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Today ...

I. Natural selection
II. Fitness landscapes
ITII. A network perspective on fitness landscapes
IV. My favorite molecule: RNA
V. Are biological systems optimal?
> Constrained by mutation
> Evolutionary traps

VI. Conclusions
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Evolution by Natural Selection
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Fitness Landscape
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Wright's Shifting Balance Theory (1929)

STUCK AT LOCAL PEAK

= L8 &
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gene frequencies
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Fitness Landscapes Models

KAUFMANN’S NK MODEL (1986)

N genes
each interacts with K genes
sum local fitnesses
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“Real” Fitness Landscapes
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Mutational Networks:

Another way to represent fitness landscapes
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Making proteins from DNA
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Mutational Network
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Mutational Networks

Schuster, P., W.Fontana, P.F.Stadler and I.Hofacker (1994) Proc. Roy. Soc. B

Evolutionary dynamics

mutation-selection balance quasispecies
(Haldane, Fisher 1920’s) (Eigen 1971)
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Evolutionary dynamics

mutation-selection balance

quasispecies
(Haldane, Fisher 1920’'s)

(Eigen 1971)

| Mutation >> selection |

| error catastrophe |

RNA: An underappreciated molecule

Essential machinery of life
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RNA

Breakthrough Online

For an expanded version

of this section, with refer-

ences and links, see www.

Sciencemag.org/content/

vol298/issue5602/#special
Just when scientists thought they had deciphered the roles played by the cell's leading
actors, a familiar performer has turned up in a stunning variety of guises. RNA, long up-
staged by its more glamorous sibling, DNA, is turning out to have star qualities of ts own.

Small RNAs Make Big Splash

For decades, RNA molecules were dis- <! We one of two small RNA classes produced by
missed as little more than drones, taking different types of genes: microRNAS
orders from DNA and converting genet- (miRNAs) and small interfering RNAs
ic information into proteins. But a (siRNAs). SiRNAs are considered to be
string of recent discoveries indi- the main players in RNAi. although
cates that a class of RNA mol- miRNAS, which inhibit translation of
ccules called small RNASs oper- RNA into protein, were recently im-
ate many of the cell’s controls. plicated in this machinery as well.
They can turn the tables on “To bring about RNAi, small
DNA, shutting down genes o RNAs degrade the messenger
altering their levels of expres- RNA that transports a DNA se-
sion. Remarkably, in some quence to the ribosome. Exactly
species, truncated RNA how this degradation occurs isn't
molecules literally shape known, but scientists believe that
genomes, carving out chunks Dicer delivers small RNAs to an
to keep and discarding others. enzyme complex called RISC,
There are even hints that certain which uses the sequence in the
small RNAs might help chart a small RNAS to identify and degrade
cell’s destiny by directing genes to messenger RNAs with a complemen-
turn on or off during development, tary sequence.

which could have profound implica- Such degradation ratchets down the
tions for coaxing cells to form one type expression of the gene into a protein. Al-
of tissue or another. Science hails these though quashing expression might not sound
electrifying discoveries, which are prompt- particularly useful, biologists now believe
ing biologists to overhaul their vision of the that in plants, RNAI acts like a genome “im-

Downloaded from www.sciencemag.org on June 21, 2007

cell and its evolution, as 2002 Break- Life cycle. With a helping hand from proteins  MUNe system,” protecting against harmful
through of the Year. RISC and Dicer, small RNAs are born.We now  DNA or viruses that could disrupt the

‘These astonishing feats are performed by know that these molecules keep DNA in line  genome. Similar hints were unearthed in ani-
short stretches of RNA ranging in length  and ensure a cell’s good health. mals this year. In labs studying gene func-
from 21 to 28 nucleotides. Their role had tion, RNAI is now commonly used in place

Animals

Protists

Science 2003, 300: 1692-1697
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RNA

Essential machinery of life
“Molecule of the year” (2002)

Phylogenetics

g

Bio-engineering

www.monmouth.com/~spidersigns/RNA/

Tractable model of a complex biological system

Modeling the evolution of RNA structure

GENOTYPE AUCGGCGCUCCGUACUACGCUUAAAAAACAGGA ... UACUUGCAAAA

Ues A l
U +«» G
G «» C
PHENOTYPE 3-D structure
"qtion
FITNESS

Mutational surveys: Fold millions of molecules and all of their
mutants to systematically explore the mutational network.

In silico evolution: In the computer, select populations of RNA
molecules according to structural criteria, and allow them to mutate.

Lauren Ancel Meyers, University of Texas at Austin, 2007
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RNA Mutational Networks

AUCGGCGCUCCGUACUACGCUUAAAAAACAGGA ... UACUUGCAAAA

suee ll.,..;...:' ahienees
llll!l Mhiaeeeel - 5 .
=lll lllll==

' .(
‘

‘

0
v‘

Are RNA molecules optimal?

Motivation

“tyranny of the short”
super-optimal laboratory molecules
Is anything optimal?
If we re-ran the tape, where would we end up?

Lauren Ancel Meyers, University of Texas at Austin, 2007
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Characterizing entire mutational networks

Molecule .\ her of genotypes Number of
Length phenotypes
12 412 = 16,777,216 59
13 4'% = 67,108,864 119
14 4% = 268,435,456 234
15 4'5 = 1,073,741,824 443
16 4'% = 4,294,967,296 872
17 4V = 17,179,869,184 1673
18 4% = 68,719,476,736

Definition: Phenotype Abundance

RARE PHENOTYPE

awdB® Y
e B D

ABUNDANT PHENOTYPE
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Adjacent Phenotypes

Adjacent phenotypes

Abundant phenotypes can access more novelty
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Does network structure actually impact evolution?

Evolutionary simulation:

- Populations of 1000 molecules

- Choose a target shape and select for similarity to the target
- Point mutation

_ Natural selection & mutation
P 1 o ——

Origin Target
Question:
Is the evolutionary fate of the population influenced by
(a)The abundance of the origin phenotype?
(b)The abundance of the target phenotype?

Yes, network structure constrains evolution

1.0

0.6 0.8
| |
°
0.6 0.8
|
(X}
(X}

0.4
0.4

No correlation r = 0.89 (p<10-10)

r T T T T T T 1 r T T T 1
6 7 8 9 10 " 12 13 4 6 8 10 12

0.2
0.2

Fraction successful simulations
Fraction successful simulations

0.0
0.0

Log phenotype abundance at origin Log phenotype abundance of target

Hypothesis: Real RNA are not necessarily optimal. Naturally occurring

RNA molecules may be biased towards phenotypes with high abundance,
that is, towards shapes that are produced by many different sequences.

Lauren Ancel Meyers, University of Texas at Austin, 2007
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A shape statistic that correlates with phenotype abundance

4= total length stem-loop regions + number base pairs

s

number of contiguous stacks

Size r p-value ..
12-mer  0.712 <1010 - JhE
13-mer 0.721 <10-16 < = . . :..’f-.:
14-mer  0.724 <1016 g s

15-mer  0.703 <10-16 ; el = -
16-mer  0.692 <10-16
17-mer  0.692 <10-16 7

\

Log phenotype abundance

Question: Do natural RNA have statistically high values of A?

If so, then maybe there is a bias toward abundant (rather than best) structures.

Yes, natural RNA are shaped by mutational networks
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(2003) Nucleic Acids Research Evolution of the abundant ...
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Are RNA molecules optimal?

Not necessarily

For a function to evolve, it has to be accessible

But life, even for an RNA molecule, is more complex ...

~
é E ‘
e
VK How do organisms cope with
g environmental heterogeneity?
Genotype

h How does this constrain evolution?

Phenotype

Lauren Ancel Meyers, University of Texas at Austin, 2007
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Plasticity in RNA Secondary Structure
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GCUGUUAUCGGCGCUCCGUACUACGCUUAAAAAACAGGACAGUUGGGAUACUUGCAAAACCAGGUUCAUCUUGUGA

RNA have evolved thermostability

Levels of structural resolution
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Lets model this process ...

Evolutionary model (loosely) based on artificial selection of RNA

Ensemble fithess

Ex {&D \ Target

Selecting for m § ) >

function (shape)

and m m /
thermostability
[0.009 ]

N

A

@)

GCUGUUAUCGGCGCUCCGUACUACGCUUAAAAAACAGGACAGUUGGGAUACUUGCAAAACCAGGUUCAUCUUGUGA
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Evolutionary Simulations

Constant mutation rate (0.001 per position)

*Plastic fitness
VS.
Control fitness

Population of ~1000 sequences in a chemical flow reactor

Replicate sequences in proportion to their fitnesses*

Evolutionary Trajectories
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Evolution of Thermodynamic Stability
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Frequency

Evolution of mutational stability

Can mutations create novelty?

0151
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Neutrality

How do these populations get stuck?

Thermostability is favored

l

Natural selection increases thermostability

Sequences become insensitive to mutation

l

Populations cannot access novelty through mutation,
and therefore cannot evolve

Lauren Ancel Meyers, University of Texas at Austin, 2007
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Plastogenetic Congruence
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How do these populations get stuck?

Thermostability is favored

l

Natural selection increases thermostability

Plastogenetic
congruence

Sequences become insensitive to mutation

l

Populations cannot access novelty through mutation,
and therefore cannot evolve

General hypothesis:

Evolution of environmental stability hinders evolution?!

Selection to withstand environmental variability

Plastogenetic congruence (proteins, phenocopies, ...)

Lauren Ancel Meyers, University of Texas at Austin, 2007
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Another byproduct of natural selection
for thermodynamic robustness ...

Modularity

(1) Thermodynamic Modularity

(2) Genetic Modularity

Melting Profile

Evolved Sequence
76° 94°
0° 4 . 100°

Random Sequence

. 47° 48° 68°
g Eie NN -, e ° . — 100°
295" — 64°

v

Lauren Ancel Meyers, University of Texas at Austin, 2007



GCGAAAUAUAGCGAUCGAUCGGCACGAUGCUAGCUACGCAUCGACUUCGAUCGACAGCUAGUCCGAUCCA

Embed in
random sequence

AGCUCGCGAUCGAUCGACAGCGCCGCAUCGACUUCGAUCGACAGCUAGUCCACUGGACUGACUGCAUCACU

/ Fold minimum free
energy structure

Genetic Modularity

1.0 Evolved

Evolved

Random Random

0L

Fraction of
sequences that
fold into the
original shape

Lauren Ancel Meyers, University of Texas at Austin, 2007

26



Conclusions

New evolutionary hypotheses

1. Plastogenetic congruence: A biophysical relationship between

environmental and mutational stability

2. Selection to withstand environmental variability may impede
adaptation

3. Selection to withstand environmental variability may explain
the origins of modularity

Morals and Challenges

Simulations of complex biological systems can give new
insight:

Phenomena not even accessible from traditional population
genetic models

Inspire new generation of models, better engineering, and
experimental tests

Building even more realistic models
Extracting the essential features/dynamics of a system
Testing these ideas

Extrapolating to other biological systems

Lauren Ancel Meyers, University of Texas at Austin, 2007
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