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Genome-scale biological networks
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Two kinds of biological networks

1. Small networks dedicated to a specific task
(up to dozens of gene products)

Chemotaxis
Cell-cycle regulation
Fruit fly segmentation
Flower development
…

Mathematical characterization based on detailed,
quantitative biochemical information

Von Dassow et al. 2000. Nature 406: 188-92

Two kinds of biological networks

2. Genome-scale networks 
(hundreds to thousands of genes products)

Protein interaction networks
Transcriptional regulation networks
Metabolic networks

Mathematical characterization based on qualitative 
understanding of network topology
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Protein interaction networks

Reporter gene
DBD

A

B TAD

Reporter gene
DBD

A B TAD

Bait
Prey

The yeast two-hybrid assay can detect interactions between
pairs of proteins
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Some Limitations

Noisy data 
limited replicability

Interaction artefacts caused by chimaeric proteins

Membrane proteins

Interactions are functionally VERY heterogeneous
structural, signaling, enzymatic …
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Graphs A node

An edge

A graph G=(V,E) comprises 
a set V of nodes (vertices)
a set E of edges 
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Protein interaction networks are undirected graphs 
(Individual node pairs in E are unordered.)

Graphs are everywhere

Graph Nodes Edges

Computer networks Computers Data transmission lines
Friendship networks People Being acquainted
The world wide web Web pages Hyperlinks
Actor collaboration graph Actors Having acted in the same movie
Power grids Transformers Power lines
Citation network Publication Citation 
Nematode CNS Nerve cells Axons
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Graphs

A path

A path is a sequence of alternating nodes and edges
in which no node is visited more than once

A geodesic is the shortest path between two nodes.

Graphs can be represented by matrices
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Adjacency matrix A=(aij)

aij=1 (Vi, Vj) є E
aij=0 otherwise
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The degree (connectivity) ki of a node Vi is the number of
edges incident with the node (e.g., k1=3, k6=5).

Graphs can be characterized according to their degree
distribution P(k), the fraction of nodes having degree k.
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The degrees of nodes in a graph may be correlated

P(k’|k): conditional probability that a node with degree k is connected 
to a node with degree k’. In a graph with degree correlations, P(k’|k) ≠P(k’)

Average nearest neighbor degree of a node 

Average nearest neighbor degree of all nodes with degree k
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A graph is assortative if knn(k) increases with k
nodes connect to nodes of similar connectivity

A graph is disassortive if knn(k) decreases with k
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Graphs can be represented by matrices

1

2 3

4567

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0123221
1012111
2101122
3210133
2111022
2123201
1123210

D
Matrix of shortest paths D=(dij)

Connected graph: dij<∞ for all i,j

Path length and diameter are measures of graph 
compactness
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Mean (arithmetic) shortest path length 
or characteristic path length

Mean (harmonic) shortest path length
or “efficiency” of a graph
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(Better suited than characteristic path length for disconnected graphs)

Diameter of a graph:  maxi,j dij
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Node betweenness or node load:
number of geodesics passing through a node

A measure of node and edge centrality

∑
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njk(i) number of geodesics connecting j and k and passing through i
njk number of geodesics connecting j and k 

Graph spectra

The spectrum of a graph is the set of eigenvalues of the adjacency matrix A.
It is intimately related to key graph properties

Examples: 

1. An undirected graph is connected iff the largest eigenvalue µmax of A has 
multiplicity one. Also, in a connected graph

2. Diam(G) is smaller than the number of distinct eigenvalues of A

3. For the Graph Laplacian L=D-A, where D is the diagonal matrix D=(dii)=ki, 
the multiplicity of the eigenvalue zero equals the number of components 
(maximal connected subgraphs)of the graph  

maxmaxmin kkk <<< µ
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High clustering and transitivity indicate 
locally dense neighborhoods in a graph
(How likely is it that my neighbors are also each other’s neighbors?)

Transitivity 
fraction of connected node triplets that are triangles

T= 3× (# of triangles) / (# of connected node triplets in G)

Clustering coefficient ci of a node i
The fraction of a node’s neighbors that are neighbors of each other
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Modules, cohesive subgroups, or “communities”
subgraphs whose nodes are tightly connected or “cohesive”

Many measures of modularity are in use

1. Clique: a largest complete (=fully connected) 
subgraph

2. n-clique: a largest subgraph in which all geodesics have length ≤n
(A 1-clique is a clique)  

3. k-plex: a largest subgraph of n nodes in which 
the degree ki≥n-k for all n nodes
(a 1-plex is a clique)
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Modules, cohesive subgroups, or “communities”
subgraphs whose nodes are tightly connected or “cohesive”

Many measures of modularity are in use

4. Modularity Q

E=(eij) 
eij…fraction of edges that link vertices in module i to vertices in module j
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Q indicates the degree of correlation between edges joining two nodes
and the nodes being in the same community. 
Q ≈ 1 indicates strong community structure.

eij=aiaj (thus eii=ai
2) if the probability that two nodes are

connected is independent of their belonging to the same community

Some methods to identify modules

1. Spectral graph partitioning

Graph partitioning: Find a division of the vertex set V into two 
subsets with a minimum number of edges between subsets 
and a maximum number within each subset. (NP-complete)

Spectral bisection: Let λ2 be the second-largest eigenvalue
of the graph Laplacian (L=D-A) and v2 the corresponding eigenvector. 
If λ2 is close to zero, then the positive entries of v2 correspond to 
vertices in one partition in one component, and the negative 
entries to the other.

To identify multiple communities, apply repeated bisection.

Limitations:
Difficult if modules are not well-defined
Repeated bisection is not guaranteed to give the best partition.
When to stop partitioning?
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Some methods to identify modules

2. Girvan-Newman algorithm (Iterative Divisive Clustering)

Idea:  Edges between modules would be those with the highest edge betweenness
Remove those edges and you get good module separation

Iterative procedure

1. Remove the edge with the highest betweenness score
2. Recalculate edge betweenness for the now-reduced graph
3. Determine modularity Q 
3. Back to one until all nodes are isolated

The optimal partition is that with the highest Q

The best-studied mathematical models of graphs

k-regular graphs

N nodes, K=kN edges
every node has degree k

Erdős-Rényi random graphs

N nodes, K edges

edges connect pairs of randomly chosen nodes (avoiding 
multiple edges)

Degree distribution is Poisson
!
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Biological networks are vastly more 
complex and heterogeneous than these models
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Protein interaction networks (and many other networks) 
have broad-tailed degree distributions.

Wagner A, Proc. Roy. Soc. London 2003

A motif is a local pattern of connections in a graph

All possible 3-node motifs in a digraph
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Solid 
support A

Tag

Protein 
extract

A
B

C

D E

F

Affinity chromatography can identify protein complexes

Elution

Electrophoresis

Mass spectrometry

Different protein complexes may share proteins 
(e.g., protein C)

Proteins within a complex need not interact directly 
(B and E)

A
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F G
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K
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Hypergraphs are suited to study large 
assemblages of protein complexes

A hypergraph G=(V,E) comprises 

a set V of nodes (vertices)
a set E of hyperedges
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Highly connected proteins tolerate 
fewer amino acid substitutions in their evolution

Hahn et al. Journal of Molecular Evolution 2004
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Protein microarrays help take 
the heterogeneity out of molecular interactions

Collection of proteins is immobilized on a microarray

Array is exposed to ligand that is (directly or indirectly) labeled
Calmodulin
Phosphoinositides
Protein kinase + phosphate

Proteins bound to ligand are detected through (flourescent or
radioactive) signal

Transcriptional regulation networks

Evangelisti and Wagner 2004
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Wagner and Wright, Advances in Complex Systems 2005

A high abundance of autoregulatory cycles 
in transcriptional regulation networks 

0 5 59
Number of Autoregulatory Cycles

0

100

200

300

400

500

600

700

800

N
um

be
r 

of
 R

an
do

m
iz

ed
 N

et
w

or
ks

E. coli transcriptional
regulation network (P<10-3)
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Yeast transcriptional
regulation network (P<10-3)

Most of these cycles represent negative autoregulation
which can stabilize gene expression levels. 

High network compactness (longest paths with moderate lengths)
in the E. coli transcriptional regulation network
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Wagner and Wright, Advances in Complex Systems 2004
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Multiple small gene circuit motifs are highly abundant 
in transcriptional regulation networks

Feed-forward loop “Bi-fan” Regulator chain

R. Milo et al., Science 298, 824-827 (2002).
S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Nature Genetics 31, 64-68 (2002).
T. Lee et al., Science 298, 799-804 (2002).

Two main possibilities for the evolutionary origins 
of abundant circuit motifs

1. Duplication of one or few ancestral circuits

(Duplication of genes, 
chromosomal regions, 
and even whole genomes 
is not rare)

2. Independent origin: Convergent evolution

A strong argument for optimal circuit design 
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Fmax=1 Fmax=3 Fmax=5

Increasing common ancestry

A=0 A≈1

C=5 C=2 C=1

A circuit duplication graph to detect
common ancestry among gene circuits

Largest Circuit 
Family (Fmax)

Index of 
common 
ancestry (A)

Number of 
Families (C)

Number of 
Circuits

Circuit Type

49 (P=0.33)0.197 (P=0.18)435 (P=0.18)542Bi-fan

Conant and Wagner, Nature Genetics 2003
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102727Bi-fan

101111Feed-forwardE. coli

103333Reg. Chain (3)

5 (P=0.59)0.045 (P=0.60)168 (P=0.60)176MIM-2

49 (P=0.33)0.197 (P=0.18)435 (P=0.18)542Bi-fan

5 (P=0.05)0.082 (P=0.08)44   (P=0.08)48Feed-forwardYeast

Largest Circuit 
Family (Fmax)

Index of 
common 
ancestry (A)

Number of 
Families (C)

Number of 
Circuits

Circuit Type

Most transcriptional regulation circuits 
have evolved convergently

Conant and Wagner, Nature Genetics 2003

Multiple different circuit motifs 
in a transcriptional regulation network
have evolved convergently.

Natural selection may have shaped 
the local structure of this network.
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Metabolic networks

A metabolic network is a set of chemical reactions 
that produces

energy 
(for maintenance of cell functions and for biosyntheses)

molecular building blocks for biosyntheses

These reactions are catalyzed by enzymes that 
are encoded by genes. 

In free-living heterotrophic organisms, several 
hundred such enzymatic reactions are necessary 
to fulfill these functions.



22

Stoichiometric Equations
zwf

1 Glucose 6-phosphate (G6P) + 1 NADP+ ⇒ 1 6-Phosphoglucono δ-lactone (6PGL) + 1 NADPH
pgl

1 6-Phosphoglucono δ-lactone + 1 H2O ⇒ 1 6-Phosphogluconate (6PG)
gnd

1 6-Phosphogluconate + 1 NADP+ ⇒ 1 Ribulose 5-phosphate (R5P) + 1 NADPH
rpe

1 Ribulose 5-phosphate ⇔ 1 Xylulose 5-phosphate (X5P)

Graphs can (crudely) represent large chemical reaction networks

G6P

NADP+

6PGL

NADPH

H2O

6PG

R5P

zwf pgl

gnd

zwf pgl

gnd

G6P

6PGL

NADP+

NADPH

H2O

6PGR5PX5P

Bipartite graph Enzyme graph Substrate graph

An enzyme graph representation of the metabolic network
of the yeast Saccharomyces cerevisiae
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Metabolic networks have a broad-tailed degree distribution

Wagner and Fell, Proc. Roy. Soc. London B 2001Substrate network of E. coli

The E. coli core metabolism is a 
small-world network

It is sparse

It is highly clustered

It has short characteristic path length
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Many graphs have “small-world” features

Graph Nodes Edges

Computer networks Computers Data transmission lines
Friendship networks People Being acquainted
The world wide web Web pages Hyperlinks
Actor collaboration graphActors Having acted in the same movie
Power grids Transformers Power lines
Citation network Publication Citation 
Nematode CNS Nerve cells Axons

Why are metabolic networks small-world networks?

Signals propagate VERY rapidly in small world networks.

Perhaps compact network structure allows the cell to adapt 
rapidly to changing conditions.
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For optimal cell growth, metabolic networks need to produce 
biochemical precursors in well-balanced amounts.

This necessitates a specific distribution of metabolic fluxes 
through enzymatic reactions in the network.

(Metabolic flux: the rate at which an enzyme converts substrate into product per 
unit time.)

Studying only the structure of metabolic networks neglects 
their function

One needs to analyze the flow (flux) of matter
through these networks  

Flux balance analysis requires a list of chemical reactions known 
to be catalyzed by enzymes in a given organism.

(For example, in yeast 
>1100 reactions, 
>500 metabolites, 
>100 nutrients or waste products.)

Flux balance analysis has two tasks

Identify allowable metabolic fluxes through a metabolic 
network (fluxes that do not violate the law of mass 
conservation)

Within the set of allowable fluxes, identify fluxes that are 
associated with desirable properties (e.g., maximal rate of 
biomass production, maximal biomass yield per unit of carbon 
source.) 
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A simple chemical reaction network

Metabolite concentrations change according to the equations

Stoichiometry matrix
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A simple chemical reaction network

In steady state
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The solutions of these equations form the null space of S
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The null space of a metabolic network forms
a high-dimensional “flux cone” (a convex polytope)
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Several important properties of a metabolic network can be
expressed as weighted sums of fluxes   

Example: 

In the biomass growth flux , 

vi is the rate at which essential
biochemical precursor i is produced by a metabolic network.

ci is a constant that reflects the relative contribution
of precursor i to biomass 
(can be estimated from the biomass composition of a cell.)
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Linear programming can be used to determine regions 
within the flux cone where some linear function Z 
of the fluxes will be maximized.

Maximum value of Z, 
e.g. cell growth flux

Example questions for flux balance analysis

FBA shows what is possible for a metabolism.
Is this metabolic potential realized in an organism? 

Often not.

Can an organism evolve towards its full metabolic potential? 
Yes, and quickly

Many enzymatic reactions (and thus the  genes encoding them) are
dispensable in any one environment? Why?

non-use (reaction is silent)
redundancy (multiple genes for same enzymatic function)
flux rerouting around blocked reactions 

Does network function and flux influence network evolution
Yes. High-flux enzymes accumulate fewer amino acid substitutions. 
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Summary
The most prominent examples of genome-scale biological 
networks are

protein interaction networks
transcriptional regulation networks
metabolic networks

Graph theory can be used to characterize these networks 
via

degree distribution and correlation
characteristic path lengths and diameter
clustering coefficient
abundance of motifs
indicators of modularity
…

Summary

The biological significance of many aspects of network
structure is still unclear

Analyses of network function need to go beyond graph theory
Flux balance analysis
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