

Today ...

- I. Natural selection
- II. Fitness landscapes
- III. A network perspective on fitness landscapes
- IV. My favorite molecule: RNA
- V. Are biological systems optimal?
 - Constrained by mutation
 - Evolutionary traps
- VI. Conclusions

Are RNA molecules optimal?

Motivation

"tyranny of the short"
super-optimal laboratory molecules
Is anything optimal?
If we re-ran the tape, where would we end up?

Characterizing entire mutational networks

Molecule Length	Number of genotypes	Number of phenotypes
12	4 ¹² = 16,777,216	59
13	$4^{13} = 67,108,864$	119
14	$4^{14} = 268,435,456$	234
15	$4^{15} = 1,073,741,824$	443
16	$4^{16} = 4,294,967,296$	872
17	$4^{17} = 17,179,869,184$	1673
18	$4^{18} = 68,719,476,736$	

Does network structure actually impact evolution?

Evolutionary simulation:

- Populations of 1000 molecules
- Choose a target shape and select for similarity to the target
- Point mutation

Question:

Is the evolutionary fate of the population influenced by (a)The abundance of the **origin** phenotype?

(b)The abundance of the **target** phenotype?

Yes, network structure constrains evolution 1.0 Fraction successful simulations Fraction successful simulations 0.8 9.0 9.0 0.4 0.2 No correlation 8 9 10 11 12 13 Log phenotype abundance at origin Log phenotype abundance of target Hypothesis: Real RNA are not necessarily optimal. Naturally occurring RNA molecules may be biased towards phenotypes with high abundance, that is, towards shapes that are produced by many different sequences.

Are RNA molecules optimal?

Not necessarily

For a function to evolve, it has to be accessible

But life, even for an RNA molecule, is more complex ...

Population of ~1000 sequences in a chemical flow reactor Replicate sequences in proportion to their fitnesses* Constant mutation rate (0.001 per position) *Plastic fitness VS. Control fitness

General hypothesis:

Evolution of environmental stability hinders evolution?!

Selection to withstand environmental variability

Plastogenetic congruence (proteins, phenocopies, ...)

Another byproduct of natural selection for thermodynamic robustness ...

Modularity

- (1) Thermodynamic Modularity
 - (2) Genetic Modularity

Conclusions

New evolutionary hypotheses

- 1. <u>Plastogenetic congruence</u>: A *biophysical* relationship between environmental and mutational stability
- 2. Selection to withstand environmental variability may impede adaptation
- 3. Selection to withstand environmental variability may explain the origins of modularity

Morals and Challenges

Simulations of complex biological systems can give new insight:

Phenomena not even accessible from traditional population genetic models

Inspire new generation of models, better engineering, and experimental tests

Building even more realistic models

Extracting the essential features/dynamics of a system

Testing these ideas

Extrapolating to other biological systems

