Artificial Adaptive Agents in Economic Theory
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Economic analysis has largely avoided
questions about the way in which economic
agents make choices when confronted by a
perpetually novel and evolving world. As a
result, there are outstanding questions of
great interest to economics in areas ranging
from technological innovation to strategic
learning in games. This is so, despite the
importance of the questions, because stan-
dard tools and formal models are ill-tuned
for answering such questions. However, re-
cent advances in computer-based modeling
techniques, and in the subdiscipline of arti-
ficial intelligence called machine learning,
offer new possibilities. Artificial adaptive
agents (AAA) can be defined and can be
tested in a wide variety of artificial worlds
that evolve over extended periods of time.
The resulting complex adaptive systems can
be examined both computationally and ana-
lytically, offering new ways of experimenting
with and theorizing about adaptive eco-
nomic agents.

Many economic systems can be classified
as complex adaptive systems. Such a system
is complex in a special sense: (i) It consists
of a network of interacting agents (process-
es, elements); (ii) it exhibits a dynamic, ag-
gregate behavior that emerges from the in-
dividual activities of the agents; and (iif) its
aggregate behavior can be described with-
out a detailed knowledge of the behavior of
the individual agents. An agent in such a
system is adaptive if it satisfies an addi-
tional pair of criteria: the actions of the
agent in its environment can be assigned a
value (performance, utility, payoff, fitness,
or the like); and the agent behaves so as to
increase this value over time. A complex
adaptive system, then, is a complex system
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containing adaptive agents, networked so
that the environment of each adaptive agent
includes other agents in the system.

Complex adaptive systems usually operate
far from a global optimum or attractor. Such
systems exhibit many levels of aggregation,
organization, and interaction, each level
having its own time scale and characteristic
behavior. Any given level can usually be
described in terms of local niches that can
be exploited by particular adaptations. The
niches are various, so it is rare that any
given agent can exploit all of them, as rare
as finding a universal competitor in a tropi-
cal forest. Moreover, niches are continually
created by new adaptations. It is because of
this ongoing evolution of the niches, and the
perpetual novelty that results, that the sys-
tem operates far from any global attractor.
Improvements are always possible and, in-
deed, occur regularly. The everexpanding
range of technologies and products in an
economy, or the everimproving strategies in
a game like chess, provide familiar exam-
ples. Adaptive systems may settle down
temporarily at a local optimum, where per-
formance is good in a comparative sense,
but they are usually uninteresting if they
remain at that optimum for an extended
period.

A theory of complex adaptive systems
based on AAA makes possible the develop-
ment of well-defined, yet flexible, models
that exhibit emergent behavior. Such mod-
els can capture a wide range of economic
phenomena precisely, even though the de-
velopment of a general mathematical theory
of complex adaptive systems is still in its
early stages.! The AAA models comple-
ment current theoretical directions; they are

1t is important in this research to determine just
where the potential for general solutions exists. There
are simple models of cellular automata, for example,
wherein the solutions to particular questions are com-
putationally irreducible—the shortest way to analyze
the system is to run the complete computation.
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not intended as a substitute. Many of the
most interesting questions concern points of
overlap between AAA models and classical
theory. As a minimal requirement, wherever
the new approach overlaps classical theory,
it must include verified results of that the-
ory in a way reminiscent of the way in which
the formalism of general relativity includes
the powerful results of classical physics.

I. Why Study Artificial Adaptive Agents?

The AAA models have several character-
istics that are not available in traditional
modeling techniques. Models based on pure
linguistic descriptions, while infinitely flexi-
ble, often fail to be logically consistent.
Mathematical models lose flexibility, but
gain a consistent structure and general solu-
tion techniques. The AAA models, specified
in a computer language, retain much of the
flexibility of pure linguistic models, while
having precision and consistency enforced
by the language. The resulting models are
dynamic and are “executable” in the sense
that the unfolding behavior of the model
can be observed step by step. This makes it
possible to check the plausibility of the be-
havior implied by the assumptions of the
model. The precision of the definitions also
opens AAA models to mathematical analy-
sis. The ability to explore a wide range of
phenomena involving learning and adapta-
tion, linked with the rigor imposed by a
computer language, provides a powerful
modeling technique.?

The AAA models offer a way of ap-
proaching one of the major questions of
present theory. Current theoretical con-
structs, based on optimization principles,
often require technically demanding deriva-
tions. It is an obvious criticism of these
constructs that real agents lack the behav-
ioral sophistication necessary to derive the
proposed solutions. This dilemma is re-
solved if it is postulated that adaptive mech-
anisms, driven by market forces, lead the

2Programming even a simple market is instructive
on the limitations of both the pure linguistic and math-
ematical approaches.

MAY 1991

agents to act as if they were optimizing (see,
for example, Milton Friedman, 1953). AAA
explicitly model this link between adapta-
tion and market forces, and can thus be
used to analyze the conditions under which
optimization behavior will (not) occur.

Insofar as human behavior is driven by
adaption, an understanding of AAA may
prove to be a useful benchmark for, and
provide insights into, existing human experi-
ments (see, for example, J. A. Andreoni and
Miller, 1990; Brian Arthur, 1990).> An ex-
periment consisting of artificial agents al-
lows the utility, risk aversion, information,
knowledge, expectations, and learning of
each subject to be carefully controlled.
Moreover, at any point in the experiment,
the knowledge and learning of the artificial
agents can be “reset” to any desired previ-
ous state, and subtle variations of the envi-
ronment can be analyzed. The strategy (as
well as the behavior) of the AAA can al-
ways be explicitly analyzed, something not
usually possible with human subjects. Fi-
nally, the infinite patience and low motiva-
tional needs of AAA “subjects” implies that
large-scale experiments can be conducted at
a relatively low cost.

A major feature of AAA models is their
ability to produce emergent behavior. A
wide variety of behaviors can arise endoge-
nously, even though these behaviors, as with
any model, are constrained by the initial
structure. The possibilities are so rich that it
is often difficult to predict on a priori
grounds what behaviors and structures will
emerge. It thus becomes possible to explore
realms that were unanticipated when the
model was defined. Analysis of these emer-
gent phenomena should offer both insights
and suggestions for new theorems about the
effects of adaptive agents in economic sys-
tems.

The AAA models may also prove useful
in studying economic systems that have ei-
ther an absence or a plethora of theoretical
solutions. Many important economic prob-

3Artificial agents could also be used as “subjects” in
pilot studies to identify potentially interesting new hu-
man experiments.
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lems, such as double-auction strategies,
multisectoral general equilibrium models,
and the like, have no easily derived analytic
solutions. Several AAA techniques were
originally designed as optimization methods
for environments that are nonlinear, noisy,
discontinuous, or involve enormous search
spaces. As a result, they offer useful numer-
ical techniques for such problems in eco-
nomics. At the opposite extreme are sys-
tems with multiple solutions. For example,
in repeated games, the Folk theorem often
admits a vast number of potential solutions.
In these cases, the interaction of the adap-
tive systems with the economic environment
may narrow the set of potential solutions.
Different equilibria may have different de-
grees of adaptive complexity.

Beyond complementing current theoreti-
cal and empirical work, AAA offer the po-
tential for unique extensions of current the-
ory. The mechanisms generating the global
behavior of a complex adaptive system can
be directly observed when the computer is
an integral part of the theory. For such
theories, the computer plays a role similar
to the role the microscope plays for biology:
It opens up new classes of questions and
phenomena for investigation. Problems that
prove difficult for traditional mathematical
approaches are often easily implemented as
an AAA system. In that form, they can be
dissected and modified with ease, providing
new opportunities for theory generation and
testing. More generally, the potential for
the development of a general calculus of
“adaptive mechanics” exists. A calculus of
these systems would combine the advan-
tages of analytic perspicacity with com-
puter-driven hypothesis testing.

II. Some Current Artificial Adaptive
Agent Techniques

A wide range of computer-based adaptive
algorithms exist for exploring AAA systems,
including classifier systems, genetic algo-
rithms, neural networks, and reinforcement
learning mechanisms. The multiplicity of
techniques presents a problem for analysis.
How sensitive are the results to a particular
incarnation of the adaptive agent? This
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problem, of course, confronts any attempt
to lessen the rationality postulates tradition-
ally used in economic theory. Usually, there
is only one way to be fully rational, but
there are many ways to be less rational. It is
important in building a theory based on
AAA to construct agents that exhibit robust
behavior across algorithmic choices. Cur-
rent economic studies of adaptive agents
rely on genetic algorithms (R. M. Axelrod,
1987; Miller, 1989; Andreoni-Miller) and
classifier systems (R. Marimon et al., 1990;
Arthur).

Genetic algorithms (GAs) were developed
by Holland (1975) as a way of studying
adaptation, optimization, and learning. They
are modeled on the processes of evolution-
ary genetics. A basic GA manipulates a set
of structures, called a population. Struc-
tures are usually coded as strings of charac-
ters drawn from some finite alphabet (often
binary). For example, in a game context, a
string might be interpreted either as a sim-
ple strategy (a rule table) or as a computer
program for playing the game (a finite au-
tomaton). Depending upon the model, an
agent may be represented by a single string,
or it may consist of a set of strings corre-
sponding to a range of potential behaviors.
For example, a string that determines an
oligopolist’s production decision could ei-
ther represent a single firm operating in a
population of other firms, or it could repre-
sent one of many possible decision rules for
a given firm. Whatever the interpretation,
each string is assigned a measure of perfor-
mance, called its fitness, based on the per-
formance of the corresponding structure in
its environment. The GA manipulates this
population in order to produce a new popu-
lation that is better adapted to the environ-
ment.

In execution, a GA first makes copies of
strings in the population in proportion to
their observed performance, fitter strings
being more likely to produce copies. As a
result, fitter strings are more likely to con-
tribute to the new population. After the
copies are produced, they are modified by
the application of genetic operators. The
genetic operators provide for the introduc-
tion of new strings (structures) that still
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retain some of the characteristics of the
fitter strings in the parent population.

The primary genetic operator for a GA is
the crossover operator. The crossover oper-
ator is executed in three steps: 1) a pair of
strings is chosen from the set of copies; 2)
the strings are placed side by side and a
point is randomly chosen somewhere along
the length of the strings; 3) the segments to
the left of the point are exchanged between
the strings. For example, crossover of 111000
and 010101 after the second position pro-
duces the offspring strings 011000 and
110101. Crossover, working with reproduc-
tion according to performance, turns out to
be a powerful way of biasing the system
toward certain patterns, building blocks, that
are consistently associated with above-aver-
age performance.

It can be proved (see Holland, 1975) that
GAs are a powerful technique for locating
improvements in complicated high-dimen-
sional spaces. They exploit the mutual infor-
mation inherent in the population, rather
than simply trying to exploit the best indi-
vidual in the population. We can liken each
of the potential building blocks to one arm
of an n-armed bandit. Under this interpre-
tation, each successive generation samples
the building blocks in a way that closely
corresponds to the optimal solution of an
n-armed bandit problem. The GA learns by
biasing the search toward combinations of
above-average building blocks. Reproduc-
tion and crossover are very simple oper-
ations that impose low-information and
processing requirements on the agents em-
ploying them.

A classifier system (CS) (Holland et al.,
1986) is an adaptive rule-based system that
models its environment by activating appro-
priate clusters of rules. It uses a GA to
revise its rules. Each rule is in condition/
action form, and many rules can be active
simultaneously. The action part of a rule
specifies a message that is to be posted
when the rule is activated. The condition
part of a rule specifies messages that must
be present for it to be activated. Thus, each
rule is a simple message-processing device
that emits a specific message when certain
other messages are present. Overt actions
affecting the environment are the result of
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messages directed to the system’s output
devices (effectors), while information from
the environment is received via messages
generated by its input devices (detectors).
The overall system is computationally com-
plete in the sense that any program written
in a programming language, such as FOR-
TRAN, can also be implemented by a CS.

A CS-rule does not automatically post its
message when its condition part is satisfied.
Rather, it enters a competition with other
rules having satisfied conditions. The out-
come of this competition is based on a
quantity, called strength, assigned to each
rule. A rule’s strength measures its past
usefulness, and it is modified over time by
one of the system’s learning algorithms (see
below). There may be more than one win-
ner of the competition at any given
time—hence a cluster of rules can react to
external situations. A CS operates on large
numbers of rules, with a small number of
simple, domain-independent mechanisms. It
provides emergent, learned capabilities for
reacting to its environment.

A CS adapts or learns through the ap-
plication of two well-defined machine-
learning algorithms. The first algorithm,
called a bucket-brigade algorithm, adjusts
rule strengths. Each rule is treated as an
intermediate producer in a complex econ-
omy, buying input messages and selling out-
put messages. When a satisfied rule R suc-
ceeds in the competition to post its own
message, it pays the rule(s) that supplied
the messages satisfying its condition part.
This amount is subtracted from R’s strength.
On the next time-step, if other rules are
satisfied by R’s message, and win the com-
petition in turn, then R receives the rules’
payment. R’s strength is increased accord-
ingly. The net effect of the two transactions
is R’s profit (loss). Some rules also act di-
rectly on the environment in a way that
produces direct payoff from the environ-
ment to the system. Their strength is in-
creased in proportion to that payoff. A rule’s
strength will increase over time only if it
earns a profit, on average, in these transac-
tions. Generally this happens only if the
rule directly produces payoff, or else be-
longs to one or more causal chains leading
to payoff. Under appropriate conditions, the
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strengths assigned by the bucket-brigade al-
gorithm do converge to a useful measure of
the rule’s contributions to system perfor-
mance (Holland et al.).

In order to generate and test new ap-
proaches to the environment, the CS needs
a second learning algorithm, a rule discovery
algorithm. A GA can be used for this pur-
pose, because the rules of a CS can be
represented by strings in an appropriate
alphabet, and a rule’s strength amounts to a
measure of its performance. The GA, by
forming new rules in terms of tested, above-
average building blocks, transfers experi-
ence from the past to new situations. Plausi-
ble new rules result—rules to be tested
and retained or discarded on the basis of
their ability to enhance the performance of
the CS.

Under the combined effects of the
bucket-brigade and genetic algorithms, rules
become coupled in complex networks. Clus-
ters and hierarchies of rules emerge. Over
time, these substructures serve as building
blocks for still more complex substructures.
A CS agent can: 1) generate broad cate-
gories for describing its environment (so
that experience can be brought to bear on
novel situations); 2) progressively refine and
elaborate the relation between categories
(using experience to make distinctions and
associations not previously possible); 3) use
these categories to build internal models
that supply the agent with expectations
about the world; 4) treat all internal models
as provisional (subject to confirmation or
refutation as experience accumulates); and
5) generate new hypotheses that are plausi-
ble in terms of accumulated experience.
Moreover, because of the bucket-brigade
algorithm, these activities can proceed in an
environment where payoff is intermittent or
rare. Such capacities enable a CS agent that
is not omniscient to act with increasing ra-
tionality.

III. Towards a Mathematics of Complex
Adaptive Systems

A mathematical calculus appropriate to
the study of complex adaptive systems must
meet distinctive requirements. The usual
mathematical tools, exploiting linearity,
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fixed points, and convergence, provide only
an entering wedge. In addition we need a
mathematics that works in close conjunction
with computer modeling techniques—one
that puts more emphasis on combinatorics
and algorithms. We require techniques that
emphasize the emergence of structure, par-
ticularly internal models, through the gener-
ation, combination, and interaction of build-
ing blocks. The present situation seems quite
similar to that of evolutionary theory prior
to the development of a mathematical the-
ory of genetic selection (R. A. Fisher, 1930).

Though there is nothing like an overall
theory, there are some extant pieces of
mathematics that are relevant. The schema
theorems for genetic algorithms (Holland,
1975) offer some insight into processes that
discover and recombine building blocks. It
appears that schema theorems are special
cases of a much more general formulation
of the effects of recombination in evolution.
This formulation should bring some of the
more sophisticated tools of mathematical
genetics to bear on adaptive agent models.
Mathematical work aimed at understanding
the evolution of CS may also be useful.
The progressive development of hierarchi-
cal organization can be treated as the ad-
dition of levels to a quasi homomorphism
(Holland et al.).

Perpetual novelty can be modeled by a
regular Markov process in which each of the
states has a recurrence time that is large
with respect to any feasible observation time.
Equivalence classes can be imposed and
used as the states of a derived Markov
process (Holland, 1986). Work by Miller
and S. Forrest (1989), based on S. A.
Kauffman’s (1984) studies of random graphs,
provides additional insights into the emer-
gent structures of CSs.

IV. Conclusions

The AAA research complements ongoing
theoretical and empirical work, allowing ex-
ploration and analysis of previously inacces-
sible phenomena. What are the future
prospects for this line of inquiry? Early work
with AAA in economics has shown that they
can acquire sophisticated behavioral pat-
terns. Observation of the course of learning
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in these AAA has already increased our
understanding of some economic issues.
Even limited AAA open up new avenues
for analyzing decentralized, adaptive, and
emergent systems. Steady advances in com-
putation and AAA modeling offer ever more
powerful tools for programming artificial
worlds. By executing these models on a
computer we gain a double advantage:
(i) An experimental format allowing free
exploration of system dynamics, with com-
plete control of all conditions; and (i) an
opportunity to check the various unfolding
behaviors for plausibility, a kind of “reality
check.” Whether or not agents in such
worlds behave in an optimal manner, the
very act of contemplating such systems will
lead to important questions and answers.
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