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Physics

Fig. 1: Nature

Problems:
come from Nature
have solutions that are as 
simple, symmetric, and 
beautiful as possible   
(far more so than we 
have any right to expect) 



Computer Science

Fig. 2: The Adversary

Problems:
are artificial
are maliciously designed 
to be the worst possible
may or may not have 
elegant solutions...
...or proofs (cf. Erdős)



Beauty is Truth, Truth Beauty

In 1928, Dirac saw that the 
simplest, most beautiful equation
for the electron has two solutions.

Four years later, the positron 
was found in the laboratory.



Conservation is Symmetry

p = mv

F = ma

perhaps you are more familiar with
and                ; try with H = (1/2)mv2 + V (x)

Conservation of momentum follows from 
translation invariance:
moving entire world by dx
doesn’t change energy 

,
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Conservation is Symmetry

Noether’s Theorem: 
symmetry implies conservation  

,

Conservation of angular momentum 
follows from symmetry under rotation!
In classical and quantum mechanics, 
all conservation laws are of this form.

dJ
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Relativity is Symmetry

Physics is invariant under
changes of coordinates
to a moving frame:

at small velocities, Galileo:

(
x
ct

)
→ γ

(
1 −v/c

−v/c 1

) (
x
ct

)

x → x − vt , t → t



Groups

A group is a mathematical structure with:
associativity:
identity:
inverses: 
but not necessarily

(these are non-Abelian groups) 

a · 1 = 1 · a = a

a · a
−1

= a
−1

· a = 1

a · (b · c) = (a · b) · c

a · b != b · a



Some Common Groups

cyclic:       (addition mod n),       (multiplication) 
symmetric group (permutations):
invertible matrices
rotations: 
         contains      ! 

Zn

Sn

Z
∗

n

O(3)

O(3) S5



Symmetry Groups

Transformations that leave an object fixed:

S5

Z × Z D8



Symmetries of Functions

Given a function                     we can ask 
for which h we have

for all x.

These h are multiples of the periodicity r.  

The set of all such h forms a subgroup.

f : Zn → S

f(x) = f(x + h)



Periodicity Gives Factoring!

To factor n, let                               .
Find smallest r such that                             
i.e.,                         .  Suppose r is even: 

Now take g.c.d. of n with both factors (easy).
Works at least 1/2 the time with random c!

f(x) = cx mod n

f(x) = f(x + r)
c
r
≡ 1 mod n

c
r
− 1 = kn = (cr/2 + 1)(cr/2

− 1)



Factoring: An Example

Let’s factor 15.  Choose c=2:

Bad news: in general r could be as large as n, 
i.e., exponentially big as a function of #digits.

x : 0 1 2 3 4 5 6 7 8

2x : 1 2 4 8 1 2 4 8 1

24
− 1 = 15 = (22

− 1)(22 + 1) = 3 × 5



Quantum Measurements

We measure the function f(x).  We “collapse” 
onto a superposition of the x with that f(x):

This is a random coset of the subgroup H.
But, if we simply measure x, all we see is a 
random value! This is the wrong measurement. 

x : 0 1 2 3 4 5 6 7 8

2x : 4 4



The Fourier Transform

Periodicities are peaks in   , where (                   )

Change of basis

from x to k.  This transformation                             
is unitary:

Q−1
= Q†

f(x) =
1
√

n

∑

k

f̂(k) ωkx , f̂(k) =
1
√

n

∑

x

f(x) ω−kx

Qx,k =
1
√

n
ωkx

ω = e
2πi/nf̂



Shor’s Algorithm

Quantum mechanics allows us to perform 
unitary transformations.
We can “do” the Fourier transform             
mod n with only                            
elementary quantum operations.
We then measure the frequency,          and 
this gives us the periodicity of f(x).

O(log2
n)



Efficient Circuits for the QFT

We can break down the QFT recursively 
(like the FFT) into elementary gates:

Quadratic in the number of qubits
Thus n can be exponentially large! 

H

H

H

π/2

π/2 π/4



Graph Isomorphism

Factoring appears to be outside P, but not 
NP-complete.  (Indeed, we believe that 
BQP does not contain all of NP.)
Another candidate problem in this range:

?



Solving with Symmetry

Take the union of the two graphs.  Permuting 
the 2n vertices defines a function f on        .  
What is its symmetry subgroup H? 
Assume no internal symmetries.  Then either    
f is 1-1 and                 ,  or f is 2-1 and

for some m that exchanges the two graphs. 

S2n

H = {1}

H = {1, m}



The Permutation Group

The set of n! permutations of n things forms 
the permutation group      :

A richly non-Abelian group (              .)

Sn

=

ab != ba



We have a function 
We want to know its symmetries  
Essentially all quantum algorithms that are 
exponentially faster than classical are of this form:

      = factoring
      = Graph Isomorphism
      = some cryptographic lattice problems

The Hidden Subgroup Problem

f : G → X

H ⊆ G

Sn

Dn

Z
∗

n



For non-Abelian G, we need representations: 
Geometric pictures of G in d-dimensional space

      has a three-dimensional representation: 
permute the colors by rotating.

Non-Abelian Fourier Transforms

S5



Non-Abelian Fourier Transforms

     has 1 (trivial),               (parity), and rotations 
of three points in the plane:

Gives 1+1+4 = 6 “frequencies,”                         
just enough.  Coincidence?

ρ
(
(1 2)

)
=

(
1 0
0 −1

)
, ρ

(
(1 2 3)

)
=

(
−1/2

√
3/2

−
√

3/2 −1/2

)
S3 π = ±1

1

2

3



For any group, there is a finite 
number of irreducible (“prime”) 
representations
These allow us to define a Fourier 
transform over that group. 
Everything beautiful is true...

Heartbreaking Beauty



It turns out that this naïve generalization of 
Shor’s algorithm doesn’t work: the 
permutation group      is “too non-Abelian.”
Tantalizingly, we know a measurement exists, 
but we don’t know if we can do it efficiently.
How much can quantum computing really do? 
How “special” is factoring?

The Story So Far...

Sn


