes, such models are yielding important new insights into evolutionary 

processes. In particular, computer simulations of evolving RNA structure have inspired a new conceptual 

framework for thinking about patterns of mutational connectivity and general theories about the nature of 

evolutionary transitions, the evolutionary ascent of nonoptimal phenotypes, and the origins of mutational 

robustness and modular structures. Here, we describe this class of RNA models and review the major 

conceptual contributions they have made to evolutionary biology. 
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1. INTRODUCTION 

1.1. Overview 
Evolutionary biologists have long sought to understand the evolutionary processes 

that transcend any particular biological system. Models are indispensable tools for 

gaining such insights. During the twentieth century, evolutionary theoreticians built 

a powerful conceptual framework on simple mathematical models. Recently, 

however, thanks to startling advances in molecular biology and computational 

power, a new generation of higher resolution quantitative models is changing our 

perspectives on the origins and processes that have led to the current diversity of life 

on Earth. 

1.2. Motivation  
Detailed models of RNA structural evolution have enabled advances in evolutionary 

biology.  The success of this model system stems partly from the biological 

importance of RNA and partly from our ability to rapidly and reliably predict the 

structures of these molecules. 

1.2.1. RNA IS CENTRAL TO BIOLOGY. DNA, RNA, and proteins are the three essential 

biological macromolecules. Although RNA mediates information transfer from DNA 

genes to functional proteins and thus lies at the heart of the “central dogma of molecular 

biology,” it has historically been overshadowed by DNA and proteins. Several recent 

discoveries, however, have brought RNA to center stage. RNA plays a vital regulatory 

role (for recent reviews see Mattick & Makunin 2006, Niwa & Slack 2007, Winkler & 

Breaker 2005) in many cellular processes and is the primary genetic material for a large 

number of viruses, including influenza and HIV. Molecular biologists are thus working 

hard to characterize the molecular structure of RNA and the relationship between RNA 

structure and biological function. 

1.2.2. RNA MAKES A GREAT EVOLUTIONARY MODEL. Evolutionary biologists have 

harnessed the efforts of RNA molecular biologists. They have built evolutionary models 

that explicitly consider the relationship between RNA sequence (genotype) and RNA 

structure (phenotype) which are vastly more biologically realistic than traditional 



mathematical models. Through computational simulations of evolutionary dynamics, 

these models yield rapid results, yet incorporate significantly greater biological detail 

than traditional mathematical models. Simulations have been used to study a wide range 

of evolutionary patterns and processes, such as the evolution of robustness (Ancel & 

Fontana 2000), the distribution of fitness effects of beneficial mutations (Cowperthwaite 

et al. 2005, 2006), the causes and implications of neutral evolution (van Nimwegen et al. 

1999), evolutionary transitions (Fontana & Schushter 1998a, Huynen et al. 1996), and the 

structures of fitness landscapes (Schushter et al. 1994). 

2. THE MODELS 

2.1. History 
This modeling framework originates in the work of Manfred Eigen and, later, Peter 

Schuster (Eigen 1971, Eigen & Schushter 1979). They sought to address origin-of-

life questions, and, in particular, develop a general theory for the emergence of 

biological information and self-replicating life from “molecular chaos.” Based on 

the assumption that early life must have undergone highly error-prone replication, 

Eigen sought to understand the evolutionary consequences of high mutation rates 

(Eigen 1971). 

Two influential concepts emerged from this work. Eigen & Schuster used 

mathematical models to demonstrate that the balance between mutation and 

selection could result in a quasi-species---a population that stably includes not only 

the wild type (best type) but also suboptimal mutants of that wild type (Eigen & 

Schushter 1979). At very high mutation rates, a population may, in fact, include only 

very few wild-type genotypes and many less-fit variants. The quasi-species concept 

has often been thought to describe an entirely novel set of evolutionary principles. 

Recently, however, this concept has been shown to be an extension of classic 

mutation-selection balance theory (Bull et al. 2005, Wilke 2005). The concept has 

been embraced by virologists who regularly observe that rapidly mutating viral 

strains may achieve high levels of diversity, yet there is debate as to whether these 



viruses truly evolve as quasi-species (Domingo 2002, Eigen 1996, Holmes & Moya 

2002). 

Eigen’s second influential concept is the error catastrophe, the genetic meltdown 

of a population experiencing excessively high mutation rates. He showed 

mathematically that, under fairly reasonable assumptions, there would be a critical 

mutation rate below which populations would stably persist as a quasi-species and 

above which the wild-type and its close mutants would disappear entirely. Based on 

these ideas, virologists have sought to cure viral infections by using chemical 

mutagens to induce error catastrophes. 

To test these ideas, Eigen encouraged the development of mathematical and 

computer models of evolving molecular structures (Eigen 1971). He recognized that 

such biologically grounded and highly detailed models would elucidate evolutionary 

dynamics at a higher level of resolution than previously possible. Many researchers 

have taken his charge and developed models of evolving RNA and protein 

molecules (see Chan & Bornberg-Bauer 2002 and references therein). Here, we 

focus on RNA-based evolutionary models. We describe the structures of these 

models, diverse methods for analyzing them, and the resulting insights into 

evolutionary processes. 

2.2. RNA Folding 
RNA molecules are composed of four nucleotides---adenine (A), guanine (G), 

cytosine (C), and uracil (U). Pairs of nucleotides in an RNA molecule can form 

stable electrostatic interactions, thus holding two parts of a molecule close together. 

The strength of an interaction varies with the specific combination of nucleotides, 

and more stable interactions tend to form at the expense of less stable interactions. 

Through such pairing, RNA molecules fold into secondary structures (hereafter 

shapes). The shape of an RNA molecule is composed of combinations of familiar 

motifs, such as stems (helical base-paired regions) and loops/bulges (unpaired 

regions) (Figure 1). 



 
Figure 1. Diagram of genotype-to-phenotype map in the RNA model system. The genotype is the 

primary nucleotide sequence and the phenotype is the most probable secondary structure (shape). 

Shape is predicted from sequence using thermodynamic folding algorithms. We label the primary 

RNA shape motifs. Stems are contiguous stretches of base pairs that include at least two base pairs, 

loops are unpaired bases that connect the two halves of a stem, and a bulge is an unpaired region in 

the middle of a stem. Parenthetical notation represents paired bases as matching parentheses and 

unpaired bases as dots. This notation contains all of the structural information given in the graphical 

representation. 

The shape of an RNA molecule may be vital to its function, particularly for 

functional RNA molecules (as opposed to protein-coding RNA molecules) like 

ribosomal RNA, micro-RNA molecules, and ribozymes. In fact, the function of a 

molecule depends not only on its (two-dimensional) shape, but on its (three-

dimensional) tertiary configuration, which includes additional far-reaching pairings 

between nucleotides already participating in secondary-structure motifs. The 

formation of tertiary interactions, however, is not particularly well understood. 

Fortunately, RNA shapes can be predicted with reasonable accuracy, and constitute 

most of the full structure of a typical molecule (Hofacker et al. 1994; Mathews et al. 

2004, 1999; Zuker & Stiegler 1981). 

Theoreticians originally developed a set of rules for predicting RNA shape, based 

on thermodynamic considerations (Waterman 1978). These rules assume that a 



molecule will fold into the shape that releases the most energy upon formation, and 

thus is the most stable configuration. This is called the minimum-free-energy (mfe) 

shape of a molecule. The RNA folding rules are much simpler than the analogous set 

for proteins, largely because RNA has a smaller set of building blocks (four 

nucleotides versus twenty amino acids), and generally forms simpler secondary 

structural motifs. Michael Zuker and colleagues developed the first efficient 

computer algorithms to predict RNA shape using this approach (Zuker 1989, Zuker 

& Stiegler 1981). Their software, called mFold, is still actively developed and freely 

available at http://www.bioinfo.rpi.edu/applications/mfold/. More recently, Ivo 

Hofacker and colleagues have been developing and maintaining the ViennaRNA 

package, which includes many computational tools for folding and analyzing RNA 

structures and is freely available from http://www.tbi.univie.ac.at/~ivo/RNA/ 

(Hofacker et al. 1994). Researchers are continually improving the accuracy and 

scope of these folding algorithms. For example, new versions can predict the shapes 

of RNA molecules during interactions with other molecules (Bernhart et al. 2006, 

Mathews 2006, Mathews & Turner 2006). 

These thermodynamic folding algorithms make several simplifying assumptions. 

Notably, they cannot predict pseudoknots (a common tertiary motif) or noncanonical 

base interactions (Hofacker et al. 1994). Researchers have developed comparative-

genomics-based approaches that generally yield more accurate predictions of RNA 

shape, particularly for large RNA molecules (Gutell et al. 2002). The comparative 

approach, however, is much slower than the thermodynamic approach and requires 

large sets of homologous sequences to predict the shape of any given sequence. 

Thus it is not computationally tractable for evolutionary simulations. 

2.3. Model Overview 
RNA models typically simulate a large population of RNA molecules evolving via 

mutation and natural selection. The fitness of any given molecule is determined by 

first predicting its shape(s) and then applying a prespecified fitness function to these 

predictions (described in detail below). Molecules replicate in proportion to their 

fitnesses and, upon replication, bases mutate randomly at a prespecified rate. Some 



versions assume discrete populations (Cowperthwaite et al. 2006) whereas others 

assume a continuous individual-based birth-death process (Ancel & Fontana 2000, 

Fontana & Schushter 1998a, Huynen et al. 1996, van Nimwegen et al. 1999). 

Analogies can be drawn between the particulars of this model and any other 

evolutionary system. Each nucleotide is a genetic locus with four possible alleles (A, 

C, G, or U); interactions among these loci determine the phenotype; and mutations 

can cause a locus to switch from one allele to another, which, depending on the rest 

of the molecule, may alter the phenotype. These models do not make many of the 

assumptions often found in evolutionary models. For instance, fitness stems from a 

biologically grounded model of molecular folding. Thus the fitness of a given 

mutant does not come from an assumed probability distribution, but rather is 

determined organically. The likelihood that a mutation is beneficial or deleterious, 

and the nature of epistatic (nonadditive) interactions among loci are similarly 

unconstrained. 

2.4. The Genotype-to-Phenotype Map 
Phenotypes are produced by manifold interactions between genetic, cellular, 

organismal, and environmental factors. The term genotype-to-phenotype map refers 

to this complicated route from genotype to phenotype. The phenotypes of an 

organism (physiological and behavioral) collectively interact with the environment 

(including other organisms) to determine fitness. Ultimately, evolutionary biologists 

aspire to characterize these complex processes and their evolutionary consequences, 

but these studies have just begun. 

The main advantage of RNA folding models is their realistic genotype-to-

phenotype map. Unlike many traditional population genetic models, which 

completely ignore phenotype and assume simple one-to-one maps from genotype to 

fitness, the phenotypes in the RNA models result from detailed interactions among 

genes and their microenvironment (Eigen 1971, Fontana & Schushter 1987). In 

particular, the genotypes are primary nucleotide sequences and the phenotypes are 

the shapes predicted from these sequences via thermodynamic folding algorithms. 

Thus the algorithms serve as biologically motivated genotype-to-phenotype maps 

(Schushter et al. 1994). 



The original RNA models consider only the single most-stable (mfe) shape of 

each molecule (Figure 2a). We refer to these as simple models. In reality, however, 

an RNA molecule may not necessarily fold into its mfe shape, and may even 

spontaneously switch among several thermodynamically probable shapes.  Thus 

researchers introduced a more complex, but perhaps more biologically realistic, 

model in which sequences are mapped to the set lowest free energy shapes (Figure 

2b) (Ancel & Fontana 2000). We refer to these as plastic models because they 

capture structural plasticity produced by Brownian motion. 

 
Figure 2. The two fitness models for RNA. (a) Under the simple model, the fitness of an RNA 

genotype depends only on the similarity of its mfe shape to the target shape. (b) Under the plastic 

model, the fitness of a molecule is determined by the entire ensemble of probable (lowest free 

energy) shapes. The similarity of any given shape to the target contributes to the final fitness in 

proportion to its Boltzmann factor, which is an estimate of the thermodynamic stability of a shape. 



2.5. Fitness Functions 
As discussed above, fitness is determined in two steps. First the shape(s) of a 

molecule are predicted using thermodynamic algorithms, and then a fitness value is 

attained via a function from shapes to real numbers. Here, we use the term fitness 

function to refer just to this second function from phenotype to fitness and the term 

fitness landscape to describe the projection of a large set of genotypes (a so-called 

sequence space) to their ultimate fitness values. 

The fitness functions used in RNA models are often based on the similarity of a 

molecule’s shape(s) to a predetermined ideal target shape. Fitness typically 

decreases monotonically as a function of the distance to the target shape. These 

models thereby use shape as a proxy for function and do not model function 

explicitly. This is justified (at least somewhat) by the dominant role typically played 

by shape in functional tertiary structure and the extreme conservation of shape 

throughout the evolutionary history of most functional RNA molecules (Doudna 

2000). 

In simple models that consider only the mfe shape, fitness is determined by the 

distance between those structures and the target shape. In the plastic models that 

consider the ensemble of favorable shapes, fitness is determined by the distances 

between all shapes in the ensemble and the target. In particular, each shape 

contributes to the overall fitness of the molecule in proportion to its thermodynamic 

likelihood, which is typically estimated by the Boltzmann coefficient (Ancel & 

Fontana 2000). Assuming thermodynamic equilibration, the Boltzmann coefficient 

of a shape estimates the fraction of time an RNA molecule spends in that shape and 

is calculated using an algorithm developed by McCaskill and coworkers (McCaskill 

1990). 

There are several methods for quantifying the structural distance between two 

shapes (Ancel & Fontana 2000, Stadler et al. 2001). For example, one can represent 

each shape in parenthetical notation, where dots stand for unpaired bases and 

matching parenthesis stand for paired bases (as in Figure 2), and then compute a 

Hamming distance between two such representations of shapes. Alternatively, the 

tree-edit distance measures the differences between the binary-tree representations 



of two shapes. Although researchers have used a variety of shapes distance metrics, 

several studies suggest that most observations in RNA models are relatively robust 

to the specific choice of distance metric (Ancel & Fontana 2000, Fontana & 

Schushter 1998b). 

The form of the fitness function, that is, how exactly fitness declines as distance 

to the target grows, can profoundly influence the outcome of evolution. One might 

naively assume that this is linear, such that any unit decrease in similarity to the 

target shape results in the same loss of fitness. Given that RNA structures are highly 

evolutionarily conserved, however, it is more likely that fitness declines faster than 

similarity. That is, even slight deviations from the ideal shape result in substantial 

loss of function. Many studies have therefore assumed hyperbolic fitness functions 

(Ancel & Fontana 2000; Cowperthwaite et al. 2005, 2006; Fontana & Schushter 

1998a). 

3. EVOLUTIONARY INSIGHTS INTO FITNESS LANDSCAPES 

Since Sewall Wright introduced fitness landscapes in 1932, the concept has 

profoundly influenced evolutionary thinking (Wright 1932). Fitness landscapes are 

maps from large sets of genotypes to their fitnesses. Metaphorically, as populations 

evolve, they traverse the surfaces of fitness landscapes with mutation and 

recombination sampling new regions and natural selection pushing uphill. Though 

fitness landscapes are extremely high dimensional for most real biological systems, 

they are often illustrated as two-dimensional surfaces in three-dimensional 

Euclidean space. The structure of a fitness landscape is thought to constrain many 

micro- and macroevolutionary processes, including the rates of adaptation and 

speciation (Gavrilets 2004). 

With the advent of high-throughput laboratory methodologies and modern 

computation, researchers are starting to undertake large-scale characterizations of 

fitness landscapes (Cowperthwaite et al. 2005 Fontana & Schushter 1998b; Gruner 

et al. 1996a,b; Li et al. 1996; Lunzer et al. 2005; Weinreich et al. 2006). The RNA 

model system offers the ideal balance of biological complexity and computational 

tractability for such studies. Some of the earliest and most exciting ideas about 



fitness landscapes have come out of this body of work (Cowperthwaite et al. 2005; 

Fontana & Schushter 1998a,b; Gruner et al. 1996a,b;  Schushter et al. 1994). 

Technically, an RNA fitness landscape is a projection from genotype space---the 

set of all possible sequences of a given length---to fitness space (often the real 

numbers). Recall, however, that these models use shape as a proxy for fitness. 

Consequently, the landscapes that have been characterized are actually maps from 

sequence space to shape space, where the mapping functions are thermodynamic 

folding algorithms. All of the RNA landscape studies so far are based on the simple 

map from sequence to mfe shape (which ignores alternative low free energy 

structures). 

The total number of sequences of a specific length  n  is  4
n . There is extensive 

degeneracy in the map from sequences to shapes, with many sequences folding into 

the same mfe shape, which means the size of the shape space will always be less 

than the size of the sequence space (Schushter et al. 1994). Waterman first proposed 

an upper bound for the number of shapes of length n---
  
S

n
= 1.4848! n

"
3

2 (1.8488)n  

based on several assumptions about the nature of the shapes, such as stem length and 

loop size (Waterman 1978). In the first large-scale computational surveys to 

estimate the extent of redundancy, Gruner and colleagues folded all 30-nucleotide 

binary RNA molecules (composed of only A/C or G/U). Approximately one billion 

unique sequences folded into approximately 220,000 and 1,000 unique shapes in the 

G/C and A/U landscapes, respectively (Gruner et al. 1996a,b). Evidence for similar 

degeneracy was found in partial surveys of four-nucleotide RNA landscapes 

(Fontana & Schushter 1998b, Schushter et al. 1994). Recently, we characterized 

several complete landscapes for short RNA molecules and found that the number of 

unique shapes exceeds Waterman’s theoretical upper bound, but we did not 

completely meet the assumptions of Waterman’s theory (Cowperthwaite et al., 

submitted). 

A many-to-one relationship between genotypes and phenotypes is not unique to 

RNA. For instance, there is considerable sequence divergence in 16S rDNA 

sequences, yet there is extensive functional conservation. As a result, these are key 



molecules for phylogenetic analysis (Delsuc et al. 2005). Degeneracy has been 

observed in proteins based on lattice models of protein structure (Chan & Bornberg-

Bauer 2002) and is at the heart of the neutral theory of molecular evolution---which 

asserts that most mutations have negligible phenotypic consequences (Kimura 

1968)---and the molecular clock hypothesis (Zuckerkandl & Pauling 1962). As we 

discuss below, this redundancy profoundly affects the evolutionary dynamics of 

RNA. 

3.1. Mutational Networks 
Evolutionary transitions from one phenotype to another are mediated by mutations 

to their underlying genotypes. Historically, evolutionary biologists have thought of 

mutations in terms of distributions of fitness effects and have sought to measure the 

fractions of mutations that are typically beneficial, neutral, and deleterious. 

Although these distributions are critical determinants of local evolutionary 

dynamics, they provide little information about larger-scale processes. To this end, it 

is useful to think in terms of mutational paths connecting distant genotypes and, 

more generally, in terms of the large-scale patterns of mutational connectivity within 

genotype spaces. 

Specifically, the space of all genotypes can be construed as a mutational network 

in which each genotype is a node and mutations between genotypes are edges. In 

other words, any two genotypes that differ by exactly a single point mutation are 

connected by an edge (Figure 3, bottom). One can then represent phenotypes (or 

fitness values) as colors. The coloration in Figure 3 illustrates the degeneracy in the 

sequence-shape relationship discussed above. The colored edges represent neutral 

mutations that preserve the phenotype, and black edges represent non-neutral 

mutations that may be beneficial or deleterious. RNA mutational networks are 

regular graphs, that is, each genotype is mutationally connected to exactly 3L other 

genotypes, where L is the sequence length. 



 

Figure 3. Mutational networks capture patterns of mutational connectivity among genotypes and 

phenotypes. In the bottom network, each node is a genotype and each edge is a point mutation. Colors 

represent phenotypes, and each group of genotypes that share the same color forms a neutral network. The 

top half shows a phenotype network in which each phenotype is condensed into a single node and two 

phenotypes are connected by an edge if there is at least one point mutation that converts one phenotype to 

the other. 

3.2. Neutral Networks 
Each colored patch in Figure 3 is a neutral network---a mutationally connected set 

of genotypes that produces the same phenotype (or fitness value). This concept 

originated and has been studied extensively in the RNA model system (Fontana et 

al. 1993b; Gruner et al. 1996a,b; Huynen et al. 1996; Schushter et al. 1994; van 

Nimwegen et al. 1999). Following Eigen’s quasi-species theory, it is perhaps the 

most influential idea to emerge from this body of work. 

3.2.1. NEUTRAL NETWORK STRUCTURE. Consider a phenotype in a fitness landscape. 

The structure of its neutral network and its mutational connectivity to the neutral 

networks of other phenotypes determines the likelihood that it will evolve, and if so, 

whether it will give rise to other phenotypes. To understand constraints on phenotypic 

evolution, we must address questions like the following: Are neutral networks confined 

to small sections of sequence space or do they span the entire space? Do phenotypes have 

single contiguous neutral networks or several disjoint components? What patterns of 

adjacency exist between neutral networks for different phenotypes? 

The first generality to emerge from neutral network studies is that “not all phenotypes 

are equal” (Fontana & Schushter 1998b, Schushter et al. 1994). Within an RNA fitness 

landscape, any given shape may be realized by many or only a few sequences. In other 

words, the sizes of the neutral networks vary considerably. Henceforth we use the term 



phenotype abundance to refer to the number of genotypes that map to a particular 

phenotype. The distributions of phenotype abundances within RNA fitness landscapes 

have been shown to follow a generalized Zipf’s law, a type of semiexponential 

distribution (Cowperthwaite et al., submitted; Fontana et al. 1993a,b; Schushter et al. 

1994). The critical implication is that most RNA shapes are relatively rare while a few 

are quite abundant. 

The neutral network of a particular phenotype may be composed of a single component 

or multiple disjoint components (Gruner et al. 1996a,b). A component is a set in which all 

genotypes are connected by paths of neutral mutations. If a neutral network is comprised 

of disjoint components, then it contains two or more components that are not connected 

to each other by neutral mutations. Surprisingly, the number of disjoint components in a 

phenotype’s neutral network does not appear to correlate with its abundance (M.C. 

Cowperthwaite & L.A. Meyers, unpublished). 

The neutral networks of highly abundant phenotypes have been shown typically to 

span entire fitness landscapes (Fontana et al. 1993b, Schushter et al. 1994). In other 

words, it is possible to mutate (in succession) every nucleotide in a sequence, all the 

while preserving its shape. Maynard Smith proposed a similar phenomena in protein 

fitness landscapes (Maynard Smith 1970). This suggests that neutral networks may 

facilitate evolution by allowing populations to explore vast expanses of genotype space 

(via mutation) while maintaining constant fitness (Kirschner & Gerhart 1998, Wagner 

2005). 

3.2.2. PHENOTYPE NETWORKS. As illustrated in Figure 3, mutational networks 

connecting genotypes give rise to mutational networks connecting phenotypes, or 

phenotype networks. In particular, we aggregate all genotypes that produce a particular 

phenotype into a single node and connect two phenotypes with an edge if there is at least 

one point mutation that converts one phenotype to the other. For RNA, we say that two 

shapes  A  and  B  are mutationally adjacent if there exists at least two sequences  a  and  b  

that differ by exactly one mutation and produce  A  and B , respectively. Mutationally 

adjacent shapes are connected by edges in the corresponding phenotype network. 

RNA phenotype networks appear to be highly irregular, with few nodes connected to 

many others and most nodes connected to few others (Cowperthwaite et al., submitted, 



Schushter et al. 1994, Stadler et al. 2001). In contrast, classical population genetic models 

often assume that genotypes map one-to-one onto phenotypes, and that the mutational 

connectivity among phenotypes is fairly homogeneous. Thus the RNA model system can 

offer valuable insights into patterns of mutational connectivity and the evolutionary 

implications of such patterns (Cowperthwaite et al., submitted, Fontana & Schushter 

1998a, Huynen et al. 1996). 

One of the first studies to characterize the mutational adjacencies of RNA shapes 

found that almost any genotype is surrounded by a specific set of highly abundant 

phenotypes (Schushter et al. 1994). In other words, almost any genotype is within one or 

a few point mutations of the most common shapes in the landscape; and vice versa, these 

common shapes are mutationally close to most other phenotypes in the landscape. This 

hypothesis is called shape-space covering. In phenotype network terms, abundant shapes 

are connected to almost every other shape. We similarly found a positive correlation 

between shape abundance and the number of mutationally adjacent shapes for small RNA 

molecules (Cowperthwaite et al., submitted). 

Fontana and colleagues developed a formal theory to describe the genetic accessibility 

among mutationally adjacent phenotypes and the implications of different mutational 

structures on evolutionary dynamics (Stadler et al. 2001). Mutationally adjacent shapes 

are those shapes for which there exists at least one point mutation that can cause a change 

between those two shapes. These efforts and earlier simulation studies suggest that the 

degree of mutational connectivity is not simply a binary property (connected or 

unconnected by point mutations) (Fontana & Schushter 1998a,b; Huynen et al. 1996). 

Rather some mutationally adjacent phenotypes are nearer to each other than other 

mutationally adjacent phenotypes, meaning that they are more likely to reach each other 

via mutation (Fontana & Schushter 1998b). Furthermore, this connectivity is always 

asymmetrical, resulting from the nonuniform boundaries among adjacent neutral 

networks (Fontana & Schushter 1998b, Stadler et al. 2001). For example, consider two 

phenotypes  A  and B : Asymmetry means that mutating from  A  frequently produces B , 

whereas mutating from  B  does not frequently produce A . In phenotype network terms, 

this variation in connectivity can be represented as weighted, directed edges between 

nodes. The weight on an edge pointing from  A  to  B  indicates the probability that any 



given genotype in the neutral network for  A  will mutate to phenotype B , and, vice versa, 

the weight on the edge pointing in the opposite direction indicates the fraction of 

mutations to genotypes in the neutral network for  B  that produce phenotype A . 

3.2.3. RUGGED NEUTRAL NETWORKS: AN IMPORTANT CAVEAT. Most RNA neutral 

network studies have assumed the simple model in which the fitness of a molecule is 

determined entirely by its mfe shape. The neutral networks in these studies are simply 

sets of RNA molecules that fold into the same mfe shape. In reality, however, the fitness 

of a molecule is determined by other factors, notably the kinetics and energetics of 

folding. Two molecules that share the same mfe shape may have very different 

thermodynamic properties and, consequently, different fitnesses. Thus, so-called neutral 

networks may not truly be neutral. 

The plastic model, introduced by Ancel & Fontana (2000), inserts ruggedness into 

neutral networks. Recall that, in this model, the fitness of an RNA molecule is 

determined by its entire ensemble of energetically favorable shapes (the specific 

structures in the ensemble and their relative thermostabilities). Whereas the simple fitness 

function was discrete (only a finite set of possible values corresponding to a finite set of 

mfe shapes), the plastic fitness function is continuous (infinite possibilities). In general, 

any two molecules that share the same mfe shape will have different fitnesses under this 

model. Ancel & Fontana found that neutral networks have distinct patterns of 

heterogeneity, with the most thermodynamically stable molecules lying at the dense 

centers of neutral networks, where most mutations preserve the mfe shape. Thus, if 

fitness positively correlates with thermodynamic stability, then mfe neutral networks are 

no longer plateaus but rather mounds that may impede the neutral drift of a population 

toward alternative phenotypes. 

Given that the plastic model is probably more realistic than the simple model, one 

might be tempted to reject the notion of a neutral network altogether. We argue, however, 

that the concept remains instructive. The mfe shape is the most likely structure and an 

important determinant of fitness. Although neutral networks may be more rugged than 

often assumed, they still contain expansive sets of mutationally connected molecules with 

roughly similar fitness. 



4. EVOLUTIONARY DYNAMICS 

4.1. Introduction 
Intuitively, the structures of fitness landscapes fundamentally constrain evolution. In 

this section we review a number of theories linking mutational connectivity to 

evolutionary dynamics that originated in and/or have been tested using the RNA 

model system. First we focus specifically on the evolutionary consequences of 

mutational networks and then turn to more general studies of mutations and their 

interactions. 

4.2. Evolutionary Dynamics on Mutational Networks 
Natural selection acts on variation, and thus requires mutations to new phenotypes. 

The likelihood that a novel mutant phenotype will arise in a population, however, 

depends on the underlying mutational network, and can itself evolve as the 

population traverses this network. 

4.2.1. EVOLVABILITY: NEUTRAL NETWORKS ENABLE EVOLUTION. There is a widely 

believed claim that neutral networks increase evolvability (Kirschner & Gerhart 1998, 

Stadler et al. 2001, Wagner 2005). The rationale is that populations evolving on neutral 

networks may undergo significant genetic change with only negligible phenotypic 

change, and can thereby explore fitness landscapes. In other words, neutral mutations can 

accumulate until a genetic background arises that is poised for beneficial change. Under 

this scenario, neutral mutations will be transient, ultimately facilitating adaptation by 

subsequent beneficial mutations (Wagner 2005). 

Several RNA simulation studies have shown that populations evolving toward a target 

shape tend to experience long periods of phenotypic stasis, interspersed with short 

periods of rapid phenotypic change (Ancel & Fontana 2000; Cowperthwaite et al. 2006; 

Fontana & Schushter 1987, 1998a,b; Huynen et al. 1996). The last of these studies 

showed that the number of unique sequences in the population increased during periods 

of phenotypic stasis and used multidimensional scaling to illustrate the genetic dispersal 

of the population. The population typically subdivides into several genetically different 



yet phenotypically equivalent subpopulations, each exploring a different region of the 

fitness landscape via mutation and natural selection. 

According to this theory, the more expansive a neutral network, the more likely a 

population will be able to discover higher fitness phenotypes and thus evolve away from 

that network. In recent work, however, we systematically asked whether the abundance 

of a phenotype (the size of its neutral network) increases the likelihood of (a) evolving 

that particular phenotype and/or (b) evolving from that phenotype to other new 

phenotypes (Cowperthwaite et al., submitted). We found that phenotype abundance 

positively correlates with the number of mutationally adjacent phenotypes, which, on the 

surface, supports both claims. Yet, in silico simulations suggest that populations evolving 

on large neutral networks (of abundant phenotypes) did not adapt more quickly than 

those evolving smaller neutral networks. This stems from the fact that, as the abundance 

of a phenotype increases, the probability of locating adjacent phenotypes rapidly 

diminishes (Cowperthwaite et al., submitted). Populations that evolve abundant 

phenotypes may therefore face a “needle in the haystack” problem and be unlikely to 

further adapt even if superior phenotypes are just a single mutation away. 

The size of a phenotype’s neutral network does, however, affect the probability that the 

phenotype will arise (Cowperthwaite et al., submitted). Specifically, our simulated 

populations were more likely to evolve to abundant phenotypes than rare phenotypes. 

Thus, the structure of RNA mutational networks may bias evolution towards abundant 

shapes, whether or not those shapes are optimal. 

In the same study, we turned to real RNA molecules to test this provocative hypothesis 

(Cowperthwaite et al., submitted). Unfortunately, we are far from having the 

computational resources necessary to characterize entire fitness landscapes for large 

molecules. We thus developed a new statistical shortcut for estimating shape abundance: 

the “contiguity statistic” measures the cohesiveness of a shape and significantly 

correlates with abundance (based on an exhaustive folding of all molecules of length 12 

through 18). Figure 4 details the calculation of the contiguity statistic. By calculating the 

contiguity statistic for thousands of naturally occurring functional RNA molecules in 

Rfam---a curated database of functional RNA genes (Griffiths-Jones et al. 2005)---it was 

found that natural phenotypes, indeed, have significantly higher contiguity values (and 



thus higher abundance, perhaps) than expected for molecules of similar length and base 

composition (Cowperthwaite et al., submitted). 

 

Figure 4. The contiguity statistic was developed to estimate phenotype abundance for large RNA 

molecules. This statistic came out of a study in which we folded all molecules of length 12 through 18 and 

directly measured abundances of all unique shapes (Cowperthwaite et al., submitted). (b) The contiguity 

statistic formula ( C ) captures the cohesiveness of the shape. We calculate this statistic on two simple 

shapes of length 12 and give the abundance of each shape. (b) The contiguity statistic strongly correlates 

(  R ! 0.80; P<2"10
#16 ) with phenotype abundance for RNA molecules of length 18. The graph shows 

the abundances and contiguity statistics for all 3211 unique shapes realized by molecules of this length. 

This correlation is equally strong for molecules of lengths 12 through 17. 

RNA molecules may therefore be constrained by both functionality and mutational 

accessibility, a phenomena we termed ascent of the abundant (Cowperthwaite et al., 

submitted). This suggests not only that RNA shapes (and other phenotypes) may be 

suboptimal, but also that evolution may be more repeatable and predictable than 

previously thought by virtue of underlying mutational constraints. 

4.2.2. PUNCTUATED EQUILIBRIA: CROSSING FROM ONE NEUTRAL NETWORK TO THE 

NEXT. One striking feature of the fossil record is the extensive discontinuity in forms 

(Eldredge et al. 2005), that is, periods of rapid phenotypic change are often separated by 

longer periods of relative stability. Although this may stem partly from observational 

biases (Eldredge et al. 2005), punctuated equilibria have also been observed in RNA 

models (Ancel & Fontana 2000, Cowperthwaite et al. 2006; Fontana & Schushter 1987, 



1998a,b; Huynen et al. 1996), protein models (Chan & Bornberg-Bauer 2002), digital 

organisms (Wilke et al. 2001) and microorganisms (Burch & Chao 1999). 

Figure 5 shows a typical simulation of RNA molecules evolving toward a target 

shape. As described earlier, populations disperse through neutral networks during the 

long periods of stasis. Fontana and colleagues set out to characterize the evolutionary 

transitions between these epochs (Fontana & Schushter 1998a). They claimed that there 

were two types of transitions---continuous and discontinuous---and proposed a simple 

criterion to distinguish them (Fontana & Schushter 1998b, Stadler et al. 2001). Recall that 

phenotypes differ greatly in their nearness, and a phenotype is said to be near any other 

phenotype that is likely to be produced by mutation. Continuous transitions are those that 

involve nearby phenotypes and discontinuous transitions are those that involve 

phenotypes that are relatively distant (unlikely to be realized by a single mutation). This 

study reconstructed the steps leading to each major transition. The initial period of rapid 

adaptation in the simulations occurred primarily through continuous phenotypic 

transitions; however, the transitions taking place during the subsequent punctuated 

dynamics were predominantly discontinuous. Thus, major adaptations are hypothesized 

to occur through fairly improbable jumps between barely adjacent neutral networks. 

These jumps are thought to be mediated by extensive neutral drift (Fontana & 

Schushter 1998a, Huynen et al. 1996). Genotypes that produce one phenotype but are 

converted to a very different (but better) phenotype by a single mutation must precede 

these jumps. Such genotypes are likely to be very rare, and may only appear after long 

periods of evolutionary wandering through neutral networks (Fontana & Schushter 

1998a, Schushter & Fontana 1999). 

In a related in vitro RNA study, researchers synthesized a single RNA sequence that 

assumes two entirely different phenotypes, each of which catalyzes a distinct ribozyme 

reaction (Joyce 2000, Schultes & Bartel 2000). By making relatively few mutational 

changes to this sequence, these researchers could produce new ribozymes that were 

highly active for one or the other ribozyme reaction. Thus this single sequence lies at the 

intersection of the two neutral networks for each function. Schultes & Bartel (2000) 

suggest that intersection sequences (those that realize both phenotypes) may mediate 

discontinuous transitions between phenotypes. 



 
Figure 5. Typical evolutionary dynamics in the RNA model system. Evolving populations experience 

relatively long periods of phenotypic stasis interspersed with short periods of rapid phenotypic change. This 

figure is based on a simulation of a population containing 500 RNA molecules, in which selection favors 

molecules that resemble the target shape (upper right). The Y-axis gives the average phenotypic distance of 

the population to the target shape, and thus low values correspond to high fitness. Shapes that dominate the 

population are depicted above the curve. 

4.2.3. GENETIC ROBUSTNESS: EVOLVING TO THE HEART OF A NEUTRAL NETWORK. 

Organisms exist in an ever-changing world. They must evolve to withstand 

heterogeneous conditions, which include both environmental and genetic perturbations 

(Meyers & Bull 2002). Evolutionary biologists seek to identify the mechanisms for 

achieving environmental and genetic robustness as well as the evolutionary origins of 

those mechanisms. 

Genotypes are genetically robust when mutations (or recombination) leave the 

resulting phenotype unchanged. In mutational network terms, genetically robust 

genotypes lie in the “dense” regions of neutral networks, where most mutations are likely 

to create genotypes within the same neutral network. In Figure 3, a genotype in the 

middle of a colored region would be completely robust because all of its mutations are 

neutral. 

Although it is easy to envision natural selection favoring organisms that can cope with 

environmental variation (Meyers & Bull 2002), the origins of genetic robustness are less 

intuitive (de Visser et al. 2003). Because a deleterious germ-line mutation does not 

manifest itself until the next generation, there is no immediate natural selection to prevent 



it. Under certain circumstances, however, natural selection can act over several 

generations to reduce the burden of such mutations (de Visser et al. 2003, van Nimwegen 

et al. 1999). There are several other theories for the origins of genetic robustness, some of 

which are nonevolutionary (de Visser et al. 2003, Gibson & Wagner 2000). 

This discussion goes back to the founders of the modern synthesis---Haldane, Fisher, 

and Wright---who offered different theories for the evolution of dominance. Dominance 

is a simple mechanism for robustness by which potentially deleterious mutations at a 

diploid locus are silenced by the dominant allele. Evolutionary biologists have focused on 

three scenarios that could give rise to genetic robustness: (a) adaptive robustness---

robustness evolves by natural selection, (b) intrinsic robustness---robustness is a 

correlated byproduct of character selection, and (c) congruent robustness---genetic 

robustness is a correlated byproduct of selection for environmental robustness (de Visser 

et al. 2003). These mechanisms are not necessarily mutually exclusive. 

Natural RNA molecules and RNA viruses appear to be both environmentally 

(thermodynamically) and genetically robust (Meyers et al. 2004; Sanjuán et al. 2006a,b; 

Wagner & Stadler 1999). Studies using the RNA model system have contributed 

significantly to our understanding of genetic robustness, particularly scenarios a and c 

above. For scenario a, van Nimwegen and colleagues developed an elegant mathematical 

model to show that the trans-generational costs of deleterious mutations are enough to 

drive populations into the hearts of neutral networks, in other words, that adaptive 

robustness is possible (van Nimwegen et al. 1999). In particular, this model considers a 

population evolving on an arbitrary neutral network and assumes that all mutations off 

the network are lethal. They successfully tested the predictions of their model using RNA 

simulations. Genetic robustness only evolved in these models, however, under relatively 

high mutation rates. 

Turning to scenario c, Wagner was the first to hypothesize that genetic robustness may 

evolve as a by-product of selection for environmental robustness (Wagner et al. 1997). 

The first semiempirical support for this hypothesis came somewhat accidentally from an 

RNA study (Ancel & Fontana 2000). Microenvironmental thermal fluctuations can cause 

an RNA molecule to wiggle between alternative low free energy shapes. An 



environmentally robust molecule is one that will fold rapidly and reliably into its optimal 

shape despite these fluctuations. 

To study the evolution of environmental robustness, Ancel & Fontana introduced the 

plastic model, which maps sequences to their ensemble of thermodynamically favorable 

shapes (described above). Selection for stable folding into a target shape indeed yielded 

populations of highly stable (environmentally robust) molecules. Surprisingly, the 

dominant shapes in the evolved populations looked nothing like the target shape. This 

was in dramatic contrast to natural selection under the simple (mfe shape) model, which 

almost always led populations to the target shape. 

Why did selection for environmental robustness drive populations into apparent 

evolutionary dead ends? The evolved populations were also highly genetically robust, to 

the extent that mutations almost never produced phenotypic novelty, thus precluding 

further adaptation. The researchers eventually connected the dots when they discovered a 

correlation between the alternate shapes that a molecule produces under thermodynamic 

noise and the shapes it produces upon mutation. They called this general property of the 

map from genotype-to-phenotype “plastogenetic congruence” (Ancel & Fontana 2000). 

As a consequence, molecules that are insensitive to thermal noise are also insensitive to 

the effects of mutation. A similar correlation has been observed for proteins (Bornberg-

Bauer & Chan 1999, Bussmaker et al. 1997, Vendruscolo et al. 1997). Extreme genetic 

robustness, to the point of an evolutionary standstill, thus evolved simply as a byproduct 

of environmental robustness. 

Ancel & Fontana’s study has other evolutionary implications. First, plastogenetic 

congruence may extend beyond biopolymers and be a general feature of genotype-to-

phenotype maps. Phenocopies---epigenetic mimics of genetically based phenotypes---

provide anecdotal evidence for plastogenetic congruence in other complex phenotypes 

(Queitsch et al. 2002; Rutherford & Lindquist 1998; True et al. 2004; Waddington 1950, 

1959). This may shed new light on Waddington’s theory of developmental canalization 

from the 1950s (Waddington 1950, 1959). He was among the first to argue that 

organisms have evolved developmental pathways that are robust to both environmental 

and genetic perturbations, and thus produce standard phenotypes in the face of variable 

environments and mutation. He does not, however, claim that these two forms of 



robustness share a common evolutionary origin. If plastogenetic congruence holds for 

organismal phenotypes, then Ancel & Fontana’s study suggests that genetic canalization 

may arise as a byproduct of environmental canalization. 

Second, the extremely robust molecules found at the end of the evolutionary 

simulations were also extremely modular (Ancel & Fontana 2000). They can be easily 

partitioned into structural subunits that withstand thermodynamic perturbations or genetic 

changes elsewhere in the molecule. Modularity, as it shifts the syntax of genetic 

variation, opens new avenues for phenotypic innovation. Though this advantage is 

compelling, it does not explain the origins of modularity in the first place. We have a 

chicken-and-egg predicament: Until both the modules themselves and recombinational 

mechanisms are in place, it is not clear that natural selection would favor such 

organization. The RNA study suggests an origin of modularity that does not rely on the 

eventual evolutionary benefits modularity might provide. In particular, it arises as a 

(second) byproduct of selection for environmental robustness. Consider a rough analogy 

between RNA folding and organismal development. Interactions between nucleotides 

influence the kinetic pathway of the molecule and its robustness to both the environment 

and mutations. Similarly, interactions between genes determine the outcome and stability 

of developmental pathways. Perhaps natural selection for environmental stability 

similarly sets the stage for modularity in genetic networks. 

4.2.4. SURVIVAL OF THE FLATTEST: QUASI-SPECIES AND ERROR THRESHOLDS IN 

COMPLEX MUTATIONAL NETWORKS. Recall that populations evolving under moderate 

mutation rates can form quasi-species---mutational clouds around a wild-type (optimal) 

genotype (Eigen 1971). Quasi-species have been observed in simulated populations of 

evolving RNA (Ancel & Fontana 2000), proteins (Wilke et al. 2001), and digital 

organisms (Wilke et al. 2001). Many RNA viruses are believed to exist as quasi-species, 

though there has been considerable debate over the utility of the term (Holmes & Moya 

2002, Moya et al. 2000, Wilke 2005). 

Recall further that error catastrophes occur when mutation swamps selection and a 

population is unable to maintain the wild type or its close relatives. Eigen originally 

discovered the error threshold (the critical mutation rate above which error catastrophes 

occur) in a model that assumes there is a single wild-type genotype and all other 



genotypes have identical significantly lower fitnesses (Eigen & Schushter 1979). What 

happens when the wild-type phenotype is produced by an entire neutral network of 

genotypes and not just one? Roughly speaking, an error threshold still exists, but it 

increases with the breadth of the neutral network, that is, the number of and mutational 

connectivity among genotypes contained within it. The larger and more connected the 

neutral network, the more likely a mutation will preserve the wild type phenotype. 

Similar reasoning suggests that neutral network breadth may influence the likelihood 

that a population will evolve one phenotype versus another. Imagine a population 

evolving in a complex mutational network where the topologies of neutral networks vary 

considerably among phenotypes. Under high mutation rates, phenotypes that have high 

fitness but small neutral networks may be easily displaced by less fit but more robust 

phenotypes. The extent to which neutral networks influence such competition among 

phenotypes depends on the mutation rate. Under very low mutation rates, fitness 

considerations alone dictate dynamics, whereas under high mutation rates, the breadth of 

neutral networks can be as or more important than fitness. This hypothesis has been 

called “survival of the flattest” (Wilke et al. 2001) and is a natural extension of Eigen’s 

theory. 

Survival of the flattest has been developed and tested in a series of mathematical 

models and simulations of evolving RNA and digital organisms (Bull et al. 2005, Wilke 

et al. 2001). In the Wilke et al. study, populations of digital organisms were evolved 

under two distinct mutation rates (high and low). When subsequently placed in 

competition under high mutation rates, populations that originally evolved under high 

mutation rates out-competed those that evolved under low mutation rates even though 

they had lower fitnesses. More recently, a plant virus competition experiment has 

suggested that similar tradeoffs may hold for plant viral pathogens (Codõner et al. 2006). 

Although virologists have latched onto these ideas and harnessed them to develop 

effective antiviral strategies (Domingo 2003), Bull and colleagues have suggested that the 

theory may be widely misinterpreted (Bull et al. 2005). In particular, they distinguish 

between error catastrophes, in which high mutation rates lead to the complete loss of the 

wild type in favor of suboptimal genotypes, and extinction catastrophes, in which lethal 

mutations are so common that no viable genotype can persist. The use of mutation-



inducing drugs may not drive viral populations toward error catastrophes as has been 

claimed (reviewed in Anderson et al. 2004) but rather toward extinction catastrophes. 

4.3. The Mutational Spectra of RNA 
The phenotypic effects of mutations determine the rate and outcome of evolution. 

Evolutionary biologists have thus sought to characterize the distributions of fitness 

effects based on theoretical considerations (Gillespie 1984; Orr 2002, 2003) as well 

as laboratory mutation accumulation, knockout, and mutagenesis experiments (Estes 

et al.2004, Sanjuán et al. 2004, Rosen et al. 2002, Imhof & Schlotterer 2001). The 

RNA model system offers a pseudoexperimental compromise approach to estimating 

these distributions. It is more biologically grounded than the theoretical models yet 

yields vastly more information than experimental approaches. Here we review a 

series of RNA studies that offer new perspectives on local mutational structure, as 

opposed to global properties of entire mutational networks. 

4.3.1. BENEFICIAL FITNESS EFFECTS: MANY SMALL MUTATIONS AND FEW LARGE ONES. 

Beneficial mutations are those that increase the fitness of individuals carrying them, and 

are the fuel of adaptation. Somewhat counterintuitively, recent theoretical work suggests 

that distributions of beneficial fitness effects are similar for many fitness landscapes 

(Gillespie 1984, 2003). This theory is based on Gillespie’s mutational landscape model, 

which considers a high fitness wild type that has just experienced a minor environmental 

change (Gillespie 1984). The model assumes that the environmental perturbation was 

small, and thus the wild-type genotype remains reasonably fit, such that fit genotypes are 

rare in the fitness landscape and that the fitness of any given mutant is chosen at random 

from the distribution of all fitnesses. Gillespie claimed that the distribution of beneficial 

mutations could be predicted using —extreme value theory (EVT), and Orr subsequently 

derived the shape of this distribution (Orr 2003). EVT states that, for a large class of 

common distributions, the differences between the top few values in a large random 

sample will be exponentially distributed. According to Gillespie’s assumptions, the wild 

type would be among the largest values in a random sample from the distribution of all 

fitnesses and thus the fitness effects of any beneficial mutations would fall within the 

purview of EVT (Gillespie 1984). Orr concluded that the fitness effects of beneficial 



mutations should therefore be exponentially distributed regardless of biological system 

(Orr 2003). 

Several groups have attempted to test this hypothesis experimentally, with most 

offering mixed support of the Orr-Gillespie theory (Rokyta et al. 2005, Sanjuán et al. 

2004, Imhof & Schlotterer 2001). The most comprehensive of these studies used the 

RNA virus ! X174 and supported a modified version of the model that incorporated a 

mutation bias, which could account for the higher frequency of transitions than 

transversions (Rokyta et al. 2005). An other study, in vesicular stomatitis virus (VSV), 

however, measured beneficial fitness effects that did not appear to be exponentially 

distributed (Sanjuán et al. 2004). 

Recently, the Orr-Gillespie theory was tested in the RNA model system 

(Cowperthwaite et al. 2005). First, the researchers randomly chose two large sets of 

sequences and measured the fitness effects of every possible point mutation to each 

sequence in the set. These sets of genotypes differed in their average fitness---one set had 

relatively low fitness and the other set had relatively high fitness. The distributions of 

beneficial fitness effects in both low and high fitness regions of the landscape were 

decidedly nonexponential. There was a significant overabundance of small-effect 

mutations; and the distribution appeared exponential only upon truncation of the lower 

99% of it. 

The discrepancy between the theory and the RNA study rests on a fairly unbiological 

assumpution of the Orr-Gillespie model---that the fitness of any given mutant is 

essentially a random draw from the distribution of all fitnesses (Cowperthwaite et al. 

2005). Intuitively, the fitnesses of mutants are often highly correlated to the fitnesses of 

their parents, as has been demonstrated in RNA and proteins (Atchley et al. 2000, 

Fontana et al. 1993b, Parsch et al. 2000). The RNA study suggests that a predictive 

theory of beneficial fitness effects must consider fitness correlations. Orr recently 

extended his mathematical analysis to consider fitness correlations, and found that EVT 

does indeed break down under extreme correlations (Orr 2006). 

4.3.2. EPISTASIS: MUTATIONAL EFFECTS VARY WITH GENETIC BACKGROUND. The RNA 

model system determines fitness from first principles of molecular folding. The shapes of 

molecules arise out of complex thermodynamic interactions among the nucleotides in the 



primary sequence. The contribution of any particular nucleotide to the shape (and thus 

fitness) of the molecule often intricately depends on the nucleotides at several other sites. 

For example, see Figure 6. Epistasis---when the action of one gene is modified by one or 

more other genes---is thus a ubiquitous property of RNA fitness landscapes. 

 

Figure 6. Epistasis in RNA results when the phenotypic effects of mutations depend on the surrounding 

nucleotides. The two molecules on the left differ at one position (red) but fold into the same shape. 

Mutations at the same site in each of these molecules (blue) produces very different shapes. Thus, through 

epistasis, a silent change in background (gray arrow) dramatically influences the fitness effect of the 

subsequent mutation (black arrows). 

The presence, magnitude, and direction of epistasis are key inputs to many 

evolutionary theories, including those that seek to explain the evolution and maintenance 

of sexual reproduction and the rate of adaptation in asexual organisms (Peters & Otto 

2003, Whitlock et al. 1995). Epistatic interactions are often divided into two classes: (a) 

antagonistic epistasis, which occurs when simultaneous mutations at interacting sites 

yield a smaller fitness effect than the sum (or product) of their individual effects, and (b) 

synergistic epistasis, which occurs when the combined effect of the mutations is greater 

than the sum (or product) of their individual effects. A third form of epistasis has recently 



appeared in the literature: sign epistasis, which occurs when the direction of a fitness 

effect (deleterious or beneficial) is reversed by interactions with other mutations 

(Weinreich & Chao 2005). One study in the RNA system suggests that most interactions 

are antagonistic (Wilke et al. 2003). In particular, starting from a high fitness genotype, 

as deleterious mutations accumulate, the rate of fitness decline decreases, regardless of 

the order of those mutations. 

4.3.3. COMPENSATORY EVOLUTION. Although beneficial mutations are essential for 

evolution, it is more likely that mutations entering a population will be neutral or 

deleterious. There is well-developed evolutionary theory that predicts the fates of 

deleterious mutations in evolving populations (Crow & Kimura 1970, Gillespie 2004). 

Deleterious mutations are likely to be eliminated by natural selection, but can 

occasionally reach fixation by chance (drift) alone, particularly in small populations, or 

by hitchhiking along with beneficial mutations elsewhere in the genome (Johnson & 

Barton 2002, Kim & Stephan 2000, Peck 1994). A recent RNA study has shown that, 

under high mutation rates, a third process, compensatory evolution, may lead to the 

fixation of deleterious mutations much more frequently than either of these other well-

studied processes (Cowperthwaite et al. 2006). 

Consider a new deleterious mutation. It is possible that, when combined with a 

subsequent mutation, the original mutation becomes less deleterious, or even beneficial. 

For example, a mutation to a paired base may break that pairing, to the detriment of the 

molecule. A subsequent mutation at the matching site may recover that pairing, or 

perhaps even strengthen (or weaken) the interaction, to the benefit of the molecule. The 

latter scenario is an example of compensatory evolution through sign epistasis in RNA 

molecules. 

Prior studies of compensatory evolution have focused primarily on compensatory 

mutations that occur after initially deleterious mutations have fixed in the population, and 

thus do not contribute the fixation events themselves (Burch & Chao 1999, Escarmis et 

al. 1999, Poon & Chao 2005). In one of these studies, researchers grew an RNA virus at 

small population sizes to increase the strength of genetic drift and the likelihood of fixing 

deleterious mutations. They then allowed strains that had experienced a deleterious 

mutation to evolve at larger population sizes and found that compensatory mutations 



generally afforded modest recoveries in viral fitness in comparison to the initial 

deleterious mutation (Burch & Chao 1999). A later study found that compensatory 

evolution mediated fitness recoveries in roughly three-quarters of populations in which 

deleterious mutations fixed (Poon & Chao 2005). There is further evidence for 

compensatory evolution across many natural and model systems (Poon et al. 2005). 

Compensatory evolution may occur prior to fixation of the initial deleterious mutation 

and, consequently, make fixation of the mutation more likely. As recently illustrated in 

the RNA model system, this is common under relatively high mutation rates (like those 

found in RNA viruses) (Cowperthwaite et al. 2006). In evolutionary simulations, initially 

deleterious mutations fixed far more frequently than was expected by drift alone. Initially 

harmful mutations interacted with subsequent mutations to increase fitness beyond that of 

the ancestor and, thus, brought about fitness reversals. Such compensatory events 

explained as many as 70% of the deleterious fixation events. 

Comparative genomic studies have identified possible fixed deleterious mutations in 

insect and human genomes (Kondrashov et al. 2002, Kulathinal et al. 2004). These 

observations must be interpreted with caution, however, because the order in which the 

mutations entered the genome is unknown, and currently deleterious mutations may not 

have been so when they first appeared. Nonetheless, these studies highlight the 

complicated nature of mutational interactions and suggest that deleterious mutations may 

be more than just temporary nuisances. Metaphorically speaking, they may provide 

stepping stones to distant adaptive peaks. 

5. CONCLUSION 

In the past two decades, a new generation of computationally intensive and 

biologically grounded models have changed our perspectives on evolutionary 

dynamics. We now have a more global understanding of mutational relationships 

and how they constrain evolution. Here we have reviewed a class of models that 

have been particularly fruitful. Detailed simulations of evolving RNA structures 

have inspired general predictive theories about the nature of adaptation, the 

determinants of evolvability, the origins and mechanisms of robustness, and more. 



As volumes of biological data accumulate and computational power grows, these 

models will improve and continue to enrich comprehension of the natural world. 
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