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New mathematical methods for controlling the spread of diseases
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By any definition …
a very complex system

Multiple levels of structure
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By any definition …
a very complex system

Multiple levels of structure

Emergence
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Year
Pathogen Prior host reported

Ebola virus Bats (?) 1977

Escherichia coli O157:H7 Cattle 1982

Borrelia burgdorferi Rodents (?) 1982

HIV-1 Chimpanzees 1983

HIV-2 Primates 1986

vCJD Cattle 1996

H5N1 influenza A virus Chickens 1997

SARS coronavirus Palm civets (?) 2003

Woolhouse (2006) Microbe

CDC’s Emerging Infectious Diseases

By any definition …
a very complex system

Multiple levels of structure

Emergence
From single viral particles, immune cells, hosts …

come epidemiological dynamics

Feedback
Pathogen spreads and evolves

Induce immunity and public health responses

(shapes its own environment)

Pathogen spreads and evolves

…
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Today and tomorrow…

I. Infectious diseases

II. Brief history of mathematical epidemiology

III. Contact network epidemiology

IV. Who gets the flu shot?

V. Very new methods

VI. Challenges

Vector-borne (fleas)

Bubonic Plague

Water-borne

Cholera

Contact
Smallpox

Sex/Needles
HIV

Modes of transmission
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Spanish Flu
H1N1

Asian Flu
H2N2

Hong Kong Flu
H3N2

Mills (2000)

Why two strains?

Influenza
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H5N1 Infections

Hong Kong
1997

18 Cases
  6 Fatal

Thailand
2005

 5 Cases
 2 Deaths

China
2005

 13 Cases
 8 Deaths

Cambodia
2005

 4 Cases
 4 Deaths

Indonesia
2005

17 Cases
11 Deaths

Vietnam
2005

61 Cases
19 Deaths

Thailand
2004

17 Cases
12 Deaths

Vietnam
2004

29 Cases
20 Deaths

Hong Kong
2003

 2 Cases
 1 Fatal

Vietnam
2003

 3 Cases
 3 Deaths

Infected Poultry

Infected Wild Bird Populations

Occurrence of Human Cases

Egypt
2006

 18 Cases
 10 Deaths

Turkey
2006

12 Cases
  4 Deaths

China
2006

 12 Cases
  8 Deaths

Iraq
2006

 3 Cases
 2 Deaths

Indonesia
2006

55 Cases
45 Deaths

Azerbaijan
2006

 8 Cases
 5 Deaths

Cambodia
2006

 2 Cases
 2 Deaths

Djibouti
2006

 1 Case
 0 Deaths

Thailand
2006

 3 Cases
 3 Deaths

Egypt
2007

 18 Cases
 5 Deaths

China
2007

 3 Cases
  2 Deaths

Lao
2007

 2 Cases
 2 Deaths

Indonesia
2007

25 Cases
22 Deaths

Cambodia
2007

 1 Cases
 1 Deaths

Nigeria
2007

 1 Cases
 1 Deaths

Diseases
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“I simply wish that, in a matter which so closely concerns the
wellbeing of the human race, no decision shall be made without all
the knowledge which a little analysis and calculation can provide”

Daniel Bernoulli 1760

Smallpox in the 18th century …

3/4 of all people had been infected

Typically caught in first 5 years of life

Killed 20-30% of individuals infected

1/10 of all mortality due to smallpox

Variolation

1000 BC 1721

The 20th century …

Compartmental models

Susceptible Infected Recovered

!SI

Mass action assumption

Kermack and McKendrick 1927
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Will an outbreak lead to an epidemic?

Infection rate

Susceptible Infected Recovered

Death

  Mortality + Recovery

!SI ! I

=
!S

v + "

! I

R0 = > 1

EPID
EMIC

Death

Infection rate

  Mortality + Recovery

Reproductive ratio of the disease

Susceptible Infected Recovered
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Reproductive ratio of the disease

< 1

FIZ
ZLE

S O
UT

Death

Infection rate

  Mortality + Recovery
R0 = 

Susceptible Infected Recovered

Herd immunity

Disease         R0  Vaccination minimum

Measles   5-18 90-95%

Chicken pox   7-12 85-90%

Polio    5-7 82-87%

Smallpox 1.5-20+ 70-80%

SARS 2.2-3.7     ?

R0 = 
  Mortality + Recovery

Infection rate
=

!S

v + "
< 1
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Generation time ≈ 10 days

SARS and R0

Initial estimates for SARS:  R0=2.2-3.7

30,000-10,000,000

782 SARS spread
unchecked in China
for 120 days.

Days

0 10 20 30 40 120

What’s wrong with these estimates?

R0

They are based on data from hospitals and crowded apartment buildings
where people have unusually high rates of contact with each other.

pathogen
Transmission efficiency,
incubation period, etc. will
be approximately the same
everywhere

contactsContact patterns can vary
enormously.
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What’s missing in traditional models?

Susceptible Infected Recovered

nurse

poet

teacher

infant
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 Realism

Compartmental
Models

Contact 
Network 

Epidemiology

                  Difficulty

      Pencil & Paper       Super Computers

Agent-Based 
Models

Susceptible Infected Recovered
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Terminology

Vertex / Node:
People or places

that can
become infected

Edges: contacts that can lead
to disease transmission

Degree: The number
of edges coming out

of a vertex

1
2

6

Contact Network Epidemiology

Three step process

1. Build a realistic contact network

2. Predict the spread of disease through the network

3. Quantify the impact of intervention
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I. Building realistic networks

Hospital

Shop

Households

 Work

School

Vancouver, British Columbia

Undirected network

globe, country, state, metropolitan area, community, hospital,

nursing home, school, military facility, prison, cruise ship, …

Shop

Households

Work

School Hospital

I. Building realistic networks

Semidirected network

SARS
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Shop

Households

Work

School Hospital

I. Building realistic networks

influenza

Evansville psychiatric institution

Ward 1 Ward 2 Ward 3 Ward 15

Patients

Caregivers

I. Building realistic networks
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Ward 1 Ward 2 Ward 3 Ward 15

Patients

Caregivers

Bipartite network

I. Building realistic networks

Evansville psychiatric institution

undirected semidirected

bipartite

weighted

I. Building realistic networks
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I. Realistic networks: Is everything scale-free?

Vancouver Portland
(Episims)

Karate club Adolescent sex 1

Adolescent sex 2 Risk network

Bansal, S., L.A. Meyers (2007) Interface

What do we do with these networks?

Three step process

1. Build a realistic contact network

2. Predict the spread of disease through the network

3. Quantify the impact of intervention
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II. Predicting epidemics: The idea

Percolation theory

 

Grassberger, P. (1983) Mathematical Biosciences. 63: 157-172.

Newman, M.E.J. (2002) Physical Review E. 66: 016128.
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1. Degree distribution: The frequency
of each degree in the population

2. Transmissibility: The probability that an infected individual will
transmit the disease to another individual on the opposite side of an edge.

The Two Basic Ingredients

1/30 = 0.036

2/30 = 0.075

6/30 = 0.24

11/30 = .373

7/30 = 0.232

3/30 = 0.11

FrequencyDegree
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1/30 = 0.036

2/30 = 0.075

6/30 = 0.24

11/30 = .373

7/30 = 0.232

3/30 = 0.11

FrequencyDegree

1/30 = 0.036

2/30 = 0.075

6/30 = 0.24

11/30 = .373

7/30 = 0.232

3/30 = 0.11

FrequencyDegree

II. Predicting epidemics: The math
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II. Predicting epidemics: The math

� 

G0(x) = pkx
k

k=0

!

"

Probability generating functions

the probability that
a randomly selected
vertex has degree k

� 

pk =
1

k!

d
k
G0

d x
k

x=0

You can recover the
probabilities from
the pgf

� 

k = kpk =

k=0

!

" # G 0(1)

The mean:

II. Predicting epidemics: The math
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II. Predicting epidemics: The math

� 

T = Tij

Average transmissibility

Simplifying transmissibility

i

j

� 

Tij

II. Predicting epidemics: The math

Percolation Threshold

There is a level of contagion below which there will be only small-finite
sized outbreaks and above which large-scale epidemics are possible.

Below the threshold

…+ + + +
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II. Predicting epidemics: The math

Mean outbreak size:

� 

s =1+
T kpk!

1"T
k(k "1)pk!

kpk!
# 

$ 

% 

& 

' 

( 

Degree distribution

Average transmissibility

II. Predicting epidemics: The math

Epidemic threshold:

� 

Tc =
kpk!

k(k "1)pk!
# 

$ 

% 

& 

' 

( 

T > Tc 

An epidemic is probable

T < Tc

Small outbreaks only

Degree distribution

Critical transmissibility
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II. Predicting epidemics: The math

Epidemic threshold:

� 

Tc =
kpk!

k(k "1)pk!
# 

$ 

% 

& 

' 

( 

Meyers, L.A., M.E.J. Newman, B. Pourbohloul (2006) Journal of Theoretical Biology

II. Predicting epidemics: The math

Percolation Threshold

There is a level of contagion below which there will be only small-finite
sized outbreaks and above which large-scale epidemics are possible.

Above the threshold

The probability that an outbreak will spark and epidemic is equal to the
size of the giant component.

We cannot calculate this directly.

Instead we use generating functions to calculate:

S = 1 - Prob{random introduction causes small outbreak only}
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Epidemic threshold

Size of a small outbreak

Probability and size of a large epidemic

Who gets infected?

Does it matter who gets sick first?

These quantities for a variety of networks

Disease dynamics

Dynamic networks

II. Predicting epidemics: Other quantities

What do we do with these networks?

Three step process

1. Build a realistic contact network

2. Predict the spread of disease through the network

3. Quantify the impact of intervention
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III. Assessing control strategies

Contact reducing
interventions

Quarantine, cohorting,
travel restrictions, etc.

0.03

0.07

0.20

0.37

0.23

0.10

Old

06

0.075

0.034

0.433

0.232

0.231

NewDegree

Three categories of intervention

Contact reducing
interventions

Quarantine, cohorting,
travel restrictions, etc.

0.03

0.07

0.20

0.37

0.23

0.10

Old

06

0.075

0.034

0.433

0.232

0.231

NewDegree

Transmission reducing
interventions

Face masks, hand washing, etc.

III. Assessing control strategies

Vaccination
Targeted, general,

ring, etc.

0

0.07

0.03

0.43

0.23

0.23

Old

06

0.045

0.094

0.303

0.302

0.261

NewDegree

Three categories of intervention
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III. Disease control in health care settings

Candidate strategies for control of mycoplasma pneumonia:

• respiratory precautions

• cohorting symptomatic cases

• antibiotic prophylaxis of asymptomatic individuals

Ward 1 Ward 2 Ward 3 Ward 15

Patients

Caregivers

The best strategy … None of the above!

At the first sign of an outbreak, limit caregiver interactions.

Meyers, L.A., M.E.J. Newman, M. Martin and S. Schrag (2003) Emerging Infectious Diseases

III. Evaluating Flu Vaccination Programs
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Mortality-based (1918)

Hospital

Shop

Households

Work

School

School

Mortality-based

  School-based

III. Evaluating Flu Vaccination Programs

III. Evaluating Flu Vaccination Programs
Hospital

Shop

Households

Work

School

School

Annual flu Pandemic (1918) flu

School Mortality

School Mortality

Fraction of population
predicted to die from flu
during an outbreak

Contagiousness
of the strain
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III. Evaluating Flu Vaccination Programs

What should the CDC and other health agencies do?

• If the contagiousness of the strain is known, select the best strategy

• If not, target high-risk groups

• If vaccination is delayed or flu is introduced multiple times into the

population, target high-risk groups

Bansal, S., B. Pourbohloul, L.A. Meyers (2006) PLoS Medicine

Predicting epidemics: A new framework

Network SIR Models

 

Volz, E (in press) Journal of Mathematical Biology

Volz, E. and L.A. Meyers (in review)
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Predicting epidemics: A new framework

Track edge states

Include recovery parameter

S I

I I

S R

I R

 

!! = "rpI!

!pS = rpS pI 1"! ##g !( ) #g !( )( )
!pI = rpS pI ##g !( ) #g !( ) " pI 1" pI( )r " pIµ

The network SIR model: Static network

Fraction of degree one nodes which are still susceptible

Fraction of susceptibles’ contacts that are infectious

transmission rate

network pgf recovery rate

Purple

black + purple + gray
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!! = "rpI!

!pS = rpS pI 1"! ##g !( ) #g !( )( )
!pI = rpS pI ##g !( ) #g !( ) " pI 1" pI( )r " pIµ

The network SIR model: Static network

Fraction of degree one nodes which are still susceptible

Fraction of susceptibles’ contacts that are infectious

Fraction of infecteds’ contacts that are still susceptible

transmission rate

network pgf recovery rate

St = g !t( ) = pk!t
k

k

"Prevalence:

The network SIR model: Dynamic network

Neighbor exchange model

Total number of contacts per person remains constant
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!! = "rpI!

!pS = rpS pI 1"! ##g !( ) #g !( )( ) + $ #g !( ) #g 1( ) " pS( )
!pI = rpS pI ##g !( ) #g !( ) " pI 1" pI( )r " pIµ + $ MI " pI( )
!MI = "µMI + rpI ! 2 ##g !( ) +! #g !( )( ) #g 1( )

The network SIR model: Dynamic network

Fraction of all edges that have at least one infected end

neighbor exchange rate

St = g !t( ) = pk!t
k

k

"Prevalence:

 

!! = "rpI!

!pS = rpS pI 1"! ##g !( ) #g !( )( ) + $ #g !( ) #g 1( ) " pS( )
!pI = rpS pI ##g !( ) #g !( ) " pI 1" pI( )r " pIµ + $ MI " pI( )
!MI = "µMI + rpI ! 2 ##g !( ) +! #g !( )( ) #g 1( )

A continuum of models

neighbor exchange rate

ρ = 0
Static network model

(final state = bond percolation)

ρ
ρ = ∞

Fully-mixed model
(compartmental with heterogeneity)
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Contact 
Network 

Epidemiology

Contact 
Network 

EpidemiologyContact 
Network 

Epidemiology Realism

Compartmental
Models

                  Difficulty

      Pencil & Paper       Super Computers

Agent-Based 
Models

Challenges

Beyond static semi-random graphs

Dynamic contacts, clustering, modularity, assortativity, …

Host heterogeneity

Susceptibility, disease progression, transmission rates, …

Disease-induced behavioral changes

Pathogen evolution

SIRS dynamics

Applications …

Diverse diseases, sociological controls, …
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